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Abstract— Arthroplasty, the implantation of prostheses into joints, is
a surgical procedure that is affecting a larger and larger number of
patients over time. As a result, it is increasingly importart to develop
imaging techniques to non-invasively examine joints with pstheses after
surgery, both statically and dynamically in 3-D. The static problem is
considered here, with the aim to create a 3-D shape model of ¢hbone as
well as the prosthesis using a set of 2-D X-rays from variousiswpoints.
The most important challenge to be addressed is the lack of xéure, the
most common feature to recover shape from multiple views. Inorder
to overcome this limitation, we reformulate the problem ushg a novel
multi-view segmentation approach where an active contour8-D surface
evolution with level-set implementation is used to recovethe shape of
bones and prostheses in post-operative joints. The recovedt shape may
then be used to track 3-D motions in dynamic X-ray sequence®tobtain
kinematic information.

Index Terms— orthopedics, X-ray imaging, multi-view stereo recon-
struction, active contours, 3-D level-set methods

I. INTRODUCTION

MPROVEMENTS in sanitation, nutrition, and treatment of in-
fectious disease have resulted in a significant increasefen |
expectancy. However, with an aging population comes degéne
disease such as osteoarthritis, the deterioration of gosuich as
the knees and hips. In treating osteoarthritis, the finabrtes
arthroplasty, the implantation of artificial prosthesesic8 1994—
1995, the number of hip and knee replacements has had a aen-y@9. 1. X-ray images from rotating sensor of knee with pres.
increase of 94% in Australia, 87% in Canada, and similareiases
in other countries such as New Zealand, Sweden, and the dJnite
States of America [1], [2]. In these countries, the crude fat knee X-ray imaging is the modality of choice when examining bones
replacement is around 100 per 100 000 individuals [2]. and the skeletal structunam situ. With the ultimate task being to
Medical imaging plays two roles in arthroplasty. The first isinderstand the forces at work in the joint, we would like ttedmine
in performing the surgery, where image guidance and auiomatthe three-dimensional (3-D) placement and movement of itagh
are becoming routine [3]. The second is examination aftegesy. bones and prosthesis. This may be decomposed into a stase jif
During the life of the prosthesis, it is of clinical interetst char- determining 3-D shape and a dynamic phase of tracking urder t
acterize kinematics and prosthetic positioning through-imwasive assumption of rigid body or nearly rigid body motion.
examination of the joint [4]. We address the second, pogfisal For the static phase, one possibility would be X-ray comgpute
application in this correspondence, as it continues to inecmore tomography (CT), if not for the high radiation dosage andt dos
important. curred, and the streaking artifacts that arise in the presehforeign
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as something similar. Another related feature is that thenbaries
of the bones are darker than the centers. This does not claiage
to image, so a point on the surface of a bone may appear dark in
one image and light in an image from a different viewpoint.[fiAu
view stereo techniques based on local correspondence rethe
assumption that a point on the surface appears the sameahtai
images in which it is visible and that radiance is locally putable
[20], [21], thus not being applicable to 3-D reconstructiainbone
from X-rays.

