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ABSTRACT

We consider the problem of optimal waveform selection. Weldio

on the optimization problem [7]. By nature of the constramaking
the weighting of the constraint larger causes some of thificieats
to be zero thus giving rise to a suboptimal sparse solutiohacub-

like to choose a small subset from a given set of waveforms thaS€t selection problem. Recent work advocates the uge-obrm

minimizes state prediction mean squared error (MSE) gikerpast
observations. This differs from previous approaches ®hoblem
since the optimal waveforms cannot be computed offlineitires
the previous observations. Since the optimal solution imghbset
selection problem is combinatorially complex, we proposervex
relaxation of the problem and provide a low complexity suboal
solution. We present a specific model and show that the pedioce
of this suboptimal procedure approaches that of the optimaak-
forms.

1. INTRODUCTION

Over the past decade, the problem of optimal waveform ddsign
found important applications in synthetic aperture ra&&R), au-
tomatic target recognition and radar astronomy [1]. Basedhe
application, waveform design may depend on various opiiyneti-
teria, e.g., target classification [2], accurate recortion of a high
resolution radar image [3], or estimating a set of targeapeters.
One implication of choosing the set of transmitted wavefoonpti-
mally is that the backscattered signals will contain maximtarget
information.

Most of the work in the area of waveform design involves find-

ing the best functional form of the waveforms suited to aipaldr
task, e.g., design of waveforms from the radar ambiguitgtion for
narrowband signals [4] or design of wideband waveforms solxe
targets in dense target environments [5]. In this paper,ogas on
the optimal waveform selection problem rather than thegfest ac-
tual waveforms. We would like to choose only a small subsanfr
a given set of waveforms. This restriction is typical in naslgstems
where there is a constraint on resources such as energysdssabe
performance of a particular subset of waveforms, we neeéfioal
an optimization criterion such as expected reward or risk.

The problem of choosing out of M possible waveforms be-
comes a high complexity combinatorial optimization probleE.g.,
if there areM = 128 waveforms and we need to select 32 el-
ement subset, there are more than’ combinations of indices that
need to be checked. As a result, significant work has beers$ecu
on approximation methods based on convex relaxation weth o
sparse solutions. Complexity penalties have also been toskad
sparse solutions to such problems [6]. One type of convealpeis
the lasso, a shrinkage method which impose$, amorm constraint
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constrained convex optimization problems to obtain spapeasen-
tations [6]. Most of these problems deal with sparse regresand
are offline strategies where the solution to the problemiaddased
on accumulated data.

In this paper, we consider the expected state prediction BSE
a measure of performance and impose the problem of findinggthe
timal subset that minimizes this expected reward given #s mea-
surements (online strategy). We relax this combinatgriedmplex
problem into an optimization problem undernorm constraint and
propose a low complexity suboptimal solution whose pertoroe
approaches that of the optimal subset selection. We thesidmma
numerical example of this approach and provide simulatésults
to compare the various solutions.

The organization of the paper is as follows: In Section 2,
present the waveform selection problem. Section 3 propaseh-
optimal solution. In Section 4, we solve the problem for acéfje
model. Section 5 addresses the computational complexthegsro-
posed solution and Section 6 provides simulation results.céwn-
clude this paper in Section 7.

2. PROBLEM FORMULATION

We consider the waveform selection problem for a hyperisgec
radar system, where the radar can transmit and receiveyeoeeg
multiple channels simultaneously. We restrict the numbievave-
forms transmitted at any time to be a small subsep olut of M/
available waveforms. Denote the state at tinass; and let the re-
ceived signals corresponding to a single transmit wavefernoe
denoted ag/é, i = 1,..., M. We restrict our attention to single
stage policies, i.e., myopic policies that seek to maxinzneex-
pected reward conditioned on the immediate past.

