
SEEC: A Framework for
SElf-awarE Computing

Henry Hoffmann, Martina Maggio

2

Outline

• Introduction/Motivating Example

• The SEEC Framework

• Experimental Validation

• Conclusions

2

3

Multicore Computing Systems Increase
Burden on Application Developers

Correctness
Speed: Architecture

Power /Energy

Application

Speed: A lgor ithms

Today, application programmers have to address
many, sometimes competing, concerns

Quality

beat/s

Lo Hi

Power

4

Example: Developing a
Multicore Video Encoder

Video
Encoder

Lo Hi

Power Meter

Allocate resources for best case

Encoder must drop frames to keep up

The power is low

Video
Encoder

Lo Hi

Power Meter

Allocate resources for worst case

Encoder Exceeds Goals

The power is high, resources wasted

Application programmers need to balance competing constraints in
fluctuating environments

5

Self-aware Computing Can Address
Challenges of Multi-objective Optimization

Self-aware (self-*, adaptive, etc.) computing has become a
discipline unto itself:

• Laddaga [DARPA BAA 1997, IEEE Intelligent Systems 1999]

• Kephart and Chess [IEEE Computer 2003]

• Babaoglu et al. [LNCS 2005]

5

Self-aware (or self-*, adaptive, autonomic, etc.) systems have the flexibility
to change behavior online to balance multiple needs in dynamic

environments

6

The Self-Aware Computing Idea

Traditional Systems Self-Aware Systems

Decide

Act

• Run in open loop

• Assumptions made at design time
• Based on guesses about future

Decide Act

Observe

• Run in closed loop

• Understand user goals
• Monitor the environment

• Programmer optimizes for system
• No flexibility to adapt to changes

• System optimizes for application
• Flexibly adapt behavior

7

Prior Work in Self-Aware Systems

• Self-aware/Adaptive/Autonomic systems have been used to solve
problems in:
– Hardware [Bitirgen et al, MICRO 2008, Albonesi et al. IEEE Computer 2003]
– Software [Salehie & Tahvildari ACM TAAS 2009]
– Real-time Systems [Block et al. ECRTS 2008]
– Mobile Computing [Masters MobileHCI 2008]
– Dynamic Compilation [Sorber et al, SenSys 2007, Baek & Chilimbi PLDI 2010]
– Numerical Libraries [ATLAS, SPIRAL, FFTW]
– Many others…

We build on previous work to create a programming model
for self-aware systems

8

Outline

• Introduction/Motivating Example

• The SEEC Framework

• Experimental Validation

• Conclusions

8

9

SElf-awarE Computing (SEEC)
Framework

• Goal:
Reduce programmer burden with self-aware programming model

• Key Features:
1. Applications explicitly state goals, system meets goals optimally
2. One unified decision engine adapts algorithms, software and hardware

Power /Energy

Application

Quality

Speed beat/s

Lo Hi

Power

10

Example Self-Aware System
Built from SEEC

• At key intervals, applications issue a heartbeat (e.g. once per frame)

• Apps also register desired performance (e.g. 30 beats (frames) per second)

• The performance (heart rate) and goals can be read by system software

• If performance is low the system adapts to increase performance

• If performance exceeds goals, the system frees resources

Video Encoder Self-Aware System

Goals:
30 beat/s

Cores
1 16

Speed
1.6 2.4

Bandwidth
1 10

A
P

I
20 b/s30 b/s33 b/s30 b/s

11

Roles in the SEEC Framework

Application
Developer

Systems
Developer

SEEC
System

Infrastructure
Express application
goals and progress
(e.g. frames/ second)

Read goals and
performance

Determine how to adapt
(e.g. How much to
speed up the
application)

Provide a set of actions
and a callback function
(e.g. allocation of cores
to process)

Initiate actions based
on results of decision
phase

Observe

Decide

Act

12

Registering Application Goals

• Performance
– Goals: target heart rate and/or latency between tagged heartbeats
– Progress: issue heartbeats at important intervals

• Quality
– Goals: distortion (distance from “best” value)
– Progress: distortion over last heartbeat

• Power
– Goals: target heart rate / Watt and/or target energy between tagged heartbeats
– Progress: Power/energy over last heartbeat interval