Prostheses appear dark and exhibit no texture; conseguleatl

through boundary-based techniques (minimize the imageigra correspondence is ill-posed for reconstructing the sh&peostheses.
along the projection of the surface silhouette), segmiemtatriven Prostheses are homogeneous in image intensity, but boaesoar
approaches (the interior silhouette region should con$istosthesis- The background is full of clutter and image intensities desiand
like image features), or an analysis by synthesis appragighr(the outside the bone may be very similar. Inhomogeneity in bones
viewpoint and the relative position of the sensor, genesateew and background clutter, and lack of occlusion are barriers ® direct
try to minimize the error between the image and the obsemjati ~ application of region-based variational methods such 2ktfX-ray
Furthermore, we can relate the two prosthesis componertiseof imaging.
3-D model assuming a fixed joint angle, and look for a conséi  ‘Shape from silhouette,” a method for multi-view stereoamstruc-
articulation-like rotation which will provide an image pection that tion that takes the intersection of cylinders or cones ptejg back
is prosthesis-like in terms of visual characteristics fothbcompo- from silhouettes of the object in each image as its shapenati
nents. This is a common problem in computer vision (artieala is well matched to prostheses and can be applied readilyf boes
tracking), tractable in our case given that the estimatigpapametric not take prior information into account [23]. Edges stand ioux-
deformations is an over-constrained problem. ray images and have not been exploited much in previous work
Our focus in this correspondence is on the static phase. 3dD multi-view reconstruction. The edges of bones and pesets,
shape reconstruction of bones from CT volumes is well-suidi however, are not the only edges in X-rays; overlapping sefiue
but the problem using a small number of 2-D X-ray images fromlso induces strong edges. Nevertheless, the use of edgeefess
different viewpoints has not received as much attentiore fitoblem an avenue that we pursue for this challenging applicatiomkgned
of 3-D shape estimation from a set of 2-D images has receividth some region-based features and an approach inspirethdgye
attention in the computer vision community in the contexbpfical from silhouette.
imaging for objects such as statuettes and is given the nauf m
view stereo reconstruction, see [11] and references thdrgwever,
assumptions relating to radiance, occlusion, etc. areidied that do
not necessarily apply when dealing with X-ray imaging. Thebem An approach for 3-D shape reconstruction motivated spadlifiby
using X-ray images in non-destructive testing for indastobject the appearance of bones and prostheses in X-rays is nownpedse
quality control is considered in [12]. Our variational method extends the 2-D geodesic activeorsgi
For 3-D bone reconstruction from a few 2-D X-rays, methodstex (GAR) functional to three dimensions by projecting cylinsler
that rely on fairly accurate prior shape models or atlasgs,[#3]- COnes in a manner similar to shape from silhouette. Optitioiza
[15] and references therein. Methods such as [16], [17] need is by surface evolution implemented using 3-D level sets.fodeis
prior information, but perform 2-D segmentation on indisadlimages ©ON the knee joint, but the same methods may be applied to other
separately and then interpolate to form a 3-D surface. I, [ Joints that have had arthroplasty.
same approach is applied to determine the 3-D shape of thentem A set of 2-D images{/1,I>,...,In} with corresponding 2-D
used to attach prostheses to bone. In this work, first repant§l9], domains€, Qs, ..., Qx is given in the problem as input. Each
we develop an active contours formulation for the 3-D shagevery (2 has local image coordinat¢s., v;). The goal is to determine the
of bones and prostheses. We take the specifics of the appticatd 3-D solid enclosed by a surfacéthat is depicted in the set of images.
imaging modality into account, do not rely on a prior 3-D shapThe surfacesS is in R* with global Cartesian coordinatds, y, 2),
model, and segment in 3-D from the outset rather than stigchiOF alternatively global cylindrical coordinatés, 6, z). Within a 2-D

Fig. 2. Movie sequence of flexing knee joint.

B. Multi-View Geodesic Active Regions

together 2-D segmentations. plane(;, a curveC; is parameterized by a variabke € [0,1] and
has a line elements;.
II. MULTI-VIEW STEREO FROMX-RAYS The relationship between the global coordinatesy, ) and the

local image coordinate@:;, v;) is assumed known or known approx-
To recover the 3-D shape of bones and prostheses from X-rays g . > Vi) . /n app
ately, i.e. the views or cameras are calibrated. Thesgioakhips