Let{i1,...,ip} € {1,..., M} denote the indices of thedif-
ferent waveforms taken from a set df (M > p) waveforms. We
solve the optimal subset selection problem by maximizirey ek-
pected reduction in the variance of the optimal state estinafter
an action (choosing out of M waveforms) is taken:
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Since the first term is independent{af,, . . . , i, }, the maximization
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in (1) can be equivalently expressed as
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where

/S\t(ilw"aip):E|:st|y72:17'~~7yzp7yt*1:|' (3)
The minimization in(2) requires one to evaluatg)(for all ( » ) pos-
sibilities of iy, . .
in solving @): computation of the conditional expectatio);(and
combinatorial minimization of). In the tracking examples consid-
ered here the computation &)(is not difficult. Since the complex-
ity of problem is exponential in/ (for fixed p/M), we propose a
low complexity suboptimal solution foR} whose performance ap-

proaches that of the optimal one.
3. PROPOSED SOLUTION

As an alternative to exhaustively searching o@’ p055|ble sub-
sets we pose the following sparsity constrained preduﬂwmgate
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whereg > 0, ||v|l;» 0 < I < 1 is a sparseness inducing penalty

and {g;} is a set of base predictors ef and the linear combi-
nation of these predictors approximates the exact solutiof3).
When [v]i = [0 is the lo-norm, gi(y?, ...,y ,yi1) =
9i(yi's -,y  ye—1) = 8 in (3), i indexes over thg”) com-
binations of indices, ..., i,, the solution of(4) yields the opti-
mal solution @) for sufficiently larges. A surrogate investigated
by many [7, 8] for theo-norm penalty is thé;-norm penalty||~y||1
which will be adopted here. In the special case thatepends only
on a single variable? the regression i is equivalent to using a
simple generalized additive model (GAM) [9]. We further ase
thatgi(y:) = E [St|y;)’t71]-
problem can be formulated as

Z% [St|yi7)’t71]

andg is chosen such that exactlyout of the M ~;’s are nonzero.
This quadratic optimization iy underl;-norm constraint is a con-
vex problem and can be evaluated in a straightforward fasiéing
standard techniques, e.g., [7, 8,10, 11]. We first find thgeaf 3
that gives rise to a sparse solution with exagtlgonzero elements
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and fix it to that value in the range which gives the minimum un-

constrained error. We take the indices of theonzero components

of v corresponding to thig as the solution to the waveform subset

selection problem irf2).
4. NUMERICAL STUDY

To illustrate this approach, we consider the following peotx At

timet = 1, we assume without loss of generality that an arbitrary

waveform index; from {1, ..., M} is chosen and waveforg, is

,ip. Two fundamental difficulties are encountered

Thus the constrained prediction

transmitted into the medium. The received signal at the stage
can then be written as

=L(¢,)s1 + n1 = Lys1 +ny, (6)
whereL(-) is based on the channel modal, is receiver noise, and
s1 is the initial state. We consider the state update equati@ntad-
den Markov model (HMM), equivalent to a Gaussian mixture elpd
defined as

Y1

:Astfl+|tW1,t+(1—|t)Wo,t7t:2,3,.“, (7)
where{w;.,i = 0,1}, are independent Normal random vectors
with meanu, and covariance matriR.,, A is a fixed matrix and
I+ are i.i.d Bernoulli random variables with success protiighil.
Assume the initial state; is a Normal random vector with zero
mean and covariance matiks. Receiver noiseén. } are i.i.d Nor-
mal with zero mean and covariance mafx, and{n;, {w;,i =
0,1}, 1¢,s1} are all independent. The modédl) (captures the non-
Gaussian nature of the tracking problem where the statendigsa
switch at random between the hidden states=I 1 and | = 0.
The received signal at time= 2 corresponding to transmission of
waveforme, can be written as
ys=Liso+mns5, i=1,..., M. (8)
Our goal is to maximize expected reduction in the variancthef
state estimator after sending the waveforps, },_, and receiving

the backscattey’!, ...,y i.e.,
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For the proposed GAM prediction problem undenorm constraint,
we need to minimize

M
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with respect toy and use the nonzero indices obtained through this
method as our solution to the subset selection problem.

