Modeling Coreness using System Dynamics

The Voice over Internet Protocol (VoIP) Model

Chintan Vaishnav, chintanv@mit.edu

Outline

- History (using VoIP example)
 - Basic Elements (VoIP Control Points)
 - Coreness of Control Points
 - Coreness over Time (The Coreness Tunnel)
- System Dynamics (SD) Modeling
 - What is Systems Dynamics?
 - The Goal (How do we plan to use SD?
 - Process Steps
- Model Building (Discussion)
 - Variables
 - Reference Modes and Rough Hypotheses
 - Illustrative Causal Loops

Basic Elements (VoIP Control Points)

- Local Access
- National Backbone
- International Backbone
- Bit Transport (Voice Quality)
- Call Signaling
- PSTN Gateway
- Features
- End Device/Software
- Name Space

Other case studies are: digital music, LBS, SIP

Evolving Coreness of Access

(this exercise was carried out for each control point)

Demand

- We are interested in understanding...
- What happens to the demand and scarcity (i.e. the coreness) of a certain technology offer over time.
- What triggers a change in demand and scarcity?
- Can we construct a business model that will control the triggers to drive coreness of an offer to the desired region on the plane?

What is System Dynamics?

- System dynamics is a methodology for studying and managing complex feedback systems.
- It demonstrates how structure determines system behavior.
- It is often used as a forecasting tool, and at other times a simulation tool.

The Goal (How do we plan to use SD?)

We are developing an SD model of the coreness tunnel for VoIP services to...

- 1. Understand what triggers a change in the demand and scarcity of VoIP offers over time.
- 2. Understand which triggers are strong and which are not.
- 3. Abstract the learning from VoIP to a macro gear-teeth model (revisited next).
- 4. Validate the core-edge taxonomy we have developed and used in the past for characterizing different technologies and services.

Modeling Steps

- 1. Problem definition
- 2. List of variables
- 3. Reference modes and rough hypotheses
- 6. Dynamic hypotheses (i.e. causal loops)
- 7. Model first loop
- 8. Analyze first loop
- 9. Model second loop
- 10. Analyze second loop
- 11. ...

Most of the learning is in the process of building the model itself...

Step 1 – The Problem Statement

Statement:

To model the VoIP coreness tunnel to understand changes in service demand and scarcity.

Challenges:

- 1. At what level of abstraction?
 - Control Points Level vs. Service Level
 - Start with one big model vs. a separate model for demand and scarcity (and then combine them)

Resolution: Model demand and scarcity separately at the service level.

2. How to abstract learning from the VoIP model to a macro level dynamics? Resolution: *Under discussion.*

Step 2 – Variables in the system

M
\(\sum_{\text{Technology}} \Bar{\zeta} \)
> Dynamics <

conve	ergence
	capable devices
voice	quality
featur	e integration
servic	e mobility options
numb	er portability options
	bility of virtual phone numbers
	ndary phone numbers per line
secur	rity technologies
privac	cy technologies
encry	ption schemes
Laten	су
	applications
arbitra	age opportunity
new F	eatures available
availa	ble features
	of namespace
	l interconnectivity
legac	y feature Compatibility
broad	band deployment
end-to	o-end IP networks
WiFi	Hotspots
WiMa	ax deployment
comn	nunity networks

propensity for deregulation
subsidies
barrier to entry
cost of regulation
unbundling local loop
congressional pressure
public pressure
lobbying
regulations
social regulation
economic regulation
interconnection charges
time to develop technology to meet
regulatory needs
technology availble to meet
regulatory needs
feasibility of developing technology
regulatory delays
regulatory unclarity

number of basic service providers
number of premium service providers
number of service providers
number of equipment providers
vertical disintegration

monthly price	
Voice communications cost	
cost pressures	

vertical integration

mergers and acquisitions

pressure to reduce deployment cost
pressure to reduce operation costs
number of service providers
number of equipment providers
Number of developers
service and installation personells

economic arbitrage

lobbying

number of basic service providers	
number of premium service providers	
service availability	
monthly price	
price bundling	
in-service calling plans	
cost of registring on the namespace	

- Jr -	
capital available	
attractiveness to wall street	
wall street expectation	
capital performance	
attractiveness of internet technology	

Dynamics —
demand for features
stickiness to service
concern for privacy
concern for security
tolerance for voice quality
perceived coolness
peer pressure

80 variables

Variables (contd.)

Challenge:

Do these variables affect demand, scarcity or both?

Variable Name	Affects
---------------	---------

Voice Quality Demand

New Features Demand

PSTN Interconnection Demand

Broadband deployment Scarcity

WiFi Hotspots Scarcity Think about how the

variable impacts

Convergence Both demand/scarcity keeping

VolP Enabled Devices Both everything else in the

system constant.

Important Variables for Modeling Demand

- 1. Voice quality
- 2. Price
- 3. Perceived coolness (as perceived by consumer)
- 4. New VoIP-enabled features
- 5. No. of developers
- 6. Service mobility (across devices)
- 7. Price bundling

Reference Modes (Contd.)

Next Steps...

- 1. Complete causal loops for the demand side and aggregate them.
- 2. Pick important variables for the scarcity side and create a causal loops.
- 3. Combine causal loops in 1 and 2 with variables that affect both.
- 4. Build stock and flow model.
- 5. Calibrate the model.
- 6. Carry out desired analysis...