existing multi-view stereo reconstruction methods canjust be are diven by proiectionst: : R® — Q.. The mappinas are not
taken off the shelf. In this section, specific features prese X- . g oy proj . o PRINg -
. . . invertible in general because many different pointsRh project
ray imaging are discussed, followed by the proposal of a ateth o ; . .
. onto the same point in2;. If the images are acquired using a
matched to the modality. . L . . . N
rotating sensor with viewpoints in a ring outside the legrafig. 1,
. then each); plane is parallel to the globat-axis and forms an
A. X-Ray Modality angle#; to the z-z plane. In perspective projection; is such that
Many characteristics differentiate X-ray imaging from iopt u; = (x cos6;+ysin6;)/w; andv; = z/w;, wherew; is the relative
imaging (upon which multi-view stereo reconstruction tdgoes perpendicular depth from the image plafle In parallel projection,
are based). If one bone is in front of another bone, there dvoul; = z cos8; + ysinf; andv; = z.
be occlusion in an optical image, but the X-ray modality sbow Before extending GAR to 3-D, the variational formulationfiist
both bones with pixel intensities darkened in the overlapore The reviewed in 2-D as the problem of image segmentation into two
effect is neither transparency nor shadowing, but can @préted regionsR and R°. The GAR functional is the convex combination
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of two terms, the geodesic active contours (GAC) functicaad a
region-based functionalEgar (C) = aEcac (C) + (1 — a)Er (C)
[24]. The GAC functional has minima where the cuefalls along
strong edges [25]:

B (©) = f g€ ds, o) = 1o

with p € [1,2]. To prevent local minima and fractally solutions,
oftentimes a curve length penalty is also included:

Eenc (C) = %Cg(C(s))ds—i—c?{Cds.

The region-based portion assumes some prior knowledgediaga
the image intensities o and R°. It is assumed that pixel values
are independent given the region label and have probalullgtri-
bution functionpr (I (u,v)) or pre(I(u,v)). The functional, a log-
likelihood ratio, is:

Er(C) =
- //log (pr(I(u,v))) dudv — //10g (pre(I(u,v))) dudv.
R ke

Starting from an initial curve, a curve evolution approashaken
to flow towards a minimum of the functional. Using a level-set (© (d)
implementation with the signed distance functiofu, v; t), the level-
set update equation is; = F|V|, with:

F(u,v) =

« (f-i (9(I(u,v)) +¢) — <V9([(“’U))’ %>>

+ (1 = ) (=log (pr(I(u,v))) +log (pr. (I(u,v)))),

wherex is the curvature of”, and(, -) indicates the inner product.
Reverting to the multi-view problem, we would like to haveeon
surface in 3-D and evolve that surface based on informatiowiged
by all of the images. All points on a line in 3-D map to a point (e) 0]
(ui, v;) In Q4; our approach is to apply the GAR flow &it;,v;) to
all points (z,y, 2) that project to it. The overall force applied to aFig. 3. ForN = 16, (a)-(e) iterations of surface evolution in raster scan
point (z,y, z) is the superposition of forces from aN images. order and (f) reconstructed shape of the prosthesis.
We construct a multi-view geodesic active regions functiomith
a GAC term and a region-based term. The GAC portion of t

rEy Vi, we mean a gradient with respect to the and v; axes of

functional is: . S )
Q;. The force has effect only in the direction normal $oin 3-
D. Explicitly, B‘P(* v2) = 9e(2w:2) ooq, + 9e(2.9:2) ¢in g, and
Ecac- ) ds; ds;. du; o ‘ s “
GACMV 27{ 5 +C% 5 Op(z,y,2) __ Bsa(LUZ) Y

