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Abstract—The problem of maximum-likelihood learning of the
structure of an unknown discrete distribution from samples is
considered when the distribution is Markov on a tree. Large-
deviation analysis of the error in estimation of the set of edges of
the tree is performed. Necessary and sufficient conditions are pro-
vided to ensure that this error probability decays exponentially.
These conditions are based on the mutual information between
each pair of variables being distinct from that of other pairs.
The rate of error decay, or error exponent, is derived using the
large-deviation principle. The error exponent is approximated
using Euclidean information theory and is given by a ratio, to
be interpreted as the signal-to-noise ratio (SNR) for learning.
Numerical experiments show the SNR approximation is accurate.

Index Terms—Large-deviations, Tree structure learning, Error
exponents, Euclidean Information Theory.

I. INTRODUCTION

The estimation of a distribution from samples is a classical
problem in machine learning and is challenging for high-
dimensional multivariate distributions. In this respect, graphi-
cal models [1] provide a significant simplification of the joint
distribution, and incorporate a Markov structure in terms of a
graph defined on the set of nodes. Many specialized algorithms
exist for learning graphical models with sparse graphs.

A special scenario is when the graph is a tree. In this
case, the classical Chow-Liu algorithm [2] finds the maximum-
likelihood (ML) estimate of the probability distribution by
exploiting the Markov structure to learn the tree edges in
terms of a maximum-weight spanning tree (MWST). The ML
estimator learns the distribution correctly as we obtain more
learning samples (consistency). These learning samples are
drawn independently from the distribution.

In this paper, we study the performance of ML estimator
in terms of the nature of convergence with increasing sample
size. Specifically, we are interested in the event that the set of
edges of the ML tree is not the true set of edges. We address
the following questions: Is there exponential decay of error in
structure learning as the number of samples goes to infinity?
If so, what is the rate of decay of the error probability? How
does the rate depend on the parameters of the distribution? Our
analysis and answers to these questions provide us insights into
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the distributions and the edges where we are more likely to
make an error when learning the tree structure.

Summary of Main Results and Related Work

Learning the structure of graphical models is an extensively
studied problem (e.g. [2]-[5]). The previous works look at
establishing consistency of the estimators, while a few prove
the estimators to have exponential rate of error decay under
some technical conditions in the Gaussian case [4]. However,
to the best of our knowledge, none of the works quantifies the
exact rate of decay of error for structure learning.

Following the seminal work of Chow and Liu in [2], a
number of works have looked at learning graphical models.
Using the maximum entropy principle as a learning technique,
Dudik et al. [3] provides strong consistency guarantees on
the learned distribution in terms of the log-likelihood of the
samples. Wainwright et al. [5] also proposed a regularization
method for learning the graph structure based on ¢; logistic
regression and provide theoretical guarantees for learning the
correct structure as the number of samples, the number of
variables, and the neighborhood size grow. Meinshausen et al.
[4] consider learning the structure for Gaussian models, and
show that the error probability of getting the structure wrong
decays exponentially. However, the rate is not provided.

The main contributions of this paper are three-fold. First,
using the large-deviation principle (LDP) [6] we prove that
the most-likely error in ML estimation is a tree which differs
from the true tree by a single edge. Second, again using the
LDP, we derive the exact error exponent for ML estimation of
tree structures. Third, using ideas from Euclidean Information
Theory [7], we provide a succinct and intuitively appealing
closed-form approximation for the error exponent which is
tight in the very noisy learning regime, where the individual
samples are not too informative about the tree structure. The
approximate error exponent has a very intuitive explanation as
the signal-to-noise ratio (SNR) for learning. It corroborates the
intuition that if the edges belonging to the true tree model are
strongly distinguishable from the non-edges using the samples,
we can expect the rate of decay of error to be large.

All the results are stated without proof. The reader may
refer to http://web.mit.edu/vtan/www/isit09 for the details.

