Visions of the Wireless Future: Insights into Emerging Technologies

Dina Katabi
Directory of Wireless@MIT

Over 20 Pls and 50 Graduate Students

Wireless@MIT Partners

Fundamental Architectural Change

Traditional Approach

Optimize within isolated layers

Network & Apps

Comms. and Coding

HW and Radios

Disruptive gains are unlikely

New Approach

Optimize across the layers

Major opportunities!

10x Higher Data Rates

Looming Wireless Capacity Crunch

The FCC projects that the US will face a spectrum shortfall in 2013.

The iPhone 4 demo failed due to wireless congestion.

Jobs's reaction: "If you want to see the demos, shut off your laptops, turn off all these MiFi base stations, and put them on the floor, please."

MegaMIMO

Alleviates the capacity crunch by transmitting more bits per unit of spectrum

Today's Wireless Networks

Today, Access Points Can't Transmit Together in the Same Channel

Today's Wireless Networks

Today, Access Points Can't Transmit Together in the Same Channel

MegaMIMO

Interference:

 $d_2 + d_3 \approx 0$

Data: d survives

Interference:

d¹+**d**³≈0

Data: d₂ survives

Interference:

d₁+d₂≈0

Data: d₃ survives

MegaMIMO = Distributed MIMO

Access Points act as a huge distributed MIMO transmitter with sum of antennas

IO Access Points → **IOx Higher Throughput**

Testbed of Software Radios

Dense Conference Room Like Deployment

Results from Prototype

Number of Access Points on Same Channel

10x throughput gain over existing Wi-Fi

Centimeter-Scale Localization

Today, RF-based localization has about one meter accuracy

Challenge: Multipath effects confuse the localization system

Solution: Use the multipath reflection pattern as a signature of the location

Use Multipath Reflections

Use Multipath Reflections

Use Multipath Reflections

Can localize to within a few centimeters

Works even with RFIDs

Battery-free stickers to tag any and every object

No more customer checkout lines

No more customer checkout lines

RFIDs on Basket

Can your cellphone give you X-ray vision?

WiVi: See through-walls with WiFi

- WiFi signals traverse walls and reflect off objects
- Challenge: reflections off the separating wall are 10,000x higher than off a human behind the wall
- Solution: use two transmit antennas and one receive antenna; the two transmitted waves cancel each other for static objects but not animated objects
- See video on YouTube

https://www.youtube.com/watch?v=uJkQzLjYBFI

Low-power Realtime GHz-Wide Spectrum Sensing

Imagine

A low-power cheap sensor that captures GHz-wide spectrum in realtime

- Thousands of sensors to map spectrum usage
- → Very efficient dynamic spectrum sharing
- → Can detect fleeting signals like radar

Realtime GHz Spectrum Sensing is Difficult

- Today, sequential scanning of tens of MHz
 - → Can easily miss radar signals
- Key Challenge: high-speed ADCs

Tens of MHz ADC

< a dollar
Low-power
High resolution

A Few GHz ADC

Hundreds of dollars
10x more power
Poor resolution

Idea: Leverage Sparsity

Sparse recovery show that one can acquire sparse signals using sub-Nyquist sampling

Sparse FFT

No random sampling -> can use low-speed ADCs

Benefits of Sparse FFT

- Sub-sample the data

 Can use low-speed ADCs
- Very fast algorithm

 Lower-power consumption

- Used sparse FFT to build a GHz receiver from three 50 MHz ADCs
- Both senses and decodes sparse spectrum

Realtime GHz Spectrum Sensing

Cambridge, MA January 18 2013

Occupancy from 2GHz to 3GHz (10 ms FFT window)

Sense GHz using 3 tens of MHz ADCs

Decoding Senders Randomly Hopping in a GHz

Number of MHz Senders Randomly Hopping in in 0.9 GHz

Both Senses and Decodes

3D Photography Using Sparse FFT

- Generate depth and perspective using a camera array
- Images are correlated →4D frequencies are sparse
- Goal: reduce the number of camera elements to enable implementation in a hand-held device
- Solution: Camera images are correlated → Use sparse FFT

Results show that we can accurately reconstruct unsampled camera outputs

Conclusion

The future will be full of amazing wireless technologies that will change our life