Making the assumption that the shage has a pixel intensity 'I_'h_é surface evolu_tlon couples infqrmation provided by_e'amge;
distribution pz when seen in an image, and the background hasigividual 2-D functionals for each image extend back in aeor

distributionpz, the region-based portion is: cylinder of influence in 3-D. Itis in this way that the apprbaelates
to shape from silhouette. Occlusions are not modeled forehsons
discussed in Section II-A.
Erwv (S Z log (pr(Li(ui, vi))) duidv;
7%(5) [1l. PRELIMINARY RESULTS
_ Z o (s, v:))) dusdos This section shows preliminary results of multi-view stene-
. g (pr B e construction of prostheses and bones using the multi-vieWR G
= 2 —m;(S)

approach. Our data are X-ray image sets with different nusnbé
Using a 3-D signed distance functiasn(z,y, z;t) the 3-D level-set images covering the same total angle; the images are as inLFig
update equation takes the form = F|V¢|, with: As the sensor is sufficiently far from the knee joint, we useafbal

projection, a valid assumption in X-ray images [26].
F(z,y,2) =

o

M=

Vip(x,y, z A. Prosthesis Reconstruction
o u,0) 4 0) = ( Veah s, 0)), A2

pt Vip(z,y, 2)]| First, the problem of recovering the 3-D shape of the femeoat-

N ponent and tibial plate of the knee prosthesis is addredseatjng
+(1 -« Z log (pr(Li(ui,vi))) + log (pr. (Ii(ui,vi))) - soft tissue, bone, and air as background. No special iiaiitidn is
=1

required; a cube that projects to cover about half of an inigsed.
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(b)

Fig. 4. Comparison of (a) tibial plate segmentation from Gifadand (b)
N = 16 solution overlaid.

TABLE |
SYMMETRIC VOLUME DIFFERENCE FOR DIFFERENT VALUES ORV.

Symmetric Vol. Diff. (cn¥)
N | Ag (rad) | Femoral | Tibial Total
2 1.52 162.7 49.0 211.7
4 0.76 185.0 35.2 220.2
8 0.38 100.4 31.2 131.6
10 0.304 100.3 28.5 128.8
16 0.19 97.4 30.0 127.4
20 0.152 50.5 29.5 80.0
40 0.076 51.5 26.5 78.0

Although not completely accurate, in specifying the prolitds pr
andpgc, we take the pixels to be i.i.d. Gaussian with meansfor

the prosthesis ang . for the background with common variance.
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Fig. 5. Approximate Akaike information criterion as a fuoet of the number
of views N.

Fig. 6.
femur.

Reconstructed shape fof = 16 of the (a) tibia and fibula, and (b)

The parameters for the Gaussian, same foNatlegion terms, are set js through criteria such as the Akaike information critarigAIC)

prior to running the surface evolution based on pixel intgngalues
for prosthesis and non-prosthesis in the X-ray image datase

Several iterations of the surface evolution are shown in Bifpr
N = 16, starting from the initial cube. (The figure shows triangeth
surfaces obtained from the implicit level-set represémaby the
marching cubes method.) A very small piece of the femur alwitly
part of the black boundary is apparent in Fig. 3, but theseegiare
disjoint from the prosthesis and easily discarded in Fig.I8fthe
final 3-D reconstruction, the two pieces of the prosthesiehzeen
recovered.

In order to evaluate the segmentations, a comparison is teade
manual segmentation of the prostheses from a CT volume cfaime
patient acquired on a different day. The knee is bent diffidyen the
2-D X-ray dataset and the CT volume dataset, so the two coemen
of the prosthesis are examined separately. First a rigicstragion
is performed between the multi-view GAR segmentation $mtut
and the CT segmentation, and then symmetric volume diféerés
calculated. As seen in Fig. 4, the two are of the same geneaples
confirming the validity of the solution.

Table | gives the symmetric volume difference results fdiedént

[27], which trade the complexity of a model and its goodnesit.o

The AIC can be approximated by the sum of the symmetric volume
difference and2NV, assuming errors are independent and distributed

according to a generalized Gaussian distribution with brsladpe
parameter. Approximate AIC values are plotted in Fig.\6;= 20
has the smallest AIC. For our application, the criterion isren
complicated because certain errors are worse than otherghen
cost and radiation dosage associated vittmust also be taken into
account; the quantification of these factors is a nontritaak.