II. PROBLEM STATEMENT AND CHOW-LIU ALGORITHM

An undirected graphical model [1] is a probability dis-
tribution that factorizes according to the structure of an



underlying undirected graph. More explicitly, a vector of
random variables x = (z1,...,z4) is said to be Markov
on a graph G = (V,€) with V = {1,...,d} and € C (5)
if P(zi|lzy\giy) = P(xilzpa)) where N (i) is the set of
neighbors of z;. In this paper, we are given a set of d-
dimensional samples (or observations) x" = {xi,...,X,}
where each x5, € X% and X is a finite set. Each element of the
set of samples xj, is drawn independently from some unknown,
positive everywhere distribution P whose support is X%, that
is P € P(X4), the set of all distributions supported on X%
We further assume that the graph of P, denoted Tp = (V, Ep),
belongs to the set of spanning trees' on d nodes 7. The set of
d-dimensional tree distributions is denoted D(X? 7?). Tree
distributions possess the following factorization property [1]

x) = H P;(x;) H Fij@nz))

by igyee, Fil@)Fi(x;)

where P; and P; ; are the marginals on node 7 € V and edge
(i,7) € Ep respectively. Given x", we define the empirical
distribution of P to be P(x) = N(x|x")/n, where N (x|x")
is the number of times x € X¢ occurred in x".

Using the samples x", we can use the Chow-Liu algo-
rithm [2], reviewed in Section II-A, to compute P, the ML
tree-structured distribution with edge set &, . It is known [8§]
that as n — oo, Ey approaches Ep, the true tree structure. But
at what rate does this happen for a given tree distribution P?
Is the error decay exponential? In this paper, we use the Large-
Deviation Principle (LDP) [6] to quantify the exponential rate
at which the probability of the error event

An = {gML 7£ SP} 2)

decays to zero. In other words, given a distribution P and
P := P", we are interested to study the rate Kp given by,

(D

Kp:= lim ——1ogP(.A ), 3)

n—oo

whenever the limit exists. Kp is the error exponent for the
event A, as defined in (2). When K p > 0, there is exponential
decay of error probability in structure learning, and we would
like to provide conditions to ensure this.

In addition, we define the set of disjoint events U, (T") that
the graph of the ML estimate P, of the tree distribution is a
tree 1" different from the true tree Tp, i.e.,

— {TML = T}v it Te Td \ {Tp},
From (2), Ay = Urega\(rp) Un(T). We also define the
exponent for each error event U, (T as
Y(T):= lim f—log]P’(L{ (1)) . )
Definition The dominant error tree Tj = (V,€5) is the
spanning tree given by
Tp = argmin  YT(T). (6)
TeTN\{Tp}

'In a spanning tree, none of pairwise joint distributions P; ; are allowed
to be product distributions.

In section IV, we characterize the dominant error tree and its
relation to the error exponent Kp in (3).

A. Maximum-Likelihood Learning of Tree Distributions

In this section, we review the Chow-Liu algorithm [2] for
learning the ML tree distribution P, given a set of n samples
x" drawn independently from a tree distribution P. The Chow-
Liu algorithm solves the following ML problem:

P, ML —

argmin  D(P||Q). (7)
QED(X",T"’)

argmax ZlogQ Xk)
QeD(xe,Td)
For the above problem, the ML tree model will always be
the projection of the empirical distribution P onto some tree
structure [2], i.e., Py (z;) = Pi(x;) for all ¢ € V and
Pu(zi,zj) = P j(z;,z;) for all (i,5) € &Ew. Thus, the
optimization problem in (7) reduces to a search for the tree
structure of P, . By using the fact that the graph of @) is a tree,
the KL divergence in (7) decomposes into a sum of mutual
information quantities. Hence, if £g is the edge set of the tree
distribution @, the optimization for the structure of P, is

Ew = > I(P), ®)

ec&q

argmax
£0:QeD(Xxd,Td)

where [ (ﬁe) is the empirical mutual information given the
data x", defined for e = (3, j) as

>

(zi,25)€X?

Pi (i, xj)

I(P,) = Pi(2:) Py ()

P j(xi, ;) log )
Note that Ep is the structure obtained from the MWST algo-
rithm without any error, i.e., with the true mutual informations
as edge weights. To solve (8), we use the samples x" to
compute [ (P ), for each node pair e € (Z) given the empirical
distribution P. Subsequently, we use these as the edge weights
for the MWST problem in (8). Note that the search for the
MWST is not the same as that for largest d — 1 mutual
information quantities as one has to take into consideration
the tree constraint. There are well-known algorithms [9] that
solve the MWST problem in O(d?logd) time.

