Programmable Peer-to-Peer
Systems

Dimitris Vyzovitis
vyzo@edi a. mt. edu

Viral Communications
MIT Media Laboratory

Proarammable Peer-to-Peer Svstems — p. 1/18



Overview

Motivation

The P2P system design problem

The case of BitTorrent

P2P protocol design at the program level
Peers and VidTorrent



M otivation

The Problem: How to build robust, extensible
and scalable real-time distribution systems.

Not just to entertainment or best-effort static
data distribution. Real-time coverage of
events, ad-hoc journalism, access to public
cameras ...

P2P is the natural architecture: open and
scalable.

Proarammable Peer-to-Peer Svstems — p. 3/18



The Design Problem

How do we design P2P protocols for real-time
distribution?

Lots of academic proposals, hone seen or
heard of in the wild...

The root cause: Broken unimplementable
design.

This work is about P2P protocol design that
can be implemented in the real world.



Why P2P System Design isHard

Global scale.
High-level of concurrency.

Loose timing and unpredictable network
conditions.

Failures and turnover are the norm.

Malicious and antisocial peer behavior.
Defections cannot be detected in general.

Huge gap from design to implementation.

Proarammable Peer-to-Peer Svstems — p. 5/18



Design approaches

Academic approach: Top-down design, aimed
at some abstract optimality metric. The result
IS usually an unimplementable, maximally
brittle design.

Contrast BitTorrent, an organically evolved
hack which dominates network traffic.

What can we learn from BitTorrent? How can
we apply to design and implementation of
new P2P protocols?

Proarammable Peer-to-Peer Svstems — p. 6/18



The case of BitTorrent

BitTorrent is not an academic protocol!

The protocol evolved as a bottom-up
program, by trial and error in the wild.

The code is the design, written in a high-level
language (Python)



BitTorrent: Protocol Attributes

High level of concurrency, typically interact
with 30-40 peers.

Robust and Adaptive to varying network
conditions.

Tolerate free-riding and antisocial peer
behavior.



BitTorrent: Facts

BitTorrent is by far the most popular P2P
protocol in use today, exhibiting
unprecedented scalabllity.

Measurements have shown that over 50% of
Internet edge traffic is BitTorrent.



Why BitTorrent scales

Design principle. Do not design for optimality.
Design for robustness and adaptabillity.

No assumptions. Do not rely on extraneous
assumptions about peer behavior. React on
perceived behavior and performance.

Tit-for-tat. Embed a strategy that penalizes
sluggish behavior directly into the protocol



P2P System Design, BitTorrent style

Design for approximate correctness. Tolerate
an only approximately correct view of the
global state. Explicitly take timing and
malicious peer behavior into account.

Protocol design as code. The design should
be runnable, not the byproduct of simulation.

Programming language and environment
matters. High level language for algorithms,
low level language only for performance
critical bit-banging.



The Peers Programming Environment

Event-driven kernel with continuations.

High performance, low overhead RPC. Allows raw data
Interleaving and reverse channel calls.

Both synchronous and asynchronous RPC interface,
maintaining order of events.

Errors are first class events, propagated across
process boundaries.

Distributed continuations and tail-recursion as
concurrency control and protocol implementation
primitives.

Proarammable Peer-to-Peer Svstems — p. 12/18



Peer s mplementation Details

Thread-safety from the g

round up.

Programmer can freely mix user space

concurrency with native t

nreads.

Kernel written in C++, ex
with Boost.Python.

ported to Python

Interface specification DSL, compiled to C++
for the heavy lifting and Python bindings for
algorithm implementation.



VidTorrent

Live stream single-source overlay multicast.
BitTorrent-style adaptive behavior.

Allow distribution of stream components over different
trees.

Tit-for-tat for penalizing malicious peer behavior.

Applications: Expat-TV, ad-hoc journalism, personal
broadcast...

Implemented with Peers, written almost entirely in
Python.

Proarammable Peer-to-Peer Svstems — p. 14/18



VidTorrent: First generation

Tree construction and maintenance algorithm.
Creates and maintains a good enough tree
with low overhead.

Fast join and recovery, resilience to node
faillures and varying network conditions.

First generation protocol demo...

Proarammable Peer-to-Peer Svstems — p. 15/18



VidTorrent: Second generation

Improved heuristics in tree construction and
maintenance. Choking of sink leaves, multiple tree
synchronization.

Cryptographic primitives for peer identifi cation, stream
data integrity, and establishment of trust.

Web-of-trust for computing shared history of peer
behavior.

Tit-for-Tat in peer selection, admission, and tree
maintenance strategies.

Proarammable Peer-to-Peer Svstems — p. 16/18



Code Availability

Peers codebase Is ready for initial public
release under the GNU GPL.

Currently working on documentation.

The second generation VidTorrent
Implementation is work in progress. Code will
be released in sync with Peers.

Proarammable Peer-to-Peer Svstems — p. 17/18



Conclusion

The gap from design to implementation is a
fundamental reason for the hardness of P2P
system design.

BitTorrent demonstrates the power bottom-up
protocol programming.

Peers as a hybrid language environment for
designing programmable P2P systems.

Work on VidTorrent, a real-time live P2P
multicast protocol based on Peers.

Proarammable Peer-to-Peer Svstems — p. 18/18



	Overview
	Motivation
	The Design Problem
	Why P2P System Design is Hard
	Design approaches
	The case of BitTorrent
	BitTorrent: Protocol Attributes
	BitTorrent: Facts
	Why BitTorrent scales
	P2P System Design, BitTorrent style
	The Peers Programming Environment
	Peers Implementation Details
	VidTorrent
	VidTorrent: First generation
	VidTorrent: Second generation
	Code Availability
	Conclusion