B. Bone Reconstruction

The pixel intensity in X-ray images of bones is not homogeiseo
throughout the bone, but follows a predictable pattern. Gtnendary
is dark and the shading gets lighter as the distance away frem
boundary increases. In other words, pixel intensity valgeserally
increase as a function of signed distance.

When reconstructing the 3-D shape of bones, wegetb account
for this phenomenon. We once again take to be Gaussian and
independent among different pixels, but not identicallgtidbuted.

values of N. Some of the error is due to the hollowness of the stem d¥e put in a spatially varying meapr(y;) that is a function of

the tibial component and concavities in the femoral compbieat
are not visible in the 2-D images used. With more images, émegl
trend is for performance to improve. The benefit of an inaeaghe

signed distance.
The signed distance functiop(z,y, z) of the surface evolution
is in 3-D, but we need distances in thg domains. Thus, the 3-D

number of views is more significant when the shape to be reedve signed distance is projected down to the pl&heas p;(z,y, z) for

is not rotationally symmetric. Performance on the tibisdtp| the
simpler and more rotationally symmetric shape, improvemfiy =

eachi. In this work, ur(y;) is a simple parameterized function of
2 . .
the form pr(pi) = m — nze”®i+)° with parameters set to fit

2 to N = 8 but then saturates. Performance on the more complicateitel intensity values in one manually-segmented 2-D X-ray

femoral component continues to improve frafh= 4 to N = 20.
The decrease in performance fravh= 2 to N = 4 is not significant
as both solutions are poor.

One way to look at the model selection problem of choosig

We obtain 3-D shapes such as those in Fig. 6, treating the dwhe
prosthesis as the object of interest and everything elsaagbound.
Fig. 6a shows the tibia and fibula, whereas Fig. 6b shows tineirfe
The circular fields of view in the images leave an artifactnglo
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the boundary as part of the surface. The tibia and fibula d¢abeo

distinguished in X-rays from certain angles. Consequettitigy are
not completely separated in Fig. 6a.

The recovered shapes are qualitatively similar to the shapen
in the CT data. The solutions for bones are quantitativelysadhan
the solutions for prostheses alone, which were given ini@etti-A.
It is difficult to give precise numerical symmetric volumdfeience
results here due to the boundary artifacts in the solutibhe.general
trend here is also improved performance with increa¥ed

The main sources of error in bone reconstruction are intemfee
from soft tissue and the lack of consistency in bone appearan
from image to image. Obtaining the shape of the bones is mdre]
difficult than obtaining the shape of the prostheses. atalé and
quantitative comparisons between solution shapes andth®l@me
suggest that there is reason to be optimistic about the pegpo
approach but that there is also much room for improvement.

Our main objective in this correspondence has been to infor
the medical imaging community of an emerging and clinically

IV. CONCLUSION

important problem. Even with a fairly simplistic active ¢ouars for-
mulation, we have obtained promising preliminary resuttswever,
the comparison to CT segmentation indicates that there ishmu
room for improvement. Reconstructing the 3-D shape of pessis [17]
and even more so of bones from multiple X-ray images is not
straightforward. This is caused by four factors: radiarsceadt locally
computable; prostheses are textureless; bones are inleomogs;
and the background is cluttered. In spite of these factasgeher, we
feel that better results can be obtained. Improvements reapdde
by including separate partitions for three classes: pessth bone,
and background, via multi-phase segmentation, i.e. segtiem with
more than two categories. Enhancements may also be made[%gy}
improving pixel intensity model®r and pre via learning from

data [28] or using generative models based on X-ray absorpti

by including shape priors in the context of level set repneséons
[28], [29], or along with more efficient optimization teclypies from
discrete optimization [30]. Instead of using the 2-D GAR(dtional
as a foundation for the 3-D problem, an approach that jointly
optimizes pixel intensity could also be used [31]. The daepeient
of a full system including both static and dynamic phasesgrsted
with the inference of velocities, accelerations, and fensecertainly
within grasp.
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