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Multicore Computing Systems Increase 
Burden on Application Developers

Correctness
Speed: Architecture

Power /Energy

Application

Speed: A lgor ithms

Today, application programmers have to address 
many, sometimes competing, concerns

Quality

beat/s

Lo Hi

Power
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Example: Developing a 
Multicore Video Encoder

Video
Encoder

Lo Hi

Power Meter

Allocate resources for best case

Encoder must drop frames to keep up

The power is low

Video
Encoder

Lo Hi

Power Meter

Allocate resources for worst case

Encoder Exceeds Goals

The power is high, resources wasted

Application programmers need to balance competing constraints in 
fluctuating environments
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Self-aware Computing Can Address 
Challenges of Multi-objective Optimization

Self-aware (self-*, adaptive, etc.) computing has become a 
discipline unto itself:

• Laddaga [DARPA BAA 1997, IEEE Intelligent Systems 1999]

• Kephart and Chess [IEEE Computer 2003]

• Babaoglu et al. [LNCS 2005]

5

Self-aware (or self-*, adaptive, autonomic, etc.) systems have the flexibility 
to change behavior online to balance multiple needs in dynamic 

environments
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The Self-Aware Computing Idea

Traditional Systems Self-Aware Systems

Decide

Act

• Run in open loop 

• Assumptions made at design time
• Based on guesses about future

Decide Act

Observe

• Run in closed loop

• Understand user goals 
• Monitor the environment 

• Programmer optimizes for system
• No flexibility to adapt to changes

• System optimizes for application
• Flexibly adapt behavior 
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Prior Work in Self-Aware Systems

• Self-aware/Adaptive/Autonomic systems have been used to solve 
problems in:
– Hardware [Bitirgen et al, MICRO 2008, Albonesi et al. IEEE Computer 2003]
– Software [Salehie & Tahvildari ACM TAAS 2009]
– Real-time Systems [Block et al. ECRTS 2008]
– Mobile Computing [Masters MobileHCI 2008]
– Dynamic Compilation [Sorber et al, SenSys 2007, Baek & Chilimbi PLDI 2010]
– Numerical Libraries [ATLAS, SPIRAL, FFTW]
– Many others…

We build on previous work to create a programming model 
for self-aware systems
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SElf-awarE Computing (SEEC) 
Framework

• Goal:
Reduce programmer burden with self-aware programming model

• Key Features:
1. Applications explicitly state goals, system meets goals optimally
2. One unified decision engine adapts algorithms, software and hardware

Power /Energy

Application

Quality

Speed beat/s

Lo Hi

Power



10

Example Self-Aware System 
Built from SEEC

• At key intervals, applications issue a heartbeat (e.g. once per frame)

• Apps also register desired performance (e.g. 30 beats (frames) per second)

• The performance (heart rate) and goals can be read by system software

• If performance is low the system adapts to increase performance

• If performance exceeds goals, the system frees resources

Video Encoder Self-Aware System

Goals:
30 beat/s

Cores
1 16

Speed
1.6 2.4

Bandwidth
1 10

A
P

I
20 b/s30 b/s33 b/s30 b/s
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Roles in the SEEC Framework

Application 
Developer

Systems 
Developer

SEEC
System 

Infrastructure
Express application 
goals and progress
(e.g. frames/ second)

Read goals and 
performance

Determine how to adapt 
(e.g. How much to 
speed up the 
application)

Provide a set of actions 
and a callback function
(e.g. allocation of cores 
to process) 

Initiate actions based 
on results of decision 
phase

Observe

Decide

Act
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Registering Application Goals

• Performance
– Goals: target heart rate and/or latency between tagged heartbeats
– Progress: issue heartbeats at important intervals

• Quality
– Goals: distortion (distance from “best” value)
– Progress: distortion over last heartbeat

• Power
– Goals: target heart rate / Watt and/or target energy between tagged heartbeats
– Progress: Power/energy over last heartbeat interval

