
Rethinking the design of
the Internet

David D. Clark
MIT CSAIL

CFP/CRN winter meeting
January, 2006

Topics:
Description of FIND, a National Science

Foundation initiative.
Why do this?

Further motivation--security as an example.
Relationship to another NSF project--a

major infrastructure proposal called GENI.

FIND: A challenge question
1) What are the requirements for the global

network of 10 or 15 years from now, and
what should that network look like?

To conceive the future, it helps to let go of
the present:

2) How would we re-conceive tomorrow’s
global network today, if we could design it
from scratch?

This is not change for the sake of change, but
a chance to free our minds.

Isn’t today’s net good enough?
Must start with serious discussion of requirements:

It’s not just about cool new apps.

Security and robustness.
As available as the phone system
Been trying for 15 years--try differently?

Easier to manage.
Really hard intellectual problem
No framework in original design.

Recognize the importance of non-technical considerations
Consider the economic landscape.
Consider the social context.

What will be happening in 10 years
New network technology.

Wireless
Mobility
Dynamic capacity allocation
Dynamic impairments

Advanced optics
Dynamic capacity allocation (again!)

New computing paradigms
Embedded processor, sensors, everywhere

Whatever computing is, that is what the Internet should
support.

The Internet grew up in a stable “PC” time.

FIND: it’s not a new IP
Perhaps a header format is not the defining

piece of a new architecture.
Perhaps we focus on control, management

and “other planes”.
Data plane can fend for itself.

The “old” Internet
Packet format.

Trying to replace that…
Global addresses.

Broke that…
Oblivious transport (end to end).

Eroding…
Hosts are not routers (don’t run routing protocols)

Starting to break that…
BGP (EBGP)

Talking about replacing that.
DNS

Broke much of that…

The search for generality
(Or, the search for “open”.)
How do you make a “general” system?
Never commit to what it does.

Commitment may “freeze” the system.
Design (architect) cool building blocks and

hope someone can arrange them later.
Run-time architecting.

We do this all the time.

QoS as an example
Two approaches to specification.

Per-hop behavior (PHB), composable along a
flow to get overall semantics.

How is behavior composed? (Flow setup?)
Defined end-to-end behaviors

TCP-friendly rate adaptation.

This tension between approaches is basic.

Security--another example
A firewall is a Per Hop Behavior.

It tells you nothing about how you achieve
good overall security, or what security you
can achieve.

Alternative: some sort of “negative
availability principle”.

If one set of nodes doesn’t want some other
set of nodes to talk to them, the network
should enforce that (or “help” enforce).
A bold, dangerous idea…

Consider economics
What does an ISP sell? What do I buy?
PHBs are (relatively) easy to create, but are

they worth much?
Selling an end-to-end service seems like

more value, but is hard.
Have to agree on what the service is.
Requires cooperation on service creation,
revenue allocation, etc.

Consider the current work in ITU.

Design for today or tomorrow?
Design for today:

Support the known apps.
Make money.
Embrace services.

Design for tomorrow:
Don’t block innovation.
Find cool building blocks.
We have lots of honed tools for this purpose:

End-to-end arguments.
Run-time application adaptability.
Weak semantics.
Open interfaces.

My proposal for a design goal
We should design for tomorrow--design for

change and for the application we have
not seen yet.

We should pay more attention to how
building blocks are composed into
services.

We should think about how an architecture
can itself survive change.

Security as an example
Define security generally.

Not just disclosure control and integrity.
Focus on availability
Focus on user expectations of a safe and
understandable experience.

Include the end node.
Don’t assume that bad end-node security is someone
else’s problem.
Don’t assume the net will solve the whole problem.
Need a reasoned division of responsibility.

More requirements
Security must be usable (so it gets used)

and understandable.
There are different needs for security in

different contexts.
We need an architecture for security.

But note the point above.
Architecture that supports late binding.

Security for tomorrow’s devices.
Sensitivity to social context and needs.

Resilience and availability
Security community has tradition of looking

to resistance. Resilience may be a better
path.

Diverse failover modes
Reduced interdependence under attack
Integration with management

No silent failures
Support for variability
Resilient social structures
Other disciplines?

Deterrence
Social form of question: what is the role of policing

in the Internet?
Technical form of question: what should it be

possible to see where?
Models of policing:

Wait to be called.
Can end-node gather evidence? Witnesses?
Can application design prevent classes of crime?

Feet on the street, cameras.
CDC
Contract law and arbitration.

Identity
At the packet level:

If we cut loose from location, then what?
Regional variation?
Access to resources?

At the app (e2e) level.
Cross application architecture?
Bottom up or top down?
Should “the net” play a part at the application level?

The “out-source” model of protection.
What about e2e at the application layer?

DoS
Proposal: distinguish “public” and “closed” servers.
For public: must diffuse.

Speculation: diffusion will be key part of future.
For closed, outsource protection.

Whom do you trust?
Possible research questions:

Do private address spaces help?
Virtual nets?

Must protect the real assets underneath…

Re-architect protocols for these goals?

Protecting the end node:
The negative availability principle

Architecting the firewall.
Relate to identity (“Danger, danger…)

The virtual machine story
Do virtual machines need virtual nets?

Helping the host protect itself.
Trusted path, logging, reference monitor.

Avoid the two fates?

Virtualization and security
What do virtual networks really buy us?

Will we have a few or millions?
What do private networks really buy us?
What do overlay networks really buy us?

What are the necessary security requirements
for the underlay?

Close links to management.
Protocol design for management and security.
No silent failure.
Make management systems secure.

Hard--they must work when all else is failing…
Goof-proof tools

Necessary to boost availability.
Security should slow events to the point where

humans can intervene.

Application level security
Identify common services.
Provide design patterns for secure design.

Design so that first interactions can be
outsourced and diffused.

Validate identity, etc.
Design to gather evidence consistent with
risk.
Give user control over selection of services
“in the application”.

Outsourcing.

What is GENI?
The GENI project (also an NSF initiative) is

not funding for research.
It is infrastructure.

GENI is a proposal to build a wide area
platform to demonstrate new ideas in
networking and distributed systems.

(Big bucks.)

Critical features
Wide area (core) and edge.

Wireless platforms.
Advanced optics.

Virtualizable, programmable.
The concept of “slices”.

Motivated by the success of PlanetLab.

Linkages
FIND is starting now.
GENI is being proposed now.
NSF is building research and infrastructure

connections now.
Other agencies
Industry
International

Participation in CFP can give you a window
into this.

	Rethinking the design of �the Internet
	Topics:
	FIND: A challenge question
	Isn’t today’s net good enough?
	What will be happening in 10 years
	FIND: it’s not a new IP
	The “old” Internet
	The search for generality
	QoS as an example
	Security--another example
	Consider economics
	Design for today or tomorrow?
	My proposal for a design goal
	Security as an example
	More requirements
	Resilience and availability
	Deterrence
	Identity
	DoS
	Protecting the end node:
	Virtualization and security
	Close links to management.
	Application level security
	What is GENI?
	Critical features
	Linkages

