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Abstract— Arthroplasty, the implantation of prostheses into joints, is
a surgical procedure that is affecting a larger and larger number of
patients over time. As a result, it is increasingly important to develop
imaging techniques to non-invasively examine joints with prostheses after
surgery, both statically and dynamically in 3-D. The static problem is
considered here, with the aim to create a 3-D shape model of the bone as
well as the prosthesis using a set of 2-D X-rays from various viewpoints.
The most important challenge to be addressed is the lack of texture, the
most common feature to recover shape from multiple views. Inorder
to overcome this limitation, we reformulate the problem using a novel
multi-view segmentation approach where an active contours3-D surface
evolution with level-set implementation is used to recoverthe shape of
bones and prostheses in post-operative joints. The recovered shape may
then be used to track 3-D motions in dynamic X-ray sequences to obtain
kinematic information.

Index Terms— orthopedics, X-ray imaging, multi-view stereo recon-
struction, active contours, 3-D level-set methods

I. I NTRODUCTION

I MPROVEMENTS in sanitation, nutrition, and treatment of in-
fectious disease have resulted in a significant increase in life

expectancy. However, with an aging population comes degenerative
disease such as osteoarthritis, the deterioration of joints such as
the knees and hips. In treating osteoarthritis, the final resort is
arthroplasty, the implantation of artificial prostheses. Since 1994–
1995, the number of hip and knee replacements has had a ten-year
increase of 94% in Australia, 87% in Canada, and similar increases
in other countries such as New Zealand, Sweden, and the United
States of America [1], [2]. In these countries, the crude rate for knee
replacement is around 100 per 100 000 individuals [2].

Medical imaging plays two roles in arthroplasty. The first is
in performing the surgery, where image guidance and automation
are becoming routine [3]. The second is examination after surgery.
During the life of the prosthesis, it is of clinical interestto char-
acterize kinematics and prosthetic positioning through non-invasive
examination of the joint [4]. We address the second, post-surgical
application in this correspondence, as it continues to become more
important.
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Fig. 1. X-ray images from rotating sensor of knee with prosthesis.

X-ray imaging is the modality of choice when examining bones
and the skeletal structurein situ. With the ultimate task being to
understand the forces at work in the joint, we would like to determine
the three-dimensional (3-D) placement and movement of boththe
bones and prosthesis. This may be decomposed into a static phase of
determining 3-D shape and a dynamic phase of tracking under the
assumption of rigid body or nearly rigid body motion.

For the static phase, one possibility would be X-ray computed
tomography (CT), if not for the high radiation dosage and cost in-
curred, and the streaking artifacts that arise in the presence of foreign
metal objects when reconstructing CT volumes using conventional
image formation techniques [5]. Thus, for the static phase,we turn
to reconstruction from two-dimensional (2-D) X-ray imagesacquired
using a rotating sensor [6], [7]. A few images from such a dataset are
shown in Fig. 1 for a knee joint with prosthesis made up of a tibial
plate with stem and a curved femoral component. Such an approach
involves a small amount of radiation as well as reasonable cost if the
number of views is optimized.

For the dynamic phase, available data include movie sequences
of 2-D X-ray images from a single viewpoint taken while the joint
is used; some frames from a sequence of the knee are shown in
Fig. 2. Using the 3-D shape recovered from the static phase, the
remaining problem is 2-D/3-D registration and tracking, which has
been addressed in the literature, e.g. [4], [8]–[10].

The task consists of recovering an articulated deformationof the
prosthesis model such that in the image, the projection of the 3-
D model coincides with or corresponds to prosthesis-like intensity
regions. The model is to be deformed according to a parametric affine
transformation. The definition of the cost function can be done either
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Fig. 2. Movie sequence of flexing knee joint.

through boundary-based techniques (minimize the image gradient
along the projection of the surface silhouette), segmentation-driven
approaches (the interior silhouette region should consistof prosthesis-
like image features), or an analysis by synthesis approach (given the
viewpoint and the relative position of the sensor, generatea view and
try to minimize the error between the image and the observation).