Observe

Application

Lo Hi

Power

SEEC
Decision Engine

Performance

Power

Quality

Research to date focuses on meeting performance while minimizing power/maximizing quality
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Registering System Actions

Each action has the following attributes:
• Estimated Speedup

– Predicted benefit of taking an action
• Cost

– Predicted downside of taking an action (increased power, lowered quality)
• Callback

– A function that takes an id an implements the associated action

Act

SEEC
Decision Engine

System Services

Cores
1 16

Speed
1.6 2.4

Bandwidth
1 10

Estimated Speedup

Cost

Callback



14

The SEEC Decision Engine

Decisions are made to select actions given observations:
• Read application goals and heartbeats
• Determine speedup with adaptive 2nd order control system
• Translate speedup into one or more actions

Decide

SEEC Decision EngineApplication System 
Services

L
o

H
i

Power

The control system provides predictable and analyzable behavior
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Optimizing Resource Allocation with 
SEEC

• SEEC can observe, decide and act

• How does this enable optimal resource allocation?

• Let’s implement the video encoder example from the 
introduction
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Performance/Watt Adaptation 
in Video Encoding
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System Models in SEEC

17
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p

Initial Model

SEEC’s control system takes actions based on models (of 
speedup and cost per action) associated with actions

What if the models are inaccurate?
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SEEC Decision and Adaptation Engine

Updating Models in SEEC

• After every action, SEEC updates system models

• Kalman filters used to estimate true speedups
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SEEC combines predictability of control systems with adaptability of 
learning systems
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SEEC Online Learning of Speedup Model 
for Application with Local Minima
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Handling Multiple Applications

20

Decide

SEEC Decision Engine System 
Services

Application

L
o

H
i

Power

Application

L
o

H
i

Power

Application

L
o

H
i

Power

Application

L
o

H
i

Power

• Control actions computed separately for each application

• For finite resources, several alternatives:

• Priorities determine which apps meet resource needs

• Weights determine proportional assignment
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Systems Built with SEEC

22

System Actions Tradeoff Benchmarks
Dynamic Loop 
Perforation

Skip some loop iterations Performance vs. 
Quality

7/13 PARSECs

Dynamic Knobs Make static parameters 
dynamic

Performance vs. 
Quality

bodytrack, swaptions, 
x264, SWISH++

Core Scheduler Assign N cores to 
application

Compute vs. Power 11/13 PARSECs

Clock Scaler Change processor speed Compute vs. Power 11/13 PARSECs

Bandwidth Allocator Assign memory controllers 
to application

Memory vs. Power STREAM 
(doesn’t make a 
difference for PARSEC)

Power Manager Combination of the three 
above

Performance vs. 
Power

PARSEC, STREAM, 
simple test apps 
(mergesort, binary search)

Learned Models Power Manager with 
speedup and cost learned 
online

Performance vs. 
Power

PARSECs

Multi-App Control Power Manager with 
multiple applications

Performance vs. 
Power for multiple 
applications

Combinations of 
PARSECs
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Systems Built with SEEC

System Actions Tradeoff Benchmarks
Dynamic Loop 
Perforation

Skip some loop iterations Performance vs. 
Quality

7/13 PARSECs

Dynamic Knobs Make static parameters 
dynamic

Performance vs. 
Quality

bodytrack, swaptions, 
x264, SWISH++

Core Scheduler Assign N cores to 
application

Compute vs. Power 11/13 PARSECs

Clock Scaler Change processor speed Compute vs. Power 11/13 PARSECs

Bandwidth Allocator Assign memory controllers 
to application

Memory vs. Power STREAM 
(doesn’t make a 
difference for PARSEC)

Power Manager Combination of the three 
above

Performance vs. 
Power

PARSEC, STREAM, 
extra test apps 
(mergesort, binary search)

