Open Spectrum: Economic and Policy Research

William Lehr

Massachusetts Institute of Technology

wlehr@mit.edu

June 30, 2005

Open Spectrum: Economic & Policy

- Future is shared spectrum
- Business/Policy Models for sharing spectrum
- Current trajectory of policy reform
- Research questions/issues
- "Managing shared access to a spectrum commons"

Future is shared spectrum: decoupling of spectrum frequencies from infrastructure investment & applications

Technology (Capabilities) → frequency agility, expanded capacity for sharing	Smart radio systems, spread spectrum, transition to broadband platform architectures
Revenue (Customer experience) → 24/7 availability, simplicity of use, seemless mobility	Heterogeneous networks (3G/WiFi, wireless/wired, global roaming)
Costs (Network provisioning) lower costs, take advantage intermodal competition	Bursty traffic, multimedia services, fat-tailed usage profiles
Policy (Spectrum reform) → reduced <i>artificial scarcity</i> due to legacy regulations	Transition to expanded flexible market-based licensing and unlicensed spectrum mgmt regimes

Trajectory of reform: from regulation \rightarrow markets

Figure 1.1: Current and future balance of spectrum use

Source: Ofcom Spectrum Framework Review, June 28, 2005

- □ From Command &Control => Liberalized, tradable, exclusive licenses
- □ Unlicensed for low-power, low-range uses (<100m)
 - Limited allocation below 3Ghz
 - Underlays and Overlays (??), Dedicated @ 5GHz

#1: Need exclusive licenses (and secondary markets) to manage when scarce (if not scarce, then unlicensed best...)

#2: Unlicensed (decentralized, commons) suitable only for managing short distance, low cost of congestion

Research Questions: Is this right policy?

- □ Allocation of spectrum between "licensed" & "unlicensed"
 - Future "opportunity" cost of spectrum?
 - Architectures of (wireless) BB access networks?
 - International harmonization for scale/scope economies means delay costly
- Efficient design of secondary markets
 - Dynamic spectrum allocation markets (who controls?)
- Transition issues: spectrum clearing and allocation (auctions?)
- Unlicensed secondary use rights
 - *Underlays*: power limits and UWB development? Impact of underlays on licensed spectrum innovation?
 - Overlays: cognitive radio? Interruptible services
- □ Etiquettes/protocols for managing open spectrum

All issues require mix of technical, business, and policy analysis.

- •Complex stakeholder interests (NIMBY, windfall profits, etc.)
- •Uncertain technology & "future proof" policy

"Managing Shared Access to a Spectrum Commons"

- ☐ "Open" does not mean *no* regulation
 - But hopefully, minimal Free? Maybe not, but certainly low cost. Avoid usage fees.
 - Any user? No, only those that conform to "rules." Could be private commons (e.g., mobile providers share 3G spectrum cooperatively).
- Criteria to evaluate:
 - Technical: avoid unnecessary interference when congestion rare.
 - Economic: promote innovation, invest, competitive → strive or technical neutrality while avoiding "Tragedy of Commons":
 - Political: How future-proof? (Reversibility) Enforcement? (Liability)

- Key technical rules
 - (1) Power restrictions (probably higher than consistent with underlay)
 - (2) Signaling capability (common channel signaling for identity, use, power, location)
 - (3) Contention/allocation mechanism (ERC, preemption)
 - (4) Enforcement (reliably verifiable conformance testing)
 - (5) Reversibility (term limits)

Joint with Jon Crowcroft for www.IEEE-Dyspan.com, Baltimore, MD, Nov05