Furthermore, we can relate the two prosthesis components ofthe
3-D model assuming a fixed joint angle, and look for a constrained
articulation-like rotation which will provide an image projection that
is prosthesis-like in terms of visual characteristics for both compo-
nents. This is a common problem in computer vision (articulated
tracking), tractable in our case given that the estimation of parametric
deformations is an over-constrained problem.

Our focus in this correspondence is on the static phase. 3-D
shape reconstruction of bones from CT volumes is well-studied,
but the problem using a small number of 2-D X-ray images from
different viewpoints has not received as much attention. The problem
of 3-D shape estimation from a set of 2-D images has received
attention in the computer vision community in the context ofoptical
imaging for objects such as statuettes and is given the name multi-
view stereo reconstruction, see [11] and references therein. However,
assumptions relating to radiance, occlusion, etc. are included that do
not necessarily apply when dealing with X-ray imaging. The problem
using X-ray images in non-destructive testing for industrial object
quality control is considered in [12].

For 3-D bone reconstruction from a few 2-D X-rays, methods exist
that rely on fairly accurate prior shape models or atlases, e.g. [13]–
[15] and references therein. Methods such as [16], [17] needno
prior information, but perform 2-D segmentation on individual images
separately and then interpolate to form a 3-D surface. In [18], the
same approach is applied to determine the 3-D shape of the cement
used to attach prostheses to bone. In this work, first reported in [19],
we develop an active contours formulation for the 3-D shape recovery
of bones and prostheses. We take the specifics of the application and
imaging modality into account, do not rely on a prior 3-D shape
model, and segment in 3-D from the outset rather than stitching
together 2-D segmentations.

II. M ULTI -V IEW STEREO FROMX-RAYS

To recover the 3-D shape of bones and prostheses from X-rays,
existing multi-view stereo reconstruction methods cannotjust be
taken off the shelf. In this section, specific features present in X-
ray imaging are discussed, followed by the proposal of a method
matched to the modality.

A. X-Ray Modality

Many characteristics differentiate X-ray imaging from optical
imaging (upon which multi-view stereo reconstruction techniques
are based). If one bone is in front of another bone, there would
be occlusion in an optical image, but the X-ray modality shows
both bones with pixel intensities darkened in the overlap region. The
effect is neither transparency nor shadowing, but can be interpreted

as something similar. Another related feature is that the boundaries
of the bones are darker than the centers. This does not changeimage
to image, so a point on the surface of a bone may appear dark in
one image and light in an image from a different viewpoint. Multi-
view stereo techniques based on local correspondence rely on the
assumption that a point on the surface appears the same in allof the
images in which it is visible and that radiance is locally computable
[20], [21], thus not being applicable to 3-D reconstructionof bone
from X-rays.

Prostheses appear dark and exhibit no texture; consequently, local
correspondence is ill-posed for reconstructing the shape of prostheses.
Prostheses are homogeneous in image intensity, but bones are not.
The background is full of clutter and image intensities inside and
outside the bone may be very similar. Inhomogeneity in bones,
background clutter, and lack of occlusion are barriers to the direct
application of region-based variational methods such as [22] to X-ray
imaging.

‘Shape from silhouette,’ a method for multi-view stereo reconstruc-
tion that takes the intersection of cylinders or cones projected back
from silhouettes of the object in each image as its shape estimate,
is well matched to prostheses and can be applied readily, butit does
not take prior information into account [23]. Edges stand out in X-
ray images and have not been exploited much in previous work
on multi-view reconstruction. The edges of bones and prostheses,
however, are not the only edges in X-rays; overlapping soft tissue
also induces strong edges. Nevertheless, the use of edge features is
an avenue that we pursue for this challenging application, combined
with some region-based features and an approach inspired byshape
from silhouette.

B. Multi-View Geodesic Active Regions

An approach for 3-D shape reconstruction motivated specifically by
the appearance of bones and prostheses in X-rays is now presented.
Our variational method extends the 2-D geodesic active regions
(GAR) functional to three dimensions by projecting cylinders or
cones in a manner similar to shape from silhouette. Optimization
is by surface evolution implemented using 3-D level sets. Wefocus
on the knee joint, but the same methods may be applied to other
joints that have had arthroplasty.

