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Problem Overview Human Decision MakingBayes Risk Error Distortion Gaussian Examples
Hypothesis Testing Scenario

Object in one of ■ M states: {h0, . . . , hM−1} with Pr[H = hm]= pm

Prior probability vector  ■ p =

p0 · · · pM−1

T

Population of objects — each object’s prior probability drawn from  ■ fP (p)

Noisy measurement  ■ Y

Task: for a given object with prior probability  ■ p , estimate h  from y  under 
Bayes risk objective with costs cij

Constraint:  ■ P  is quantized
Goal: design best  ■ K-point quantizer to minimize average Bayes risk error 

over the population fP (p)

Block Diagram
World 



H ∈ {h0, . . . , hM−1}
true hypothesis

p ∈ {


pm = 1}
prior

Observation

Finite Memory

Context







Y ∈ Y
measurement

a ∈ A ⊂ {


am = 1}
quantized prior

C ∈ RM×M
costs cij

Decision Ĥ ∈ {h0, . . . , hM−1}

A Quantizer over the Population fP(p),  M = 3

Nearest Neighbor Condition
For fixed representation points  ■ {ak}, derive optimal boundary points {bk}
Given  ■ p0 ∈ [ak, ak+1] , if J̃(p0, ak) < J̃(p0, ak+1) , then the Bayes risk error is 
minimized when p0  represented by ak  and vice versa

  ■ bk ∈ [ak, ak+1]  is abscissa of  intersection between J̃(p0, ak)  and J̃(p0, ak+1)   

  ■ bk =
c01

�
pIIE(ak+1)− pIIE(ak)



c01 (p
II
E(ak+1)− pIIE(ak))− c10 (p

I
E(ak+1)− pIE(ak))

Centroid Condition
For fixed boundary points  ■ {bk}, derive optimal representation points {ak} 

Minimize  ■ D =
K

k=1



Rk


J̃(p0, ak)− J(p0)


fP0(p0)dp0 for each interval 

separately

Let  ■ I Ik =



Rk

p0fP0(p0)dp0 and I IIk =



Rk

(1− p0)fP0(p0)dp0

  ■ ak = argmin
a


c10I

I
kp

I
E(a) + c01I

II
k p

II
E(a)



Uniquely minimize by setting derivative equal to zero since  ■ d(p0, a) has 
exactly one stationary point

  ■ ak  is solution to c10I
I
k
dpIE(ak)

dak
+ c01I

II
k

dpIIE(ak)

dak
= 0

Bayes Risk Function Properties
Assuming  ■ M = 2  and c00 = c11 = 0, Bayes risk as a function of p0  is 
J(p0) = c10p0p

I
E(p0) + c01(1− p0)p

II
E(p0)

  ■ J(p0) is zero at p0 = 0  and p0 = 1

  ■ J(p0) is positive, concave, and continuous in the interval (0, 1)

Mismatched Bayes Risk
If the true prior probability is  ■ p0 , but ĥ(y)  is designed using some other 
value a , there is mismatch

Mismatched Bayes risk function  ■ J̃(p0, a) = c10p0p
I
E(a) + c01(1− p0)p

II
E(a)

  ■ J̃(p0, a)  is a linear function of p0  with slope (c10p
I
E(a)− c01p

II
E(a))  and 

intercept c01p
II
E(a)

  ■ J̃(p0, a)  is tangent to J(p0) at p0 = a

  ■ J̃(p0, a) ≥ J(p0) ≥ 0

Bayes Risk Error
Define distortion function for quantization ■

Bayes risk error:  ■  d(p0, a) = J̃(p0, a)− J(p0)
Nonnegative and only equal to zero when  ■ p0 = a

Convex and continuous in  ■ p0  for all a

Comparison to Previous Work
Previous work combining detection and quantization quantizes  ■ y , not p0  
[Kassam, 1977], [Poor & Thomas, 1977], [Gupta & Hero, 2003]
Also only approximates Bayes risk function instead of using it directly ■

Signal and Noise Model
Model:  ■ Y = sm +W , where s0 = 0 , s1 = µ , and W  is a zero-mean Gaussian 
random variable with variance σ2

The likelihood functions are  ■ fY |H(y|h0) = N (y; 0, σ2) =
1

σ
√

2π
e−y

2/2σ2  and 

fY |H(y|h1) = N (y;µ, σ2) =
1

σ
√

2π
e−(y−µ)2/2σ2

Optimality Conditions

The two error probabilities are  ■ pIE(p0) = Q


µ
2σ

+ σ
µ
ln


c10p0
c01(1−p0)


 and 

pIIE(p0) = Q


µ
2σ
− σ

µ
ln


c10p0
c01(1−p0)


, where Q(α) = 1√

2π

 ∞

α

e−x
2/2dx

Substitute error probabilities into nearest neighbor condition expression ■

Derivatives are  ■
dpIE(p0)

dp0


p0=ak

= − 1√
2π

σ
µ

1
ak(1−ak)e

− 1
2

“
µ
2σ

+σ
µ

ln
“

c10ak
c01(1−ak)

””2

 and 

dpIIE(p0)

dp0


p0=ak

= + 1√
2π

σ
µ

1
ak(1−ak)e

− 1
2

“
µ
2σ
−σ
µ

ln
“

c10ak
c01(1−ak)

””2

Substitute derivatives into centroid condition expression and solve to obtain ■
 

ak =
I I
k

I I
k + I II

k

Setup of Examples               

                     Legend

                   
                  In mean Bayes risk error plot, red line is for MBRE-optimal  
                  quantizer and blue line is for MAE-optimal quantizer.