Observe

Application

Lo Hi

Power

SEEC
Decision Engine

Performance

Power

Quality

Research to date focuses on meeting performance while minimizing power/maximizing quality

13

Registering System Actions

Each action has the following attributes:
• Estimated Speedup

– Predicted benefit of taking an action
• Cost

– Predicted downside of taking an action (increased power, lowered quality)
• Callback

– A function that takes an id an implements the associated action

Act

SEEC
Decision Engine

System Services

Cores
1 16

Speed
1.6 2.4

Bandwidth
1 10

Estimated Speedup

Cost

Callback

14

The SEEC Decision Engine

Decisions are made to select actions given observations:
• Read application goals and heartbeats
• Determine speedup with adaptive 2nd order control system
• Translate speedup into one or more actions

Decide

SEEC Decision EngineApplication System
Services

L
o

H
i

Power

The control system provides predictable and analyzable behavior

15

Optimizing Resource Allocation with
SEEC

• SEEC can observe, decide and act

• How does this enable optimal resource allocation?

• Let’s implement the video encoder example from the
introduction

16

Performance/Watt Adaptation
in Video Encoding

Performance goal

0

10

20

30

40

50

60

70

80

50 150 250 350 450
Time (Heartbeat)

P
er

fo
rm

an
ce

 (F
ra

m
e/

s)

130

140

150

160

170

180

0 2 4 6 8 10 12 14 16
Time (s)

P
ow

er
 (W

)

Performance Power

17

System Models in SEEC

17

1

2

3

4

5

6

7

8

9

0 5 10 15 20 25 30
Action

Sp
ee

du
p

Initial Model

SEEC’s control system takes actions based on models (of
speedup and cost per action) associated with actions

What if the models are inaccurate?

18

SEEC Decision and Adaptation Engine

Updating Models in SEEC

• After every action, SEEC updates system models

• Kalman filters used to estimate true speedups

Decide

0

0.2

0.4

0.6

0.8

1

1.2

blue_sky
.yu

v

cro
wd_run_1080p.yu

v

dinner.y
uv

ducks
_take_off_

1080p.yu
v

facto
ry.

yuv

in_to_tre
e_1080p.yu

v
life

.yu
v

native
.yu

v

old_town_cro
ss_

1080p.yu
v

park_
joy_1080p.yu

v

pedestr
ian_area.yu

v

rive
rbed.yu

v

rush_hour.y
uv

sta
tion2.yu

v

sunflower.y
uv

tra
cto

r.y
uv

average

No
rm

ali
ze

d
Pe

rfo
rm

an
ce

/W
at

t

static worst static oracle SEEC, known model SEEC, learned model

Application System
Services

L
o

H
i

Power

1

2

3

4

5

6

7

8

9

0 5 10 15 20 25 30
Action

Sp
ee

du
p

Initial Model

SEEC combines predictability of control systems with adaptability of
learning systems

19

SEEC Online Learning of Speedup Model
for Application with Local Minima

1

2

3

4

5

6

7

8

9

0 5 10 15 20 25 30

Action

Sp
ee

du
p

Initial Model Actual Speedups Learned Speedups

20

Handling Multiple Applications

20

Decide

SEEC Decision Engine System
Services

Application

L
o

H
i

Power

Application

L
o

H
i

Power

Application

L
o

H
i

Power

Application

L
o

H
i

Power

• Control actions computed separately for each application

• For finite resources, several alternatives:

• Priorities determine which apps meet resource needs

• Weights determine proportional assignment

21

Outline

• Introduction/Motivating Example

• The SEEC Framework

• Experimental Validation

• Conclusions

21

22

Systems Built with SEEC

22

System Actions Tradeoff Benchmarks
Dynamic Loop
Perforation

Skip some loop iterations Performance vs.
Quality

7/13 PARSECs

Dynamic Knobs Make static parameters
dynamic

Performance vs.
Quality

bodytrack, swaptions,
x264, SWISH++

Core Scheduler Assign N cores to
application

Compute vs. Power 11/13 PARSECs

Clock Scaler Change processor speed Compute vs. Power 11/13 PARSECs

Bandwidth Allocator Assign memory controllers
to application

Memory vs. Power STREAM
(doesn’t make a
difference for PARSEC)