A set of 2-D images{I1, I2, . . . , IN} with corresponding 2-D
domainsΩ1, Ω2, . . . , ΩN is given in the problem as input. Each
Ωi has local image coordinates(ui, vi). The goal is to determine the
3-D solid enclosed by a surfaceS that is depicted in the set of images.
The surfaceS is in R

3 with global Cartesian coordinates(x, y, z),
or alternatively global cylindrical coordinates(r, θ, z). Within a 2-D
planeΩi, a curveCi is parameterized by a variablesi ∈ [0, 1] and
has a line elementdsi.

The relationship between the global coordinates(x, y, z) and the
local image coordinates(ui, vi) is assumed known or known approx-
imately, i.e. the views or cameras are calibrated. These relationships
are given by projectionsπi : R

3 → Ωi. The mappings are not
invertible in general because many different points inR

3 project
onto the same point inΩi. If the images are acquired using a
rotating sensor with viewpoints in a ring outside the leg as in Fig. 1,
then eachΩi plane is parallel to the globalz-axis and forms an
angleθi to the x-z plane. In perspective projection,πi is such that
ui = (x cos θi+y sin θi)/wi andvi = z/wi, wherewi is the relative
perpendicular depth from the image planeΩi. In parallel projection,
ui = x cos θi + y sin θi andvi = z.

Before extending GAR to 3-D, the variational formulation isfirst
reviewed in 2-D as the problem of image segmentation into two
regionsR and Rc. The GAR functional is the convex combination
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of two terms, the geodesic active contours (GAC) functionaland a
region-based functional:EGAR (C) = αEGAC (C) + (1 − α)ER (C)
[24]. The GAC functional has minima where the curveC falls along
strong edges [25]:

EGAC (C) =

I

C

g (C(s)) ds, g(I) =
1

1 + |∇I |p
,

with p ∈ [1, 2]. To prevent local minima and fractally solutions,
oftentimes a curve length penalty is also included:

EGAC (C) =

I

C

g (C(s)) ds + c

I

C

ds.

The region-based portion assumes some prior knowledge regarding
the image intensities ofR and Rc. It is assumed that pixel values
are independent given the region label and have probabilitydistri-
bution functionpR(I(u, v)) or pRc(I(u, v)). The functional, a log-
likelihood ratio, is:

ER (C) =

−

ZZ

R

log (pR(I(u, v))) du dv −

ZZ

Rc

log (pRc(I(u, v))) du dv.

Starting from an initial curve, a curve evolution approach is taken
to flow towards a minimum of the functional. Using a level-set
implementation with the signed distance functionϕ(u, v; t), the level-
set update equation isϕt = F |∇ϕ|, with:

F (u, v) =

α

„

κ (g(I(u, v)) + c) −

fi

∇g(I(u, v)),
∇ϕ(u, v)

|∇ϕ(u, v)|

fl«

+ (1 − α) (− log (pR(I(u, v))) + log (pRc
(I(u, v)))) ,

whereκ is the curvature ofC, and〈·, ·〉 indicates the inner product.
Reverting to the multi-view problem, we would like to have one

surface in 3-D and evolve that surface based on information provided
by all of the images. All points on a line in 3-D map to a point
(ui, vi) in Ωi; our approach is to apply the GAR flow at(ui, vi) to
all points (x, y, z) that project to it. The overall force applied to a
point (x, y, z) is the superposition of forces from allN images.

We construct a multi-view geodesic active regions functional with
a GAC term and a region-based term. The GAC portion of the
functional is:

EGAC-MV (S) =
N

X

i=1

I

Ci

g (Ci(si)) dsi + c

I

Ci

dsi.

Making the assumption that the shapeS has a pixel intensity
distribution pR when seen in an image, and the background has a
distributionpRc , the region-based portion is:

ER-MV (S) = −
N

X

i=1

ZZ

πi(S)

log (pR(Ii(ui, vi))) duidvi

−

N
X

i=1

ZZ

Ωi−πi(S)

log (pRc(Ii(ui, vi))) duidvi.

Using a 3-D signed distance functionϕ(x, y, z; t) the 3-D level-set
update equation takes the formϕt = F |∇ϕ|, with:

F (x, y, z) =

α

N
X

i=1

κ (g(Ii(ui, vi)) + c) −

fi

∇ig(Ii(ui, vi)),
∇iϕ(x, y, z)

|∇iϕ(x, y, z)|

fl

+ (1 − α)
N

X

i=1

− log (pR(Ii(ui, vi))) + log (pRc
(Ii(ui, vi))) .

