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What is needed: An expressive, flexible, and 
powerful framework

Capable of capturing uncertain and complex 
sensor-target relationships

Among a multitude of different observables and objects being 
sensed

Capable of incorporating complex relationships 
about the objects being sensed

Context, behavior patterns
Admitting scalable, distributed fusion algorithms
Admitting effective approaches to learning or 
discovering key relationships
Providing the “glue” from front-end processing to 
sensor management
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Our choice*: Graphical Models

Extremely flexible and expressive framework
Allows the possibility of capturing (or learning) 
relationships among features, object parts, objects, object 
behavior, and context

E.g., constraints or relationships among parts, spatial and spatio-
temporal relationships among objects, etc.

Natural framework to consider distributed fusion
While we can’t beat the dealer (NP-Hard is NP-
Hard), 

The flexibility and structure of graphical models provides 
the potential for developing scalable, approximate 
algorithms
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What did we say at last year?
What have we done recently? - I

Scalable, broadly applicable inference algorithms
Build on the foundation we have
Provide performance bounds/guarantees

Some of the accomplishments this year
Lagrangian relaxation methods for tractable 
inference
Multiresolution models with “multipole” structure, allowing 
near optimal, very efficient inference
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Break an intractable graph into tractable pieces
There will be overlaps (nodes, edges) in these pieces
There may even be additional edges and maybe even some 
additional nodes in some of these pieces

Lagrangian Relaxation Methods for 
Optimization/Estimation in Graphical Models
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Constrained MAP estimation on the set of 
tractable subgraphs

Define graphical models on these subgraphs so that when replicated 
node/edge values agree we match the original graphical model
Solve MAP with these agreement constraints
Duality: Adjoin constraints with Lagrange multipliers, optimize w.r.t. 
replicated subgraphs and then optimize w.r.t. Lagrange multipliers

Algorithms to do this have appealing structure, alternating between 
tractable inference on the individual subgraphs, and moving toward or 
forcing local consistency
Generalizes previous work on “tree-agreement,” although new algorithms 
using smooth (log-sum-exp) approximation of max

Leads to sequence of successively “cooled” approximations 
Each involves iterative scaling methods that are adaptations of methods used in 
the learning of graphical models

There may or may not be a duality gap
If there is, the solution generated isn’t feasible for the original problem 
(fractional assignments)
Can often identify the inconsistencies and overcome them through the 
inclusion of additional tractable subgraphs



MURI: Integrated Fusion, Performance Prediction, 
and Sensor Management for Automatic Target 
Exploitation 7

Example – Frustrated Ising - I

Models of this and closely related types arise in multi-target data assocation
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Example – Frustrated Ising - II
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Example – Multiscale for 2-D MRFs
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What did we say last year?
What have we recently? - II

Graphical-model-based methods for sensor 
fusion for tracking, and identification

Graphical models to learn motion patterns and 
behavior (preliminary)
Graphical models to capture relationships among 
features-parts-objects

Some of the accomplishments this year
Hierarchical Dirichlet Processes to learn 
motion patterns and behavior – much more
New graphical model-based algorithms for multi-
target, multi-sensor tracking
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HDPs for Learning/tracking motion 
patterns (and other things!)

Objective – learn motion patterns of targets of 
interest

Having such models can assist tracking algorithms
Detecting such coherent behavior may be useful for 
higher-level activity analysis

Last year
Learning additive jump-linear system models

This year
Learning switching autoregressive models of behavior 
and detecting such changes
Extracting and de-mixing structure in complex signals
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Reminder from last year: Jump-mean 
processes

Markov jump-mean process
System “jumps” between finite set 
of acceleration means
Hybrid continuous-discrete state:

Dynamics described by:

System is non-linear due to mode 
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Some questions

How many possible maneuver modes are there?
What are their individual statistics?
What is the probabilistic structure of transitions 
among these modes?
Can we learn these

Without placing an a priori constraint on the number of 
modes
Without having everything declared to be a different 
“mode”

The key to doing this: Dirichlet processes
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Dirichlet Process via Stick Breaking

Corresponds to a draw from DP(α, H).
Mixture components drawn with probabilities π
and with parameters drawn from H

…
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Predictive distribution:

Chinese restaurant process:

Chinese Restaurant Process

Number of current 
assignments to mode k
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Graphical Model of HDP-HMM-KF

“Average" transition density 
which encourages states to 

transition back to a finite subset 
of the infinite state space 

Mode-specific transition density

modes

controls

observations
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Learning and using HDP-based models

Learning models from training data
Gibbs sampling-based methods
Exploit conjugate priors to marginalize out 
intermediate variables
Computations involve both forward filtering and 
reverse smoothing computations on target 
tracks
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New models/results this year – I: 
Learning switching LDS and AR models
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Learning switching AR models – II: 
Behavior extraction of bee dances
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Learning switching AR models – III: Extracting 
major world events from Sao Paulo stock data