Power Manager Combination of the three
above

Performance vs.
Power

PARSEC, STREAM,
simple test apps
(mergesort, binary search)

Learned Models Power Manager with
speedup and cost learned
online

Performance vs.
Power

PARSECs

Multi-App Control Power Manager with
multiple applications

Performance vs.
Power for multiple
applications

Combinations of
PARSECs

23

Systems Built with SEEC

System Actions Tradeoff Benchmarks
Dynamic Loop
Perforation

Skip some loop iterations Performance vs.
Quality

7/13 PARSECs

Dynamic Knobs Make static parameters
dynamic

Performance vs.
Quality

bodytrack, swaptions,
x264, SWISH++

Core Scheduler Assign N cores to
application

Compute vs. Power 11/13 PARSECs

Clock Scaler Change processor speed Compute vs. Power 11/13 PARSECs

Bandwidth Allocator Assign memory controllers
to application

Memory vs. Power STREAM
(doesn’t make a
difference for PARSEC)

Power Manager Combination of the three
above

Performance vs.
Power

PARSEC, STREAM,
extra test apps
(mergesort, binary search)

Learned Models Power Manager with
speedup and cost
learned online

Performance vs.
Power

PARSECs

Multi-App Control Power Manager with
multiple applications

Performance vs.
Power for multiple
applications

Combinations of
PARSECs

23

24

Dynamic Knobs:
Creating Adaptive Applications

24

Application Goals

System Actions

Experiment

Turn static command line parameters into dynamic structure

Detail in Hoffmann et al. “Dynamic Knobs for Power Aware Computing” ASPLOS 2011

Maintain performance and minimize quality loss

Adjust memory locations to change application
settings

Benchmarks: bodytrack, swaptions, SWISH++, x264

Maintain performance when clock speed changes

25

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 50 100 150 200 250
Time

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Baseline Power Cap Dynamic Knobs

Results
Enabling Dynamic Applications

bodytrack

Clock drops
2.4-1.6GHz

w/o SEEC
perf. drops

w/ SEEC perf.
recovers

Clock rises
1.6-2.4 GHz

SEEC returns
quality to
baseline

26

swaptionsSWISH++ x264

Dynamic knobs automatically enable dynamic response for a
range of applications using a single mechanism

Maintains performance
despite noise

Perfect behavior Maintains baseline
performance

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 200 400 600 800 1000
Time

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Baseline Power Cap Dynamic Knobs

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 100 200 300 400 500
Time

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Baseline Power Cap Dynamic Knobs

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 100 200 300 400 500 600
Time

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Baseline Power Cap Dynamic Knobs

Results
Enabling Dynamic Applications

27

Optimizing Performance per
Watt for Video Encoding

27

Application Goals

System Actions

Experiment

Adapt system behavior to needs of individual inputs

Maintain 30 frame/s while minimizing power

Change cores, clock speed, and memory
bandwidth

Benchmark: x264 w/ 16 different 1080p inputs

Compare performance/Watt w/ SEEC to best static
allocation of resources

28

Results
Optimizing Performance/Watt for Video Encoder

0

0.2

0.4

0.6

0.8

1

1.2

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

/W
at

t

static worst static best SEEC

29

Learning Models Online

29

Application Goals

System Actions

Experiment

Adapt system behavior to needs of individual inputs

Maintain 30 frame/s while minimizing power

Change cores, clock speed, and memory
bandwidth

Tailor models to individual applications while
running

Benchmark: x264 w/ 16 different 1080p inputs

Compare performance/Watt w/ learned model to
previous measurements

30

Results
Performance/Watt with Online Learning

30

0

0.2

0.4

0.6

0.8

1

1.2

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

/W
at

t

static worst static oracle SEEC, known model SEEC, learned model

31

Managing Application and System
Resources Concurrently

31

Application Goals

System Actions

Experiment

Manage multiple applications when clock frequency changes

bodytrack: maintain performance, minimize power

x264: maintain performance, minimize quality loss

Change core allocation to both applications

Change x264’s algorithms

Maintain performance of both application when clock
frequency changes

32

Results
SEEC Management of Multiple Applications

bodytrack x264

32

0

0.5

1

1.5

2

2.5

40 90 140 190 240
Time (Heartbeat)

