Using Packet Symmetry to Curtail Malicious Traffic

Jon Crowcroft
Christian Kreibich(mostly), Andrew
Warfield, Steven Hand, Ian Pratt
The Computer Laboratory
University of Cambridge
http://www.cl.cam.ac.uk/~jac22

Any questions?

- To start with:-)
- Btw, we have other work (Manuel Costa/Microsoft) on Worm Containment, which I can talk about if you like)
- But this is most relevant to DOS...->

A word from our sponsor

- Communications Research Network
 - CMI funded (UK/US, +BT/BP et al)
 - Network of industry+academics
 - BT, Cisco, Juniper, Nokia, etc
 - UCL, Cambridge, Oxford, MIT
 - Working Groups
 - Core Edge+Broadband, Interprovider Routing+QoS,
 - Security, Denial-of-Service
 - Open Spectrum, Photonics

What's Malicious

- Anything that's not typical
 - Typically, traffic dynamics can be observed
- What is a very simple, immediate characteristic that can be used:
 - Implicitly, to allow or deny, or
 - limit atypical behaviour at the ingress to the net
- Before its "too late"
 - reactive response is far too slow for DDoS attacks

Smoke and Mirrors

- Most flows are roughly symmetric at the packet level
 - Whenever a packet is sent, a packet is received within some reasonable interval (round trip time)
 - This can me measured (and enforced) at the edge router inexpensively
 - It is remarkably robust
 - And surprisingly universal!
 - nicely orthogonal to simple blocking based on default allow/deny at ISP boundaries
 - it doesn't operate on a per-flow level

Ingress versus Egress

- Firewalls ok to stop bad stuff at ingress to sink.
- Too late for DoS need egress defense near source
- server (e.g Xen) farm v. ISP deployment considerations

Asymmetry metric

- S = In [(tx+1)/(rx+1)]
 - Seems suitable since it is negative for rx>tx,
 - 0 for tx==rx
 - And positive for tx > rx
- Note, tx and rx are packet count not byte counts
- Need to be measured near transmitter
 - otherwise path asymmetry problem or address translation or spoofing problems
- Action is to delay, then drop

Prototypical Implementation

- Linux netfilter/iptables, Libipq
- Choose threshold S = 2 (asymmetry of 8 times)
 - If S > 2, delay nth subsequent packet by 2ⁿ ms
 - If S goes below 2, decay delay back to zero.
- Let's see some data

Delay imposed on asymmetric flows

A UDP Flood

A UDP Flood stemmed

A large, but normal (well behaved) TCP Flow

Host based symmetry

Host pair based symmetry

Flow based symmetry

UDP flow based symmetry

Evasive Manouevres

- Source address spoofing
 - Bad guy can masquerade as a good site
 - But they can't get traffic _back_ so wont work
 - But they might cause good guy to get throttled...so:
- Randomization of IP ID
 - Bad guy cannot tell what IP ID from good guy can do
 - Policer/limiter can check the ID before throttling
- TTL Estimation
 - Bad Guy doesn't know what TTL is from good guy
 - Policer can check TTL is "right" before throttling

Deployment considerations

- Part of Xen toolkit (virtualised device stuff)
- Behoves us to do this as Xen is likely to be deployed in high capacity (dangerous source potential) sites
- Could put in NIC
- Michael Dales (Intel) designed it into his optical switch port controller (Xylinx)
- Also proposed in ADSL DSLAM equipment (simple as part of ATM mux level police/symmetry enforcement in broadband access contention control).

Practical Protocol Considerations

- TCP acks every other packet 99% of the time
- UDP use:
 - DNS, SNMP request/response
 - RTP/UDP RTCP reports about 1/6th of RTP
- Counter examples
 - Syslog is only 1 we could find in BSD/Linux/OSX
 - Some Windows apps (DCOM use for Outlook:)
 - Almost all (100%) LAN only by definition:)
 - Consequence of congestion control need in WAN?

Related work

- Other approaches require trace-back and/or push-back
 - Too expensive, too slow and too late
- Deal with symptom not cause!
 - more feasible for ISP as "bit-pipe provider" to deploy symmetry enforcement
 - than to filter traffic based on application-layer characteristics
- More fundamental architectural change
 - Mothy (hotnets 03?) capability to send
 - Cheriton et al (to appear) meta-capability
 - Handley/Greenhalgh (sigcomm 05) asymmetry

Generalise?

- Should all protocols be mandated symmetric?
 - The "Well Tempered Internet" (Steven Hand's piano player:)
 - Is this a design principle for feedback based systems?
 - Argue for both stability and for information theory reasons, hard to see otherwise...
 - Details (state/accuracy and asymmetry tradeoffs) TBD
- Acknowledgements to Mark Allman, Vern Paxson, Chema Gonzales, Juan Caballero, Michael Dales (200 lines of VHDL), Atanu Ghosh, Andrew Moore (traces)

Questions?

- Any?
 - Q1. Can you devise a symmetric attack? (nick mckeown&matthew andrews from bell labs)
 - A1. Yes, but hard for bad guy coordinate, so easy for ISP to detect
 - Q2. What about randomizing the initial slow down value to make it hard to for bad guy to probe for symmetry policers? (Stephen Farrell from TCD asked this one!)
 - · A2. Cool!
 - Q3. Isn't there a more general principle in this symmetry idea? (Ted Faber from ISI)
 - A3. Guess so...

Cumulative host pair symmetry for non-responding hosts, 6835K pairs, 60s window

Cumulative host pair symmetry for non-responding hosts, 6835K pairs, 60s window