Using the same HDP model and parameters as for bee 
dances

• Identifies events and mode changes in volatility with comparable
accuracy to that achieved by in-detail economic analysis
• Identifies three distinct modes of behavior (economic analysis did 
not use or provide this level of detail)



speaker label

speaker state

observations

Speaker-specific 
transition densities

Speaker-specific 
mixture weights

Mixture parameters

Speaker-specific 
emission distribution –
infinite Gaussian mixture

Emission distribution 
conditioned on speaker 
state

New this year – II: HMM-like model for determining the 
number of speakers, characterizing each, and segmenting an 
audio signal without any training
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What did we say last year?
What have we done recently? - III

Learning model structure
Exploiting and extending advances in learning (e.g., 
information-theoretic and manifold-learning methods) to 
build robust models for fusion
Direct ties to integrating signal processing products and 
to directing both signal processing and search

Some of the accomplishments this year
Learning graphical models directly for discrimination 
(much more than last year – some in John Fisher’s talk)
Learning from experts: Combining dimensionality 
reduction and level set methods
Combining manifold learning and graphical modeling
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Learning graphical models directly for 
discrimination - I

If the ultimate objective of model construction is to 
use models for discrimination, why don’t we design 
these models to optimize discrimination performance?

If there is an abundance of data, this really doesn’t matter
However, for high-dimensional data and relatively sparse 
sets of data, there can be a substantial difference between 
learning a model for its own sake and learning one to 
optimize discrimination
The latter objective focuses more on saliency
In addition, we can try to do this in a manner that 
makes discrimination as easy as possible
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Learning graphical models directly for 
discrimination - II

Learning generative tree models from data
Criterion: Minimizing KL Divergence, D(pe||p) between tree model, p, and 
empirical distribution, pe

Chow-Liu: Reduces to a max-weight spanning tree problem
Efficient solution methods exist, including Kruskal’s (greedy) algorithm

Learning tree models to discriminate two classes
Criterion: Minimize expected divergence between tree models (averaging 
over empirical distributions; extension of J-divergence) 
Can be reduced to two spanning tree problems, one for each model

Extend this to discriminative forests
Greedy algorithm: At each stage, either

Add edge to one forest, to the other, to both, or stop
Puts maximal weight on salient relationships
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J - Divergence

Let p, q denote empirical distributions.
Let pA, qB denote information projections of 
these empirical distributions to graphs GAA and GB

Projections match marginals associated with vertices 
and edges of the graphs

J-Divergence:



MURI: Integrated Fusion, Performance Prediction, 
and Sensor Management for Automatic Target 
Exploitation 27

J – Divergence for Tree Models

If GAA and GB are trees

where
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Optimal (but greedy) algorithm

If at any stage in the construction of GAA and GB all 
remaining wst are negative, STOP
Otherwise: at any stage

Edges already included in one or both trees are no longer available
For other edges, addition to one or both trees may no longer be 
possible (as loops will be formed)

For those edges that remain (and the set of possibilities still 
active – i.e., inclusion in one or both trees still feasible)

Choose the largest of the weights and associated edges (in one or 
both trees)
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Emphasizing saliency: A simple example
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Learning from experts: Combining 
Dimensionality Reduction and Curve Evolution

How do we learn from expert analysts
Probably can’t explain what they are doing in terms that directly 
translate into statistical problem formulations

Critical features
Criteria (are they really Bayesians?)

Need help because of huge data overload

Can we learn from examples of analyses
Identify lower dimension that contains “actionable statistics”
Determine decision regions
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The basic idea of learning regions
Hypothesis testing partitions feature space

We don’t just want to separate classes
We’d like to get as much “margin” as possible

Use a margin-based loss function on the signed distance 
function of the boundary curve
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Curve Evolution 
Approach to Classification

Signed distance function φ(x)
Margin-based loss function L(z)
Training set {(x1,y1), …, (xN,yN)}

xn real-valued features in D dimensional feature space
yn binary labels, either +1 or  −1

Minimize energy functional with respect to φ(·) 

Use curve evolution techniques

( ) ( )( )∑
=

=
N

n
nny

1
LE xϕϕ



MURI: Integrated Fusion, Performance Prediction, 
and Sensor Management for Automatic Target 
Exploitation 33

Example
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Add in dimensionality reduction

D×d matrix A lying on Stiefel manifold (d<D)
Linear dimensionality reduction by ATx

Nonlinear mapping χ = A(x)
χ is d-dimensional

Nonlinear dimensionality reduction plus 
manifold learning
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What else is there and what’s next -I 

New graphical model-based algorithms for multi-
target, multi-sensor tracking

Potential for significant savings in complexity
Allows seamless handling of late data and track-stitching 
over longer gaps

