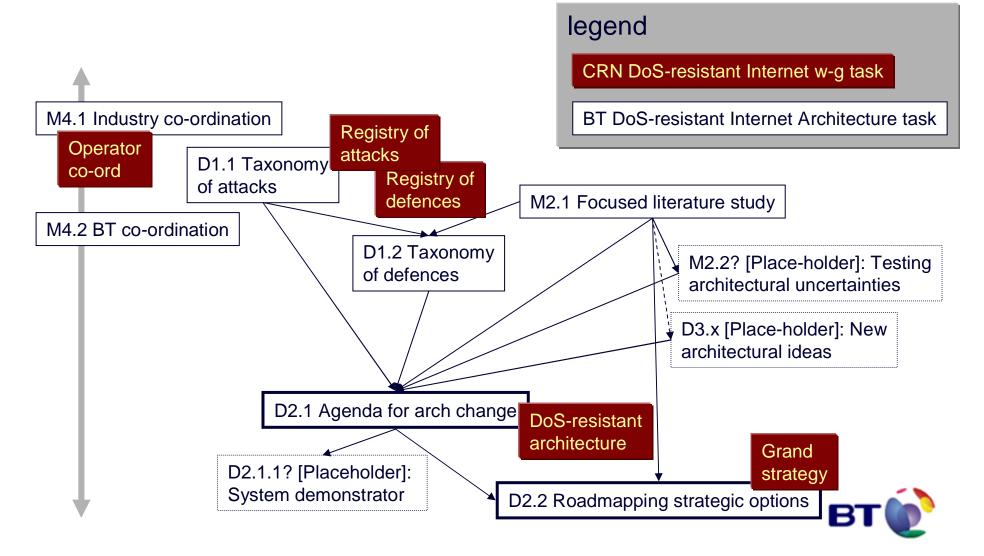
DoS-resistant Internet - progress

Bob Briscoe Jun 2005



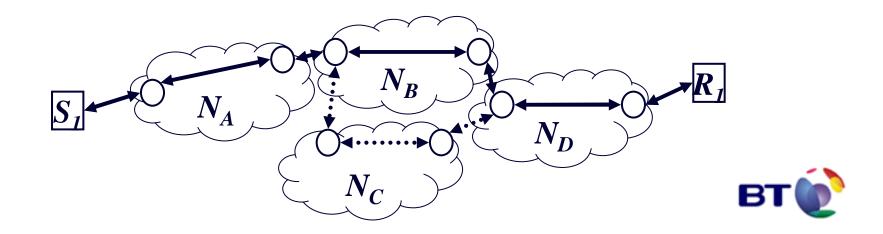
BT activity

- Research
 - 2020 Communications Architecture project
 - DoS-resistant Internet Architecture task
 - Network Security project
 - BGP security
 - control plane separation
 - intrusion detection systems
- Engineering
 - Network design
 - Second line support for operations
- Operations
 - Deployment and operation of attack mitigation technology

