Integrated Fusion, Performance Prediction, and Sensor Management for Automatic Target Exploitation

Summary

MURI Annual Review Meeting

Randy Moses

November 3, 2008
Today's Presentations

ATE Objectives
- Sensor Resources

Optimal, Robust Information Fusion
- Optimal, Robust Information Fusion in Uncertain Environments (Willsky)

ATR/ATE Inferences and Confidences
- Graphical Models for Resource-Constrained Hypothesis Testing and Multi-Modal Data Fusion (Castañón, Fisher, Hero)

Features and Uncertainties
- Priors and Learned Statistics

Adaptive Front-End Signal Processing
- Inference-Aware Feature Extraction and Reconstruction (Çetin, Ertin, Karl, Moses, and Potter)
- Front-End Processing Research on Shape Analysis (Fisher, Srivastava, Willsky)

Dynamic Sensor Resource Management
- Progress in Sensor Management for Integrated Surveillance (Castañón, Fisher, Hero)
Key Accomplishments

- Scalable, flexible information fusion using graphical models
 - Multiscale structures
 - Graphical model structures for tracking
 - Learning structure for inference (e.g. behavior)

- Sensor signal processing approaches that support multi-modal, multi-sensor inference
 - Robust to sensor configuration and sparsity of data
 - Tools to support performance and performance prediction
 - Amenable to complex scenes
 - Scene/target motion; 3D structure; anisotropic behavior

- Scalable, information-based sensor management
 - Low-complexity algorithms with guaranteed performance
 - Information metrics for sensor management
Publications and Student Degrees

- 129 Publications
 - 2 book chapters
 - 45 Journal publications
 - 82 Conference proceedings papers

- Student Graduate Degrees
 - 7 Ph.D. graduates
 - Williams (MIT), Rangarajan (UMich), Joshi (FSU), Malioutov (MIT), Johnson (MIT), Bashan (UMich), Liang (BU)
 - 8 M.S. graduates
 - Austin (OSU), Som (OSU), Varhney (MIT), Chen (MIT), Choi (MIT), Chandrasekaran (MIT), Batu (Sabanci), Bangla (BU)
Research Leadership

- **Journal Special Issue**
 - Shape Analysis and Its Applications in Image Understanding, IEEE PAMI (Srivastava)

- **Themed Workshops**
 - Workshop on Challenges and Opportunities in Image Understanding, Jan 2007 (Srivastava)
 - Workshop on Signal and Information Processing, July 2008 (Hero)

- **Conference Special Sessions**
 - Sparse Reconstruction methods in Radar
 - SPIE Defense Symposium, April 2008 (Moses)
 - Signal Processing for Inference
 - IEEE 5th DSP Workshop, January 2009 (Moses)
 - Signal Processing and Learning for Sensor Signal Exploitation

- **Scientific Advisory Boards**
 - Castañón: Air Force SAB
 - Hero: ARL TAB
 - Willsky: DARPA POSSE;
 - Willsky: Chief Scientific Consultant to BAE-AIT
 - Hero: National Research Council
 - Moses: US/UK International Technology Alliance
Synergistic Interactions

- Graphical Models as a synergy catalyst
- Graphical Models and Manifold Learning
 - Outgrowth of Hero sabbatical at MIT
- Front-end Signal Processing
 - Coordinated, unified approach to address statistical fusion and performance assessment
 - Multiple modalities; multiple operating modes
 - Features and shape under one umbrella
- Information-based resource management
 - Information cost metrics and performance bounds
 - Physical scattering models (OSU) for SM (BU)
- Intra-team visits and student mentorship
 - Cetin to MIT/BU summers; Hero sabbatical at MIT; Moses multiple summer visits to MIT+BU
 - Student research co-advising and thesis committees
Transitions I

- Strong, Fruitful Connection to AFRL
 - Frequent faculty visits and student internships
 - Collaborative data collections
 - Research collaborations
 - Transitional research topics (e.g. via ATR Center)

- Technology transfer to industry via DoD programs
 - DARPA Visibuilding, ATIF, POSSE
 - AFRL Gotcha
 - SBIRs with AF, MDA

- Student internships
 - Several at AFRL; also GD-AIS, NG, BAE-AIT

- Non-DoD technology transitions
 - Medical imaging and shape inference
 - Seismic processing for oil exploration
Transitions II: Year 2 Examples

- Sparse aperture research transitioned to AFRL GREP program
- Srivastava statistical shape analysis transitioned to Northrup-Grumman via Innovation Alliance Award
- The Lagrangian Relaxation method has led directly to a module in BAE-AIT’s ATIF (All-Source Track and ID Fusion) System
- Multi-target tracking approaches being transitioned to BAE-AIT
- MIMO radar network research at UMich transitioned to GD-AIS via Mike Davis
- MURI LADAR model identification and radar scheduling provided to Lincoln Laboratory
What’s next – Signal Processing

- Multistatic processing
 - Complexity reduction
 - Incorporating anisotropy
 - Addressing calibration uncertainty/mocomp

- Nonlinear models
 - Exploit sparsity on low-dimensional manifolds
 - Close the gap between parametric and nonparametric approaches

- Performance prediction
 - Expand scope of pre-sensing impact metrics
What’s next – Information Fusion

- More on learning behavioral models and multi-target tracking
- More on learning tractable models for fusion and discrimination
 - E.g., introducing hidden variables to capture hidden causes
- Inference over object interactions
 - Learning graphical dependency structures to infer interaction states.
 - How to do this efficiently
- Integrated learning of embedded graphical models
 - Joint clustering/classification and manifold learning
 - Distributed topological inference
What’s next – Sensor Management

- Multi-task multi-platform guaranteed uncertainty sensor management (SM)
- Multistatic sensor management for tomographic target recognition
- Integration of improved information theoretic performance models into SM
- Multiplatform trajectory optimization for SM
- Distributed SM algorithms
- Performance bounds for layered ATE systems
Expected End States

- **New methods for building and using graphical models**
 - Scalable and tractable for large, militarily-relevant problems
 - Enable both fusion across levels and sensor resource management
 - Graphical Models for tracking and behavior extraction
 - Incorporate learning from experts and non-conventional information sources

- **Decision-directed front-end signal processing**
 - A unified understanding and structure for uncertainty characterization monitoring, incorporation of context and higher-level fusion information, and adaptation.

- **Robust sensor processing algorithms**
 - Combine robustness of nonparametric techniques with accuracy and tractability of parametric techniques for sensor signal processing

- **General theory for information-seeking resource management**
 - Heterogeneous sensors
 - Inference metrics and predictions drive sensing actions