Learned Models Power Manager with 
speedup and cost 
learned online

Performance vs. 
Power

PARSECs

Multi-App Control Power Manager with 
multiple applications

Performance vs. 
Power for multiple 
applications

Combinations of 
PARSECs
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Dynamic Knobs: 
Creating Adaptive Applications
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Application Goals

System Actions

Experiment

Turn static command line parameters into dynamic structure

Detail in Hoffmann et al. “Dynamic Knobs for Power Aware Computing” ASPLOS 2011

Maintain performance and minimize quality loss

Adjust memory locations to change application 
settings

Benchmarks: bodytrack, swaptions, SWISH++, x264

Maintain performance when clock speed changes
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bodytrack

Clock drops 
2.4-1.6GHz

w/o SEEC 
perf. drops

w/ SEEC perf. 
recovers

Clock rises 
1.6-2.4 GHz

SEEC returns 
quality to 
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swaptionsSWISH++ x264

Dynamic knobs automatically enable dynamic response for a 
range of applications using a single mechanism

Maintains performance 
despite noise

Perfect behavior Maintains baseline 
performance
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Optimizing Performance per 
Watt for Video Encoding

27

Application Goals

System Actions

Experiment

Adapt system behavior to needs of individual inputs

Maintain 30 frame/s while minimizing power

Change cores, clock speed, and memory 
bandwidth

Benchmark: x264 w/ 16 different 1080p inputs

Compare performance/Watt w/ SEEC to best static 
allocation of resources
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Results
Optimizing Performance/Watt for Video Encoder

0

0.2

0.4

0.6

0.8

1

1.2

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

/W
at

t

static worst static best SEEC



29

Learning Models Online

29

Application Goals

System Actions

Experiment

Adapt system behavior to needs of individual inputs

Maintain 30 frame/s while minimizing power

Change cores, clock speed, and memory 
bandwidth

Tailor models to individual applications while 
running

Benchmark: x264 w/ 16 different 1080p inputs

Compare performance/Watt w/ learned model to 
previous measurements
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Results
Performance/Watt with Online Learning
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Managing Application and System 
Resources Concurrently

31

Application Goals

System Actions

Experiment

Manage multiple applications when clock frequency changes

bodytrack: maintain performance, minimize power

x264: maintain performance, minimize quality loss

Change core allocation to both applications

Change x264’s algorithms

Maintain performance of both application when clock 
frequency changes
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Results
SEEC Management of Multiple Applications

bodytrack x264
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Summary of Experiments

Experiment Demonstrated Benefit of SEEC
Dynamic Knobs Maintains application performance in the face of loss of 

compute resources

Performance/Watt Out-performs oracle for static allocation of resources 
by adapting to fluctuations in input data

Performance/Watt with 
learning

Learns models online and still achieve 95% of static 
oracle

Multi-App control Maintains performance of multiple apps by managing 
algorithm and system resources to adapt to loss of 
compute resources
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Conclusions

• SEEC is designed to help ease programmer burden
– Solves resource allocation problems
– Adapts to fluctuations in environment

• SEEC has two distinguishing features
– Incorporates goals and feedback directly from the application
– Abstracts sensors, controller, and actuator to create a generic feedback 

control system capable of managing algorithm, software, and hardware 
adaptation

• Demonstrated the benefits of SEEC in several experiments
– SEEC can optimize performance per Watt for video encoding
– SEEC can adapt algorithms and resource allocation to meet goals in the 

face of power caps or other changes in environment
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Controlling Memory Bandwidth for 
STREAM
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Using Code Perforation to
Save Power in Server Farms

• Currently peak load met by provisioning extra hardware

• Instead, we reduce hardware 

• At low loads, no perforation necessary

• At high loads, perforation increases capacity 
– Runtime detects performance degradation from load
– Runtime adjusts perforation in running apps to respond to load
– Same peak load met with fewer machines

• Tested by consolidating mini-server farm
39
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Power Saving With Code Perforation
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