DoS resistant Internet architecture BT 0506 deliverables

DoS-resistant Internet Architecture

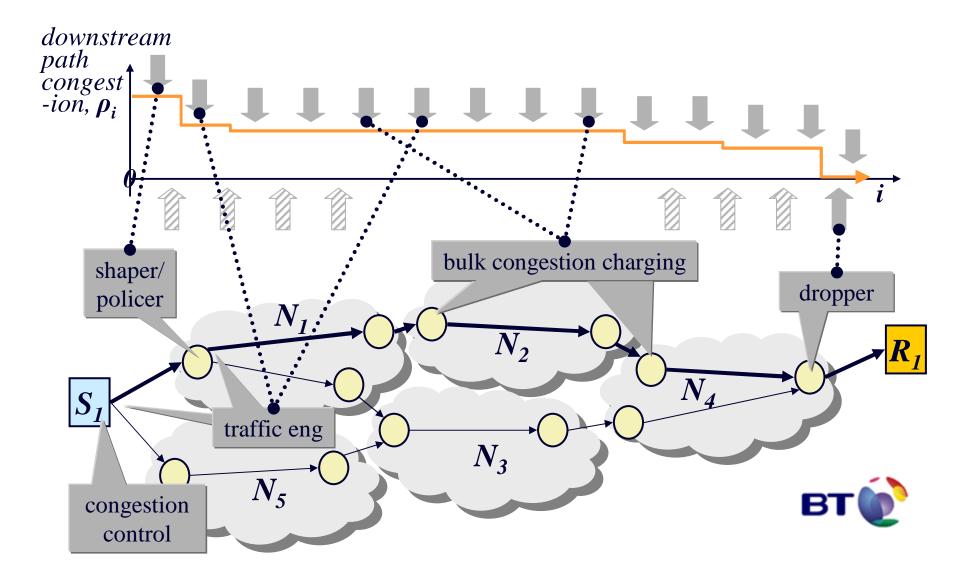
- approach
 - cherry pick the ideas of others
 - sprinkle in a few ideas of our own
 - stress-test
 - propose a target architecture of complementary solutions
 - describe incremental deployment


architectural component ideas candidate list

- Symmetric paths, address separation, RPF checks, state set-up bit, nonce exchange, middlewalls
 - M Handley and A Greenhalgh "Steps towards a DoS-resistant Internet architecture" FDNA (2004)
- Secure Internet Indirection Infrastructure
 - D Adkins et al "Towards a More Functional and Secure Network Infrastructure" UC Berkeley TR-CSD-03-1242 (2003)
- Re-feedback
 - B Briscoe et al "Policing Congestion Response in an Internetwork using Refeedback" SIGCOMM (2005)
- Receiver-driven Capabilities
 - X Yang et al, "DoS-limiting Internet architecture" SIGCOMM (2005)
- tactical approaches
 - ingress filtering, filter pushback...

symmetric paths

- powerful approach
- loss of Internet flexibility acknowledged
- extended to preserve data in flight during reroutes
- stress-testing with authors
 - big question: would it significantly reduce worm attacks?



Secure i³ Secure i³

- rough analogy: receiver-driven multicast
 - receiver creates channel (trigger) in infrastructure
 - senders send to channel
- unlike IP multicast, overlay infrastructure (Chord)
 - highly redundant
- essentially, allow more, less efficient routes
 - choice of routes under receiver control
 - if some routes used for attack, drop them
 - efficient route could be norm, then less efficient routes when under attack
- inherent weakness for servers: must advertise triggers
 - so attackers on dropped triggers just re-start
 - authors offer some mitigation

re-feedback incentive architecture

receiver-driven capabilities

- yet to fully analyse (only just published)
- sent traffic picks up time-bounded tags
 - tags from each network (router)
 - and byte permission from destination
 - collectively termed a capability
- routers store tags
- subsequent traffic authorised using capability
- detail devils
 - bootstrapping
 - bounded router state
 - incremental deployment

Grand Strategy: some questions

- if upstream network doesn't filter/throttle
 - once attackers identified, what do we do?
 - continue to add more and more filters at borders?
 - disconnect their network?
 - throttle their network?
 - sue them (under what law tort, criminal)?
- can the network help identify persistent attackers?
 - unenforceable due to numerous weak legal systems?
 - pair-wise network agreements, or source identification?
- inter-domain charging
 - congestion-based
 - would it slowly mitigate persistent attacks?
 - filter-based
 - would it encourage push-back?
- incremental deployment
 - new, clean Internet?
 - gradually clean up the one we've got

in summary

- multiple answers, defence in depth
 - pair-wise network agreements AND source identification
- complementary approaches
 - identify attackers (networks) by address
 - routers filter traffic from identified attacks/attackers
 - inter-domain charge to congestion-causing networks
 - police congestion-causing traffic

more info

- Bob Briscoe
- <u>bob.briscoe@bt.com</u>
- http://www.cs.ucl.ac.uk/staff/B.Briscoe/