III. LDP FOR EMPIRICAL MUTUAL INFORMATION

To compute the exponent for the error in structure learning
Kp, we first consider a simpler event. Let e, e’ € (‘2}) be any
two node pairs satisfying I(P.) > I(P./), where I(P,) and
I(P,/) are the true mutual informations on node pairs e and
e’ respectively. We are interested in the crossover event of the
empirical mutual informations defined as:

Cor 1= {I1(P) < I(P)}.

The occurrence of this event may potentially lead to an error
in structure learning when & differs from Ep. In the next
section, we will see how these crossover events relate to
Kp. Now, we would like to compute the crossover rate for
empirical mutual informations J. . as:

(10)

1
Jeer = lim ——logP (Ceer). (11)



r(e’) € Path(e’; Ep)

(b)

Fig. 1. (a) The symmetric “star” graph with d = 9. (b) The path associated
to the non-edge ¢/ = (u,v) ¢ Ep, denoted Path(e’;Ep) C Ep, is the
set of edges along the unique path linking the end points of €’. r(e’) €
Path(e’, Ep) is the dominant replacement edge associated to ¢’ ¢ Ep.

Intuitively, if the difference between the true mutual informa-
tions I(P.) — I(P./) is large, we expect the crossover rate to
be large. Consequently, the probability of the crossover event
would be small. Note that J. . in (11) is not the same as
Kp in (3). We will see that the rate J. ., depends, not only
on the mutual informations I(P.) and I(P,/), but also on the
distribution P, ./ of the variables on node pairs e and ¢’.

Theorem 1 (LDP for Empirical MIs): Let the distribution
on two node pairs e and €’ be P. ., € P(X*).2 The crossover
rate for empirical mutual information is

Je,er = {D@QI| Pe,er) : 1(Qer) = 1(Qe) }

inf

12
QeP(Xx*) (12)

where Q., Q. € P(X?) are distributions on e, e’ resp., i.e.,
Qe =Y, , Q and similarly for Q... The infimum in (12) is
attained for some Q: . € P(X?) satistying 1(Q?) = I(Q?).

The proof of this theorem hinges on Sanov’s theorem [6,
Sec. 6.2] and the contraction principle [6, Thm 4.2.1]. We
remark that the rate J, . is strictly positive since we assumed,
a-priori, that e and e’ satisfy I(P.) > I(P./).

A. Example: The ‘Symmetric ‘Star” Graph

It is instructive to study a simple example — the “star” graph,
shown in Fig. 1(a) with €p = {(1,7) : i = 2,...,d}. We
assign the joint distributions Q,,Qp € P(X?) and Q. €
P(X*) to the variables in this graph in the following specific
way: (i) P1; = Qg forall 2 < ¢ < d. (ii) P ; = @ for all
2<4,5 <d. (iil) Prijr = Qap forall 2 <14, 3,k < d. Thus,
the joint distribution on the central node and any outer node
is @, while the joint distribution of any two outer nodes is
Q. Note that Q, and @) are the pairwise marginals of Qg p.
Furthermore, we assume that 7(Q,) > I(Qp) > 0.

Proposition 2: For the “star” graph with the distributions
as described, K p, the error exponent for structure learning, is

Kp= {D(Ri12,34||Qap): I(R12) =I(R34)},

inf
Ri12,3,4€EP(X4)
where 1?1 o and R34 are the pairwise marginals of R; 2 3 4.
In general, it is not easy to derive the error exponent
Kp since crossover events for different node pairs affect the
learned structure in a complex manner. We now provide an
expression for Kp by identifying the dominant error tree.

2If e and € share a node, P, ., € P(X3). This does not change the
subsequent exposition significantly.

IV. ERROR EXPONENT FOR STRUCTURE LEARNING

The analysis in the previous section characterized the rate
for the crossover event for empirical mutual information Ce ..
In this section, we connect these events {C, ./ } to the quantity
of interest Kp in (3). Not all the events in the set {C. . }
contribute to the overall event error A,, in (2) because of the
global spanning tree constraint for the learned structure &y, .