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

0

1

2

3

4

5

6

7

C
o

re
s

bodytrack w/ adaptation
bodytrack
bodytrack cores

0

0.5

1

1.5

2

2.5

40 90 140 190 240
Time (Heartbeat)

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

0

1

2

3

4

5

6

7

C
o

re
s

x264 w/ adaptation
x264
x264 cores

Clock drops
2.4-1.6GHz w/o SEEC app

misses goals

SEEC allocates
cores to bodytrack

w/o SEEC app
exceeds goals

SEEC removes cores
from x264

SEEC adjusts algorithm
to meet goals

Summary of Experiments

Experiment Demonstrated Benefit of SEEC
Dynamic Knobs Maintains application performance in the face of loss of

compute resources

Performance/Watt Out-performs oracle for static allocation of resources
by adapting to fluctuations in input data

Performance/Watt with
learning

Learns models online and still achieve 95% of static
oracle

Multi-App control Maintains performance of multiple apps by managing
algorithm and system resources to adapt to loss of
compute resources

33

34

Outline

• Introduction/Motivating Example

• The SEEC Framework

• Experimental Validation

• Conclusions

34

35

SEEC References

• Application Heartbeats framework:
– Hoffmann, Eastep, Santambrogio, Miller, Agarwal. Application Heartbeats: A Generic

Interface for Specifying Program Performance and Goals in Autonomous Computing
Environments. ICAC 2010

• Control Systems:
– Maggio, Hoffmann, Santambrogio, Agarwal, Leva. Controlling software applications within

the Heartbeats framework. CDC 2010
– Maggio, Hoffmann, Santambrogio, Agarwal, Leva. Power-Aware Design for Embedded

Systems. Under Review.

• Adaptive Applications:
– Hoffmann, Misailovic, Sidiroglou, Agarwal, Rinard. Using Code Perforation to Improve

Performance, Reduce Energy Consumption, and Respond to Failures. MIT-CSAIL-TR-2209-
042. 2009

– Hoffmann, Sidiroglou, Carbin, Misailovic, Agarwal, Rinard. Dynamic Knobs for Power-Aware
Computing. ASPLOS 2011.

• The SEEC Framework:
– Hoffmann, Maggio, Santambrogio, Leva, Agarwal. SEEC: A Framework for Self-aware

Computing. MIT-CSAIL-TR-2010-049 2010.

35

36

Conclusions

• SEEC is designed to help ease programmer burden
– Solves resource allocation problems
– Adapts to fluctuations in environment

• SEEC has two distinguishing features
– Incorporates goals and feedback directly from the application
– Abstracts sensors, controller, and actuator to create a generic feedback

control system capable of managing algorithm, software, and hardware
adaptation

• Demonstrated the benefits of SEEC in several experiments
– SEEC can optimize performance per Watt for video encoding
– SEEC can adapt algorithms and resource allocation to meet goals in the

face of power caps or other changes in environment

36

37

Backup Slides

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400 500

Time (Heartbeat)

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

static min static max SEEC, pure delay SEEC, slow convergence SEEC, oscillating

38

Controlling Memory Bandwidth for
STREAM

0

0.2

0.4

0.6

0.8

1

1.2

0 200 400 600 800 1000

Time (Heartbeat)

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

static min static max SEEC, pure delay SEEC, slow convergence SEEC, oscillating

39

Using Code Perforation to
Save Power in Server Farms

• Currently peak load met by provisioning extra hardware

• Instead, we reduce hardware

• At low loads, no perforation necessary

• At high loads, perforation increases capacity
– Runtime detects performance degradation from load
– Runtime adjusts perforation in running apps to respond to load
– Same peak load met with fewer machines

• Tested by consolidating mini-server farm
39

40

Power Saving With Code Perforation

0

150

300

450

600

750

900

0 0.5 1
0

5

10

15

20

25

30

• Power:
• Up to 3/4 reduction in machines and power for video
• Up to 1/3 reduction in machines and power for search

• Quality:
• Max 8% loss for video
• Max 30% loss for search (Fewer total results – precision of top 10 unchanged)

P
ow

er
 (W

)

Q
ua

lit
y

Lo
ss

 (%
)

Utilization

H.264 Video Encode SWISH++ Search Engine

Original SystemConsolidated System
Utilization

Quality Loss