Given b = k € {0, 1}, the random vectors,, y; andy: are
jointly Gaussian. Ley = [yng, ooy Ly T]E. Then the joint
distribution can be written as
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where
H H1H
By = {[Ln e ,OLZ-F] ”k} , (12)
Re ey = |(Rep) [, LE] AR, (13)
Re, » = Rw, + AR, A", (14)

If y1 isaN x 1 vector, therRy isaN(p+ 1) x N(p+ 1) matrix
whosemn-th block is given by
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Since the random vectoss, y2, . .. 7y;p7y1 are jointly Gaussian,
the conditional mean of; giveny and L = k& can be evaluated as

E [sﬂy?,... ,yép,yl, Iy, = k]
-1
= My + ng,k,yRy’k (y - p/y,k) )
and the conditional mean estimator is
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where the conditional probability of, Ican be found using Bayes
formula:

(16)

wheref(y|l2 = k)
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and Rl = 1) = ¢. Thus equation15) can be rewritten as
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The MSE criterion in §) can now be evaluated by substituting for
the conditional expectation fromT). For the suboptimal criterion
in (10), we need to findE [s2| y5, y1] which is a specific case of
(17)ywithp = 1,i.e.,y = [y}, y1]. Itis worthwhile to note that even
in the case of; = 0 or 1 for which the target dynamics are linear
Gaussian, the solution ta(@) is suboptimal, i.e., it is not equivalent

to the conditional expectatioB), This is because the predictor does

not take into account the spatial correlation between tkeived
signalsys, ..., y3.
then thel; -norm constrained solution ta@) can be shown to be the
optimal solution for the Gaussian case.

5. COMPUTATIONAL COMPLEXITY

The estimator given inl{r) is in closed-form and hence the major
complexity in finding the optimal solution is in its evaluaitifor all

(JZ) possible combinations of waveforms. Instead we use the sul

optimal solution given by(10) to find the besp waveforms to be
transmitted at the second stage. We use the recently prbpdgeS
algorithm (Least Angle Regression) [10] to solve fo@) which re-
quires only the same order of magnitude of computationalre#s
the ordinary least squares solution. The algorithm useatiiehat
the solution to {0) is piecewise linear if¥ and hence one can obtain
the exact solution imin(p, M — p) steps either by doing a forward
selection or backward elimination procedure.

However, if the received signals are scalars, w

6. SIMULATION RESULTS

Based on the formulation in Section 4, we perform a simutefoy
the simple case o/ = 5 different waveforms. This will allow us
to quantify the gap between the optimal soluti@hdnd the solution
to the approximation1(). We assume a radar receiver array with
N = 25 antenna elements so that the received siggals/. are
25 x 1 vectors. The state vector is assumed to é;ax 1 vector
with N, = 10. The correlation matriceR.., Rw,, Rw, , Rs are
identity matrices. The mean vectgug and ., arel0 x 1 vectors
consisting of all zeros and all.1 respectively. The Bernoulli ran-
dom variables ,l takes the valud with probabilityq = 0.4. We
assumed the channel model to be linear and selected theomangef
{¢,}}, at random ove5 dimensional unit sphere. These wave-
forms are unit norm and have cross correlation less than We
simulated the performance of the optimal subset seleabmigalvith
thel;-norm constrained convex problem under this setting. Tie pe
formance criteria considered in the simulations is showTeinle1.

We first present the MSE of thig-norm penalized solution found
from (5) (solid line, GAM with ;) as a function of the sparseness
regularization parametet in Fig. 1. For each value off, we also
show the correspondiny-norm of optimaly (on top of the solid
line) in the figure. The MSE is a increasing function®fand as
explained earlier, we notice that increasifignduces more sparse-
ness in the solution. Whea# is large, the MSE converges to the
variance of the state parameter. We also plot the MSE of ttimap
subset selection solution (dashed line) correspondinigetty thorm
obtained through thé -norm constrained solution. We see a clear
difference in performance between the two techniques. iEHig-
cause of two main reasons: The primary reason is the facinbat
find a suboptimal solution by assuming the GAM estimator ef th
form in (5) rather than the optimal estimator given 8).(The other
reason is due to the fact that we solve the minimization grmolsub-
ject to ani;-norm constraint rather than &nnorm constraint.
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Fig. 1. Minimum MSE for optimal subset selection (dotted and
dashed-dotted line) arig-norm constrained solution (solid line)with
respect ta3. ||v||o, corresponding to the number of nonzero com-
ponents in the optimal solution ef for constrained optimization is
shown adjacent to the solid line as a functiornsof