Multipole models and efficient algorithms
Complexity reduction: blending manifold learning 
and graphical modeling
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What else is there and what’s next -II

Performance Evaluation/Prediction/Guarantees
Guarantees/Learning Rates for Dimensionality Reduction/Curve 
Evolution for Decision Boundaries
Guarantees and Error Exponents for Learning of Discriminative 
Graphical Models (see John Fisher’s talk)
Guarantees/Learning Rates for HDP-Based Behavioral Learning
Complexity Assessment

For matching/data association (e.g., how complex are the subgraphs
that need to be included to find the best associations)
For tracking (e.g., how many “particles” are needed for accurate
tracking/data association)

Harder questions: How good are the optimal answers
Just because it’s optimal doesn’t mean it’s good



MURI: Integrated Fusion, Performance Prediction, 
and Sensor Management for Automatic Target 
Exploitation 37

Some (partial) answers to key questions - I

Synergy
The whole being more than the sum of the parts

E.g., results/methods that would not have even existed without the collaboration 
of the MURI

Learning of discriminative graphical models from low-level features
Cuts across low-level SP, learning, graphical models, and resource management

Blending of complementary approaches to complexity reduction/focusing of 
information

Manifold learning meets graphical models

Blending of learning, discrimination, and curve evolution
Cuts across low-level SP, feature extraction, learning, and extraction of geometry

Graphical models as a unifying framework for fusion across all levels
Incorporating different levels of abstraction from features to objects to tracks to 
behaviors
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Some (partial) answers to key questions - II

Addressing higher levels of fusion
One of the major objectives of using graphical models is to make that a natural 
part of the formulation
See previous slide on synergy for some examples
The work presented today on automatic extraction of dynamic behavior 
patterns addresses this directly

Other work (with John Fisher) also 

Transitions/transition avenues
The Lagrangian Relaxation method presented today has led directly to a 
module in BAE-AIT’s ATIF (All-Source Track and ID Fusion) System

ATIF originally developed under a DARPA program run by AFRL and is now an 
emerging system of record and widely employed multi-source fusion system

Discussions ongoing with BAE-AIT on our new approach to multi-target tracking 
and its potential for next generation tracking capabilties

E.g., for applications in which other “tracking services” beyond targeting are needed
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Some (partial) answers to key questions - III

Thoughts on “End States”
More than a set of research results and “point” transitions

The intention is to move the dial
Foundation for new (very likely radically new) and integrated methods for very hard 
fusion, surveillance, and intelligence tasks

Approaches that could not possibly be developed under the constraints of 6-2 or higher 
funding because of programmatic constraints – but that are dearly needed
Thus, while we do and will continue to have point transitions, the most profound impact of our 
MURI will be approaches that have major impact down the road
Plus the new generation of young engineers trained under this program

Some examples
New methods for building graphical models that are both tractable and useful for crucial 
militarily relevant problems of fusion across all levels
New graphical models for tracking and extraction of salient behavior
Learning from experts: learning discriminative models and extracting saliency from complex, 
high-dimensional data

What is it that that image analyst sees in those data?
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Multi-target, multi-sensor tracking
A new graphical model, making explicit data associations within each 
frame and stitching across time using target dynamics (modeled here as 
independent).

This is a complete representation of the overall probabilistic model
The question is: What informational queries do we want to make

E.g., to compute marginals (rather than most likely MHT tracks)
Exponential explosion is embedded in the messages
The key: rather than pruning hypotheses across time, we approximate
messages from one time to another, both forward and backward in 
time
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Key points
Very different than other tracking methods

Rather than bringing old data association hypotheses 
forward toward new data, we bring the data back to 
the older association hypotheses
Messages from one time frame back in time to another 
are important primarily to resolve association 
hypotheses

Method for approximating frame-to-frame messages
Basically a problem in mixture density approximation

“Particles” represent track hypotheses propagated backward or 
forward in time or aggregates of such hypotheses 



MURI: Integrated Fusion, Performance Prediction, 
and Sensor Management for Automatic Target 
Exploitation 42

Previously completely (and now only 
mostly) unsubstantiated claims

The structure of this graphical representation makes it 
seamless to incorporate out-of-time or latent data

As long as the data are within the time window over which 
hypotheses are maintained

As opposed to exponential growth in hypotheses for state-
of-the-art algorithms

Our method offers the possibility of linear growth with time window
If we can control the number of particles in message generation 
without compromising accuracy
Note that we are approximating messages, not pruning hypotheses

If true, we not only get seamless incorporation of latent data 
But also greatly enhanced capabilities for track-stitching (e.g., 
when distinguishing data or human intel provides key information) 
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Linearity of complexity
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Incorporating latent data
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Track Stitching