A. Identifying the Dominant Error Tree

Definition Given a node pair e’ ¢ Ep, its dominant replace-
ment edge r(e') € Ep is given by the edge along the unique
path (See Fig. 1(b)) connecting the nodes in e’ (denoted
Path(e’; Ep)) and having minimum crossover rate, i.e.,

r(e') = Je,er.

Note that if we replace the true edge r(e’) by a non-edge €,
the tree constraint is still satisfied. This is important since such
replacements lead to an error in structure learning.

13)

argmin
e€Path(e’;Ep)

Theorem 3 (Error Exponent as a Single Crossover Event):
A dominant error tree Tj5 = (V,€}5), has edge set
Er=EpU{e*}\ {r(e*)}, where

e* := argmin
e'¢Ep
with r(e’), defined in (13), being the dominant replacement
edge associated with ¢’ ¢ Ep. Furthermore, the error exponent
K p, which is the rate at which the ML tree &,, differs from
the true tree structure Ep, is given by,

Jr(e’),e’7 (14)

15)

Kp = Jp(ex),ex = min min

Je,e’a
e’¢Ep ecPath(e’;Ep)

where e* ¢ Ep is given in (14).

The above theorem relates the set of crossover rates {J .},
which we characterized in the previous section, to the overall
error exponent K p , defined in (2). We see that the dominant
error tree T differs from the true tree Tp in exactly one
edge. Note that the result in (15) is exponentially tight in the
sense that P(A,,) = exp(—nKp). From (15), we see that if
at least one of the crossover rates J. .- is zero, then overall
error exponent K p is zero. This observation is important for
the derivation of necessary and sufficient conditions for Kp
to be positive, and hence, for the error probability to decay
exponentially in the number of samples n.

B. Conditions for Exponential Decay

We now provide necessary and sufficient conditions that
ensure that K p is strictly positive. This is obviously of crucial
importance since if Kp > 0, we have exponential decay in
the desired probability of error.

Theorem 4 (Conditions for exponential decay): The
following three statements are equivalent.

(a) The error probability decays exponentially, i.e., Kp > 0.

(b) The mutual information quantities satisfy I(P.) #

I(P,.),Ve € Path(e/;Ep), € ¢ Ep.
(c) Tp is not a proper forest®> as assumed in Section II.

3 A proper forest on d nodes is an undirected, acyclic graph that has (strictly)
fewer than d — 1 edges.



Condition (b) states that, for each non-edge e, we need I(P./)
to be different from the mutual information of its dominant
replacement edge I(P,(./)). Condition (c) is a more intuitive
condition for exponential decay of the probability of error
P(A,,). This is an important result since it says that for
any non-degenerate tree distribution in which all the pairwise
joint distributions are not product distributions, then we have
exponential decay in the probability of error.

C. Computational Complexity to Compute Error Exponent

We now provide an upper bound on the complexity to
compute K p. The diameter of the tree Tp = (V,Ep) is

(Tp) = Jr}fg{:} L(u,v), (16)
where L(u,v) is the length (number of hops) of the unique
path between nodes u and v. For example, L(u,v) = 4 for
the non-edge ¢’ = (u,v) in the subtree in Fig. 1(b).

Theorem 5 (Computational Complexity): The number of

computations of J. . required to determine Kp is upper
bounded by (1/2)¢(Tp)(d — 1)(d — 2).
Thus, if the diameter of the tree is relatively low and indepen-
dent of number of nodes d, the complexity is quadratic in d.
For instance, for a “star” network, the diameter ((Tp) = 2.
For a balanced tree, ((Tp) = O(logd), hence the number of
computations is O(d? log d). The complexity is vastly reduced
as compared to exhaustive search which requires d?=2 — 1
computations, since there are d%~2 trees on d nodes.