Approach Form of predictor Constr.
Subset Selection | E [S2| ygl,...,yép,yl] -
GAM + 1o > [s2] v, 1] l[v[lo
GAM + 1 > [s2] v, 1] [l
Optimal predictor | E [s2|y3,...,y5", y1] -
Proposed Solutior] Use optimal from GAM H1 | ||v|x

in subset selection

Table 1. Form of predictors

In Fig. 2, we plot the performance of state estimators mentioned

in Table1. We observe that the performance of GAM under
norm constraint is indeed found to be optimal fpy|lo = 1 case
and clearly suboptimal for other cases due to the resteictilditive
model. Finally we see that our proposed solution has a sbgmnifi
performance gain as compared to the simpl@aorm constrained
minimization and approaches the optimal subset selectifop
mance. This suggests that we can considerably reduce thautam
tional complexity of the problem and at the same time achieagly
optimal performance using such a design approach.
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Fig. 2. Minimum MSE for the optimal subset selection problem (cir-
cle), optimal GAM withl; constraint (diamond), optimal GAM with
lo constraint (cross) and the proposed approach (star) asctdun
of [[vlo-

7. CONCLUSIONS

We considered the problem of optimal waveform selection.oy/e
timally choose a small subset of waveforms that minimizesstate
prediction MSE given the past observations. We observettteat

optimal subset selection is a combinatorially complex rojzation
problem and hence infeasible. We proposed a suboptimatiaolu
through convex relaxation which achieves near optimalquerance.
We considered a particular model and compared the perfaenain
the various strategies through simulation. This problera rsatu-
ral extension to the problem of optimal energy allocatiotween
two stages of transmission under energy constraints usiqgesitial
design strategies [12, 13]. One extension is to solve thoblpm
simultaneously for both optimal waveform selection andropt en-
ergy allocation.

8. REFERENCES

[1] M. R. Bell, “Information theory and radar waveform desjy
IEEE Trans. on Inform. Theory, vol. 39, no. 5, pp. 1578-1597,
Sep. 1993.

S. M. Sowelam and T. H. Tewfik, “Waveform selection in rada
target classification,|EEE Trans. on Inform. Theory, vol. 46,
no. 3, pp. 1014-1029, May 2000.

S. M. Sowelam and T. H. Tewfik, “Optimal waveforms for
wideband radar imaging,”J. Franklin Institute - Engg. App.
Math., vol. 335B, no. 8, pp. 1341-1366, Nov. 1998.

R. E. Blahut, W. M. Miller, and C. H. Wilcox, Radar and
Sonar, Part |, Springer-Verlag, New York, 1991.

H. Naparst, “Dense target signal processindgEE Trans. on
Inform. Theory, vol. IT-37, no. 2, pp. 317-327, Mar. 1991.

D. Malioutov, M. Cetin, and A. S. Willsky, “A sparse sigha
reconstruction perspective for source localization wihsor
arrays,” |EEE Trans. Sgnal Processing, vol. 53, no. 8, pp.
3010-3022, Aug. 2005.

R. Tibshirani, “Regression shrinkage and selection thia
lasso,”J. R. Satist. Soc., vol. 58, pp. 267-288, Nov. 1996.

I. Daubechies, M. Defrise, and C. De Mol, “An iterativedish-
olding algorithm for linear inverse problems with a sparsit
constraint,"Comm. Pure App. Math., vol. 57, no. 11, pp. 1413—
1457, Nov. 2004.

T. Hastie, R. Tibshirani, and J. FriedmanThe Elements of
Satistical Learning: Data Mining, Inference and Prediction,
Springer Series in Statistics. Springer Verlag, New YoflQ@

B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, eélst
angle regression,”Ann. Satist., vol. 32, no. 2, pp. 407-499,
2004.

M. Osborne, B. Presnell, and B. Turlach, “A new approtzh
variable selection in least squares problenhSfA J. Numeric.
Anal., vol. 20, no. 3, pp. 389-403, 2000.

R. Rangarajan, R. Raich, and A. O. Hero lll, “Sequenied
sign for a rayleigh inverse scattering problemProc. IEEE
Workshop on Sat. Signal Processing, July 2005.

R. Rangarajan, R. Raich, and A. O. Hero lll, “Optimal ex-
perimental design for an inverse scattering probler®foc.
IEEE Intl. Conf. Acoust., Soeech, Signal Processing, vol. 4,
pp. 1117-1120, 2005.

(2]

(3]

[4]
(5]
(6]

[7]

(8]

[9]

(10]

(11]

(12]

(13]