(a) (b)

(c) (d)

(e) (f)

Fig. 3. ForN = 16, (a)–(e) iterations of surface evolution in raster scan
order and (f) reconstructed shape of the prosthesis.

By ∇i, we mean a gradient with respect to theui and vi axes of
Ωi. The force has effect only in the direction normal toS in 3-
D. Explicitly, ∂ϕ(x,y,z)

∂ui

= ∂ϕ(x,y,z)
∂x

cos θi + ∂ϕ(x,y,z)
∂y

sin θi, and
∂ϕ(x,y,z)

∂vi

= ∂ϕ(x,y,z)
∂z

.
The surface evolution couples information provided by eachimage;

individual 2-D functionals for each image extend back in a cone or
cylinder of influence in 3-D. It is in this way that the approach relates
to shape from silhouette. Occlusions are not modeled for thereasons
discussed in Section II-A.

III. PRELIMINARY RESULTS

This section shows preliminary results of multi-view stereo re-
construction of prostheses and bones using the multi-view GAR
approach. Our data are X-ray image sets with different numbers of
images covering the same total angle; the images are as in Fig. 1.
As the sensor is sufficiently far from the knee joint, we use parallel
projection, a valid assumption in X-ray images [26].

A. Prosthesis Reconstruction

First, the problem of recovering the 3-D shape of the femoralcom-
ponent and tibial plate of the knee prosthesis is addressed,treating
soft tissue, bone, and air as background. No special initialization is
required; a cube that projects to cover about half of an imageis used.
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(a) (b)

Fig. 4. Comparison of (a) tibial plate segmentation from CT data and (b)
N = 16 solution overlaid.

TABLE I
SYMMETRIC VOLUME DIFFERENCE FOR DIFFERENT VALUES OFN .

Symmetric Vol. Diff. (cm3)
N ∆θ (rad) Femoral Tibial Total

2 1.52 162.7 49.0 211.7

4 0.76 185.0 35.2 220.2

8 0.38 100.4 31.2 131.6

10 0.304 100.3 28.5 128.8

16 0.19 97.4 30.0 127.4

20 0.152 50.5 29.5 80.0

40 0.076 51.5 26.5 78.0

Although not completely accurate, in specifying the probabilities pR

andpRc , we take the pixels to be i.i.d. Gaussian with meansµR for
the prosthesis andµRc for the background with common variance.
The parameters for the Gaussian, same for allN region terms, are set
prior to running the surface evolution based on pixel intensity values
for prosthesis and non-prosthesis in the X-ray image dataset.

Several iterations of the surface evolution are shown in Fig. 3 for
N = 16, starting from the initial cube. (The figure shows triangulated
surfaces obtained from the implicit level-set representation by the
marching cubes method.) A very small piece of the femur alongwith
part of the black boundary is apparent in Fig. 3, but these pieces are
disjoint from the prosthesis and easily discarded in Fig. 3f. In the
final 3-D reconstruction, the two pieces of the prosthesis have been
recovered.

In order to evaluate the segmentations, a comparison is madeto a
manual segmentation of the prostheses from a CT volume of thesame
patient acquired on a different day. The knee is bent differently in the
2-D X-ray dataset and the CT volume dataset, so the two components
of the prosthesis are examined separately. First a rigid registration
is performed between the multi-view GAR segmentation solution
and the CT segmentation, and then symmetric volume difference is
calculated. As seen in Fig. 4, the two are of the same general shape,
confirming the validity of the solution.

Table I gives the symmetric volume difference results for different
values ofN . Some of the error is due to the hollowness of the stem of
the tibial component and concavities in the femoral component that
are not visible in the 2-D images used. With more images, the general
trend is for performance to improve. The benefit of an increase in the
number of views is more significant when the shape to be recovered
is not rotationally symmetric. Performance on the tibial plate, the
simpler and more rotationally symmetric shape, improves from N =
2 to N = 8 but then saturates. Performance on the more complicated
femoral component continues to improve fromN = 4 to N = 20.
The decrease in performance fromN = 2 to N = 4 is not significant
as both solutions are poor.