V. EUCLIDEAN APPROXIMATIONS

In order to gain more insight into the error exponent, we
make use of Euclidean approximations [7] of information-
theoretic quantities to obtain an approximate but closed-form
solution to (12), which is non-convex and hard to solve exactly.
To this end, we first approximate the crossover rate J, /. This
will allow us to understand which pairs of edges have a higher
probability of crossing over and hence result in an error as
defined in (2). It turns out that J, ./ intuitively depends on the
“separation” of the mutual information values. It also depends
on the uncertainty of the mutual information estimates.

Roughly speaking, our strategy is to “convexify” the objec-
tive and the constraints in (12). To do so, we recall that if P
and ) are two distributions with the same support, the KL
divergence can be approximated [7] by

1
D@ P)~ 51Q = Plip, (17)

where ||y||?, denotes the weighted squared norm of y, i.e.,
lyll2, = 3", y?/w;. This bound is tight whenever P =~ Q. By
~2, we mean that P is close to @ entry-wise, i.e., ||[P— Qoo <
e for some small ¢ > 0. In fact, if P ~ Q, D(P||Q) =
D(Q || P). We will also need following notion.

Definition Given a joint distribution P, = P; ; on X 2 with
marginals P; and P;, the information density [10] function,
denoted by s; ; : X2 = R, is defined as

Py (i, ;)

. . 2
prarTen M

si (24, ;) =log

If e = (4,5), we will also use the notation s.(x;,x;) =
si,j(24, x;). The mutual information is the expectation of the
information density, i.e., I(P.) = E[s.].

Recall that we also assumed in Section II that Tp is a
spanning tree, which implies that for all node pairs (i, j), P; ;
is not a product distribution, i.e., P;; # P;P;, because if
it were, then 7Tp would be disconnected. We now define a
condition for which our approximation holds.

Definition We say that P, ., € P(X*), the joint distribution
on node pairs e and €, satisfies the e-very noisy condition if

| Pe = Per|| oo 1=

max
(ziyxj)EX?

|P€(xiaxj)_P€’(wiawj)‘ <e. (19)

This condition is needed because if (19) holds, then by
continuity of the mutual information, there exists a 6 > 0
such that |I(P,) — I(P./)| < ¢, which means that the mutual
information quantities are difficult to distinguish and the
approximation in (17) is accurate. Note that proximity of the
mutual informations is not sufficient for the approximation to
hold since we have seen from Theorem 1 that J. ., depends
not only on the mutual informations but on P, ... We now
define the approximate crossover rate on e and €’ as

je er:= inf

{;IIQ ~Peellp, Q€ Q(Pe,e»} , (20)

where the (linearized) constraint set is

QP..)) = {Q € P(XY) : I(Po) + (Ve I(P),Q = Pe)
= I(P.) + (Ve I(P.).Q = Po) .

where Vp_ I(P,) is the gradient vector of the mutual informa-
tion with respect to the joint distribution P,. We also define
the approximate error exponent as

21

Joer. (22)

K p = min min
e'¢Ep ecPath(e’;Ep)
We now provide the expression for the approximate crossover
rate J. . and also state the conditions under which the
approximation is asymptotically accurate.*
Theorem 6 (Euclidean approximation of Je .): The

approximate crossover rate for the empirical mutual
information quantities, defined in (20), is given by

- E[se — se])? I(P.)) — I(P.))?

Jow = (E[ser — se]) _ (L(Pe) (F)) (23)

’ 2Var(ser — Se) 2Var(se — se)

where s, is the information density defined in (18) and the
expectations are with respect to P /. The approximation Je,er
is asymptotically accurate, i.e., as € — 0, Jeo o0 — Je er.
Corollary 7 (Euclidean approximation of Kp): The
approximation K p is asymptotically accurate if either of the
following 2 conditions.
(a) The joint distribution P,.(.r) .- satisfies the e-very noisy
condition for every ¢’ ¢ Ep.

#We say that a family of approximations {f(¢) : € > 0} of a true parameter
0 is asymptotically accurate if the approximations converge to 6 as € — 0.



(b) The joint distribution P,.(.-) .- satisfies the e-very noisy
condition but all the other joint distributions on the non-
edges €/ ¢ Ep U {e*} and their dominant replacement
edges r(¢’) do not satisfy the e-very noisy condition.

