
Programmable Peer-to-Peer
Systems

Dimitris Vyzovitis
vyzo@media.mit.edu

Viral Communications

MIT Media Laboratory

Programmable Peer-to-Peer Systems – p. 1/18



Overview

• Motivation
• The P2P system design problem
• The case of BitTorrent
• P2P protocol design at the program level
• Peers and VidTorrent

Programmable Peer-to-Peer Systems – p. 2/18



Motivation

• The Problem: How to build robust, extensible
and scalable real-time distribution systems.

• Not just to entertainment or best-effort static
data distribution. Real-time coverage of
events, ad-hoc journalism, access to public
cameras . . .

• P2P is the natural architecture: open and
scalable.

Programmable Peer-to-Peer Systems – p. 3/18



The Design Problem

• How do we design P2P protocols for real-time
distribution?

• Lots of academic proposals, none seen or
heard of in the wild...

• The root cause: Broken unimplementable
design.

• This work is about P2P protocol design that
can be implemented in the real world.

Programmable Peer-to-Peer Systems – p. 4/18



Why P2P System Design is Hard

• Global scale.
• High-level of concurrency.
• Loose timing and unpredictable network

conditions.
• Failures and turnover are the norm.
• Malicious and antisocial peer behavior.

Defections cannot be detected in general.
• Huge gap from design to implementation.

Programmable Peer-to-Peer Systems – p. 5/18



Design approaches

• Academic approach: Top-down design, aimed
at some abstract optimality metric. The result
is usually an unimplementable, maximally
brittle design.

• Contrast BitTorrent, an organically evolved
hack which dominates network traffic.

• What can we learn from BitTorrent? How can
we apply to design and implementation of
new P2P protocols?

Programmable Peer-to-Peer Systems – p. 6/18



The case of BitTorrent

• BitTorrent is not an academic protocol!
• The protocol evolved as a bottom-up

program, by trial and error in the wild.
• The code is the design, written in a high-level

language (Python)

Programmable Peer-to-Peer Systems – p. 7/18



BitTorrent: Protocol Attributes

• High level of concurrency, typically interact
with 30-40 peers.

• Robust and Adaptive to varying network
conditions.

• Tolerate free-riding and antisocial peer
behavior.

Programmable Peer-to-Peer Systems – p. 8/18



BitTorrent: Facts

• BitTorrent is by far the most popular P2P
protocol in use today, exhibiting
unprecedented scalability.

• Measurements have shown that over 50% of
Internet edge traffic is BitTorrent.

Programmable Peer-to-Peer Systems – p. 9/18



Why BitTorrent scales

• Design principle. Do not design for optimality.
Design for robustness and adaptability.

• No assumptions. Do not rely on extraneous
assumptions about peer behavior. React on
perceived behavior and performance.

• Tit-for-tat. Embed a strategy that penalizes
sluggish behavior directly into the protocol

Programmable Peer-to-Peer Systems – p. 10/18



P2P System Design, BitTorrent style

• Design for approximate correctness. Tolerate
an only approximately correct view of the
global state. Explicitly take timing and
malicious peer behavior into account.

• Protocol design as code. The design should
be runnable, not the byproduct of simulation.

• Programming language and environment
matters. High level language for algorithms,
low level language only for performance
critical bit-banging.

Programmable Peer-to-Peer Systems – p. 11/18



The Peers Programming Environment

• Event-driven kernel with continuations.

• High performance, low overhead RPC. Allows raw data
interleaving and reverse channel calls.

• Both synchronous and asynchronous RPC interface,
maintaining order of events.

• Errors are first class events, propagated across
process boundaries.

• Distributed continuations and tail-recursion as
concurrency control and protocol implementation
primitives.

Programmable Peer-to-Peer Systems – p. 12/18



Peers Implementation Details

• Thread-safety from the ground up.
Programmer can freely mix user space
concurrency with native threads.

• Kernel written in C++, exported to Python
with Boost.Python.

• Interface specification DSL, compiled to C++
for the heavy lifting and Python bindings for
algorithm implementation.

Programmable Peer-to-Peer Systems – p. 13/18



VidTorrent

• Live stream single-source overlay multicast.

• BitTorrent-style adaptive behavior.

• Allow distribution of stream components over different
trees.

• Tit-for-tat for penalizing malicious peer behavior.

• Applications: Expat-TV, ad-hoc journalism, personal
broadcast...

• Implemented with Peers, written almost entirely in
Python.

Programmable Peer-to-Peer Systems – p. 14/18



VidTorrent: First generation

• Tree construction and maintenance algorithm.
Creates and maintains a good enough tree
with low overhead.

• Fast join and recovery, resilience to node
failures and varying network conditions.

First generation protocol demo...

Programmable Peer-to-Peer Systems – p. 15/18



VidTorrent: Second generation

• Improved heuristics in tree construction and
maintenance. Choking of sink leaves, multiple tree
synchronization.

• Cryptographic primitives for peer identification, stream
data integrity, and establishment of trust.

• Web-of-trust for computing shared history of peer
behavior.

• Tit-for-Tat in peer selection, admission, and tree
maintenance strategies.

Programmable Peer-to-Peer Systems – p. 16/18



Code Availability

• Peers codebase is ready for initial public
release under the GNU GPL.

• Currently working on documentation.
• The second generation VidTorrent

implementation is work in progress. Code will
be released in sync with Peers.

Programmable Peer-to-Peer Systems – p. 17/18



Conclusion

• The gap from design to implementation is a
fundamental reason for the hardness of P2P
system design.

• BitTorrent demonstrates the power bottom-up
protocol programming.

• Peers as a hybrid language environment for
designing programmable P2P systems.

• Work on VidTorrent, a real-time live P2P
multicast protocol based on Peers.

Programmable Peer-to-Peer Systems – p. 18/18


	Overview
	Motivation
	The Design Problem
	Why P2P System Design is Hard
	Design approaches
	The case of BitTorrent
	BitTorrent: Protocol Attributes
	BitTorrent: Facts
	Why BitTorrent scales
	P2P System Design, BitTorrent style
	The Peers Programming Environment
	Peers Implementation Details
	VidTorrent
	VidTorrent: First generation
	VidTorrent: Second generation
	Code Availability
	Conclusion