fP0(p0) ~ Uniform;  c10 = 1, c01 = 4
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fP0(p0) ~ Beta(5,2);  c10 = 1, c01 = 1
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Human Decision Makers

Two Population Quantization
Two identical populations B and W with common  ■ fP0(p0)

Separate quantizers  ■ vKb
(·)  and vKw(·)  with total constraint Kt = Kw +Kb

Exposure of decision maker to populations not identical:  ■ b  and w
Extend MBRE to two population case:   ■

D(2) = w
w+b

E[J̃(P0, vKw(P0))] +
b
w+b

E[J̃(P0, vKb
(P0))]−E[J(P0)]

Optimization involves point allocation and optimal separate quantizer  ■

0 0.5 1
0

2

4

6

Predictions from model consistent with face recognition experiments  ■

[Meissner & Brigham, 2001]

Effect of Bayes Costs
Bayes risk performance includes both Type I and Type II errors ■

Often, only detection rate is observable experimentally:  ■

Pr[h̃K(Y ) = h1] = 1− p0 + p0p
I
E(vK(p0))− (1− p0)p

II
E(vK(p0))

If decision maker is member of W with  ■ w > b  and ∆ > 0, where 

∆ = E

Pr[h̃Kb

(Y ) = h1]− Pr[h̃Kw(Y ) = h1]


, then out-of-population bias; 

if ∆ < 0, then in-population bias

0 10
0

10

Empirical evidence of human decision making shows  ■ ∆ > 0 [Donohue & Levitt, 
2001], [Price & Wolfers, 2007] — consistent with precautionary principle

Quantizer Optimality Conditions

Limited information processing capacity ■

Handle 7 ± 2 categories without getting confused  ■

[Miller, 1956]
Assumption: perform optimal Bayesian hypothesis  ■

testing with quantized priors 
Essentially automatic race and gender categorization,  ■

particularly when lacking the time, motivation, 
or cognitive capacity to think deeply [Macrae & 
Bodenhausen, 2000]
Assumption: separate quantizers for different races  ■

and genders with total point constraint Kt

Background
Binary Bayesian Hypothesis Testing

Hypotheses  ■ h0 , h1 , and prior probabilities p0 , p1 , such that p0 = Pr[H = h0] 
and p1 = Pr[H = h1] = 1− p0
Noisy measurement  ■ Y  with likelihoods fY |H(y|h0) and fY |H(y|h1)
Function  ■ ĥ(y)  maps every possible y  to either h0  or h1

  ■ ĥ(·) = argmin
f(·)

E [c (H, f(Y ))]  with solution 
fY |H(y|h1)

fY |H(y|h0)

ĥ(y)=h1


ĥ(y)=h0

p0(c10 − c00)

p1(c01 − c11) , 
where cij = c(hi, hj)

Errors:  ■ pIE = Pr[ĥ(Y ) = h1|H = h0] and pIIE = Pr[ĥ(Y ) = h0|H = h1]

Bayes risk:  ■ J = (c10 − c00)p0p
I
E + (c01 − c11)p1p

II
E + c00p0 + c11p1

Scalar Quantization
  ■ K-point quantizer vK(·)  for fP0(p0) , p0 ∈ [0, 1] partitions the domain into 
intervals R1 = [0, b1] , R2 = (b1, b2], R3 = (b2, b3], . . . , RK = (bK−1, 1]

  ■ vK(p0) = ak  for p0 ∈ Rk

Design  ■ vK(·)  to minimize D = E[d(P0, vK(P0))] =


d(p0, vK(p0))fP0(p0)dp0

Conditions for quantizer optimality: nearest neighbor condition, centroid  ■

condition, zero probability of boundary condition [Gersho & Gray, 1992]

Minimum mean Bayes risk error (MBRE)  ■

quantizer designed for µ = 1  and σ = 1  
using Lloyd-Max algorithm
Compared to minimum mean absolute  ■

error (MAE) quantizer (d(p0, a) = |p0 − a|)
Plots show  ■ fP0(p0) ; MBRE as a function of 

K for both quantizers; and J̃(p0, vK(p0))  for 
four values of K  for both quantizers

aMBREk

aMAEk

J(p0)

J̃(p0, vMAE
K (p0))

J̃(p0, vMBRE
K (p0))

Optimal point allocation as a function  ■

of w/(w + b) for fP0(p0)  ~ Beta(5,2), 
c10 = c01 = 1, and Kt = 7

  ■ Kb  = black line, Kw  = cyan line
Better Bayes risk performance for  ■

population W when Kb < Kw  and 
vice versa

∆ ■  is a function of c10 and c01
Dividing line between in-population  ■

bias and out-of-population bias 
is plotted for Uniform (black) and 
Beta(5,2) (colored) distributions 
Precautionary principle,  ■ c10 � c01 , 
yields out-of-population bias
Pushful principle,  ■ c01 � c10 , yields 
in-population bias

Memory Constraints Limit Decision Making
Formulated hypothesis testing under memory constraints rather than  ■

communication constraints
Derived optimal quantizer of prior probability distribution under Bayes risk  ■

objective and determined performance
Quantized prior hypothesis testing combined with theories of social  ■

cognition and empirical facts about segregation leads to generative model 
of discrimination
Decision making biased despite identical population distributions and no  ■

malicious intent by decision maker

Conclusion
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