Hence, the expressions for the crossover rate J. .- and the
error exponent K p are vastly simplified under the e-very noisy
condition on the joint distributions P .. The approximate
crossover rate J. . in (23) has a very intuitive meaning. It
is proportional to the square of the difference between the
mutual information quantities of P. and P.,. This corresponds
exactly to our initial intuition — that if I(P,) and I(P.)
are well separated (I(P.) > I(P.)) then the crossover
rate has to be large. J. .- is also weighted by the precision
(inverse variance) of (s. — s¢). If this variance is large then
we are uncertain about the estimate I(P.) — I(P.), and
crossovers are more likely, thereby reducing the crossover
rate J. .. The expression in (23) is, in fact, the SNR for
the estimation of the difference between empirical mutual
information quantities. This answers one of the fundamental
questions we posed in the introduction. We are now able
to distinguish between distributions that are “easy” to learn
and those that are “difficult” by computing the set of SNR
quantities in (22).

We now comment on our assumption of P, . satisfying the
e-very noisy condition, under which the approximation is tight.
When P, . is e-very noisy, then we have |I(P,)—I(P./)| < 6.
Thus it is very hard to distinguish the relative magnitudes
of I(P.) and I(P./). The particular problem of learning the
distribution P, ., from samples is very noisy. Under these
conditions, the approximation in (23) is accurate. In fact, ratio
of the approximate crossover rate and the true crossover rate
approaches unity as € — 0.

VI. NUMERICAL EXPERIMENTS

In this section, we perform numerical experiments to study
the accuracy of the Euclidean approximations. We do this by
analyzing under which regimes J. . in (23) is close to the
true crossover rate J, . in (12). We parameterize a symmetric
“star” graph distribution with d = 4 variables and with a single
parameter v > 0. We let X = {0,1}, i.e., all the variables
are binary. The central node is x; and the outer nodes are
X9, T3, 4. For the parameters, we set P (z; =0) = 1/3 and

Piaa: =01 = a) = 3 + (~1)%,
for ¢ = 2, 3,4. With this parameterization, we see that if ~ is
small, the mutual information I(P; ;) for i = 2,3,4 is also
small. In fact if v = 0, x; is independent of z; and as a result,
I(Py ;) = 0. Conversely, if  is large, the mutual information
I(Py ;) increases as the dependence of the outer nodes with
the central node increases. Thus, we can vary the size of the
mutual information along the edge by varying . By symmetry,
there is only one crossover rate and hence it is also the error
exponent for the error event A, in (2).

We vary v from O to 0.2 and plot both the true and
approximate rates against I(P.) — I(P,./) in Fig. 2, where e

a=0,1, (24)

—3— True Rate
—E— Approx Rate

Crossover rates J o
o
o
=

0 0.01 0.02 0.03 004 005 0.06 0.07
P )-I(P)

Fig. 2. Left: The true model is a symmetric star where the mutual
informations satisfy I(Py2) = I(P1,3) = I(P1,4) and I(P./) < I(P1,2)
for any non-edge e’. Right: Comparison of True and Approximate Rates.

denotes any edge and ¢’ denotes any non-edge. We note from
Fig. 2 that both rates increase as the difference I(P.)—I(P.)
increases. This is in line with our intuition because if I(P.) —
I(P,/) is large, the crossover rate is also large. We also observe
that if the difference is small, the true and approximate rates
are close. This is in line with the assumptions of Theorem 6;
that if P, . satisfies the e-very noisy condition, then the
mutual informations I(P.) and I(P./) are close and the true
and approximate crossover rates are also close. When the
difference between the mutual informations increases, the true
and approximate rate separate from each other.

VII. CONCLUSION

In this paper, we presented a solution to the problem of
finding the error exponent for ML tree structure learning by
employing tools from large-deviations theory combined with
facts about tree graphs. We quantified the error exponent for
learning the structure and exploited the structure of the true
tree to identify the dominant tree in the set of erroneous trees.
We also drew insights from the approximate crossover rate,
which can be interpreted as the SNR for learning. These two
main results in Theorems 3 and 6 provide the intuition as to
how errors occur for learning discrete tree distributions.
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