One way to look at the model selection problem of choosingN
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Fig. 5. Approximate Akaike information criterion as a function of the number
of views N .

(a) (b)

Fig. 6. Reconstructed shape forN = 16 of the (a) tibia and fibula, and (b)
femur.

is through criteria such as the Akaike information criterion (AIC)
[27], which trade the complexity of a model and its goodness of fit.
The AIC can be approximated by the sum of the symmetric volume
difference and2N , assuming errors are independent and distributed
according to a generalized Gaussian distribution with small shape
parameter. Approximate AIC values are plotted in Fig. 5;N = 20
has the smallest AIC. For our application, the criterion is more
complicated because certain errors are worse than others and the
cost and radiation dosage associated withN must also be taken into
account; the quantification of these factors is a nontrivialtask.

B. Bone Reconstruction

The pixel intensity in X-ray images of bones is not homogeneous
throughout the bone, but follows a predictable pattern. Theboundary
is dark and the shading gets lighter as the distance away fromthe
boundary increases. In other words, pixel intensity valuesgenerally
increase as a function of signed distance.

When reconstructing the 3-D shape of bones, we setpR to account
for this phenomenon. We once again takepR to be Gaussian and
independent among different pixels, but not identically distributed.
We put in a spatially varying meanµR(ϕi) that is a function of
signed distance.

The signed distance functionϕ(x, y, z) of the surface evolution
is in 3-D, but we need distances in theΩi domains. Thus, the 3-D
signed distance is projected down to the planeΩi asϕi(x, y, z) for
eachi. In this work, µR(ϕi) is a simple parameterized function of
the form µR(ϕi) = η1 − η2e

−(ϕi+η3)2 with parameters set to fit
pixel intensity values in one manually-segmented 2-D X-ray.

We obtain 3-D shapes such as those in Fig. 6, treating the boneand
prosthesis as the object of interest and everything else as background.
Fig. 6a shows the tibia and fibula, whereas Fig. 6b shows the femur.
The circular fields of view in the images leave an artifact along
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the boundary as part of the surface. The tibia and fibula cannot be
distinguished in X-rays from certain angles. Consequently, they are
not completely separated in Fig. 6a.

The recovered shapes are qualitatively similar to the shapes seen
in the CT data. The solutions for bones are quantitatively worse than
the solutions for prostheses alone, which were given in Section III-A.
It is difficult to give precise numerical symmetric volume difference
results here due to the boundary artifacts in the solutions.The general
trend here is also improved performance with increasedN .

The main sources of error in bone reconstruction are interference
from soft tissue and the lack of consistency in bone appearance
from image to image. Obtaining the shape of the bones is more
difficult than obtaining the shape of the prostheses. Qualitative and
quantitative comparisons between solution shapes and the CT volume
suggest that there is reason to be optimistic about the proposed
approach but that there is also much room for improvement.

IV. CONCLUSION

Our main objective in this correspondence has been to inform
the medical imaging community of an emerging and clinically
important problem. Even with a fairly simplistic active contours for-
mulation, we have obtained promising preliminary results.However,
the comparison to CT segmentation indicates that there is much
room for improvement. Reconstructing the 3-D shape of prostheses
and even more so of bones from multiple X-ray images is not
straightforward. This is caused by four factors: radiance is not locally
computable; prostheses are textureless; bones are inhomogeneous;
and the background is cluttered. In spite of these factors, however, we
feel that better results can be obtained. Improvements may be made
by including separate partitions for three classes: prosthesis, bone,
and background, via multi-phase segmentation, i.e. segmentation with
more than two categories. Enhancements may also be made by
improving pixel intensity modelspR and pRc via learning from
data [28] or using generative models based on X-ray absorption,
by including shape priors in the context of level set representations
[28], [29], or along with more efficient optimization techniques from
discrete optimization [30]. Instead of using the 2-D GAR functional
as a foundation for the 3-D problem, an approach that jointly
optimizes pixel intensity could also be used [31]. The development
of a full system including both static and dynamic phases integrated
with the inference of velocities, accelerations, and forces is certainly
within grasp.
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