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Decrease programming effort

Increase performance

Increase resiliency

Increase energy efficiency
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Positive Energy Partnerships

 Non-application resources that perform tasks for a
net gain in energy.

e Hardware Partnerships

e shared resources
e hard-wired events

e Software Partnerships
e expose to h/w ISA
e algorithms
* event servicing

3/16/2011 Angstrom Lunch Seminar 4




Motivation Architecture Graphite Applications Conclusion

Positive Energy Partnerships

e PEP Cores
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PEP Core Architecture

e Area Considerations

Core Node (nm) SRAM Size (mm?) Scaled Size (mm?)
pController 65 128K 1.5 0.03

RAW 180 128K 16 0.25
Intel Core 2 65 2M/4M 80 9.0

e puController: 16-bit, RISC, in-order datapath, unified cache
e RAW: 32-bit, RISC, 8-stage, in-order datapath, split cache
e Core 2: 64-bit, x86, 14-stage, out-of-order datapath, split cache
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PEP Core Architecture

e Power Considerations

(oe] Energy/Cycle

uController 27.2p)
TilePro64 286p)
Intel Core 2 101 000p)

e pController: 16-bit, RISC, 1 MHz
e TilePro64: 64-bit, VLIW, 700-866 MHz
e Core 2: 64-bit, x86, 1-2.4GHz
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Potential Applications

e Case Study
— Memory Prefetching

e Other Applications
— Security
— Reliability
— Event Probing
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Case Study: Memory Prefetching

* Pre-Execution Main
Thread Helper Threads

e PEP cores are free to run on PEP cores
with minimal energy:

— Low clock frequency

— Low power hardware
— Tight coupling

sranch
Outcome and

* Helper thread extracted I oad will —
from main thread. I -
— Static compiler Branch [« — "~

— Dynamic extraction |
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Case Study: Helper Threads

e EM3D benchmark (Execution Time)
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Case Study: Helper Threads

e EM3D benchmark (Energy Efficiency)
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Potential Applications

e Security

— PEP core does not run application code
 Immunity to application level attacks!

— Dynamic Information Flow Tracking (DIFT)
* Taint pointers using PEP core
 Run DIFT instructions in PEP
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Potential Applications

e Security

— Helper thread runs ahead only on DIFT instructions
— Tight coupling allows access to register values

main\/\ helper\/\

Main Pipeline PEP Pipeline

_ taint register
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Potential Applications

e Reliability

— With 1000 cores on a single chip, and ultra low voltage
logic, transient faults are a terrible issue.

— Redundant Multithreading (RMT)

e Create a leading thread and a trailing thread.
e Perform exact same execution on both threads.
e Commit results only if both threads yield same results.
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Potential Applications
e Reliability

Input
Replication
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Comparison

— Implementation
e SMT: Low hardware overhead; incurs switching overhead.
e CMP: Simple to implement; repeats mis-speculations.
e PEP cores gain advantages of both!
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Potential Applications

e Self-Aware Computing

— Requires a way to monitor itself:
e SMT
e Extra thread
e Extra core

— PEP core possesses detached execution context.

* Main core keeps running!
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Potential Applications

e Event Probing
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Potential Applications

e Event Probing

On-chip PEP

Network Network
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Conclusion

 PEP cores allow for several optimizations with a
low energy/area cost (<10%).

* Next steps:
— Evaluate more applications with more benchmarks.

— Implement a comprehensive scheme for all these
applications.

— Determine proper communication protocol between
PEP cores and main cores.
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Case Study: Memory Prefetching

CarbonSpawnHelperThread(helper);
void * helper(Q)
{
CarbonCondBroadcast(&resume_cond) ; while(1)
cur_node = node_vec; {
CarbonCondWait(&resume_cond) ;

for (n = 0; n < N; ++n, ++cur_node){

CarbonMutexLock(&counter_lock); // Synchronization Code

shared_counter++; o

CarbonMutexunLock(&counter_lock) ; local counter = shared counter++;

cur_value = val(cur_node);

values = cur_node->values;

coeffs = cur_node->coeffs; values = cur_node->values;

i i coeffs = cur_node->coeffs;
for (1 = 0; 1 < stop; i++)
cur_value -= values[i]*coeffs[i]; for (i = 0; i < stop; i++) {
coeff_dummy = coeffs[i];

val (cur_node) = cur_value; value_dummy = values[i];

¥ }
}
MAIN 3 HELPER
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Case Study: Memory Prefetching

CarbonSpawnHelperThread(helper);

CarbonCondBroadcast(&resume_cond);
cur_node = node vec;

for (n = 0; n < N; ++n, ++cur_node){
CarbonMutexLock(&counter_lock);
shared_counter++;
CarbonMutexunLock(&counter_lock);

cur_value = val(cur_node);
values cur_node->values;
coeffs cur_node->coeffs;

for (1 = 0; 1 < stop; i++)
cur_value -= values[i]*coeffs|i];

val (cur_node) = cur_value;

MAIN

while (I _counter < n_nodes)

{

while(1) {
CarbonMutexLock(&counter lock);
c_counter = shared_counter;
CarbonMutexUnlock(&counter_lock);

offset = | _counter - c_counter;

iIfT (offset >= MIN && offset < MAX)
break;

else 1T ( offset <= MIN_OFFSET)
I _counter = c_counter + OFFSET;
break;

}

while(prev_I1 _counter < 1 _counter)
cur_node++;
prev_1_counter++;

}

’ HELPER
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Case Study: Memory Prefetching

e Simulation Results on Graphite
— Graphite instantiates two cores per tile.
— Each core runs a separate context (stack, registers, etc.)
— PEP and main cores contain private L1 and shared L2.
— Synchronization through finite barrier across all threads.

e EM3D benchmark (Olden Suite)
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