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ABSTRACT

We investigate a recursive procedure for synthetic aperture imaging. We consider a concept in which a SAR
system persistently interrogates a scene, for example as it flies along or around that scene. In traditional SAR
imaging, the radar measurements are processed in blocks, by partitioning the data into a set of non-overlapping
or overlapping azimuth angles, then processing each block. We consider a recursive update approach, in which
the SAR image is continually updated, as a linear combination of a small number of previous images and a
term containing the current radar measurement. We investigate the crossrange sidelobes realized by such an
imaging approach. We show that a first-order autoregression of the image gives crossrange sidelobes similar to
a rectangular azimuth window, while a third-order autoregression gives sidelobes comparable to those obtained
from widely-used windows in block-processing image formation. The computational and memory requirements
of the recursive imaging approach are modest—on the order of M ·N2 where M is the recursion order (typically
≤ 3) and N2 is the image size. We compare images obtained from the recursive and block processing techniques,
both for a synthetic scene and for X-band SAR measurements from the Gotcha data set.

Keywords: synthetic aperture radar, SAR, recursive, SAR imaging, SAR video, convolution backprojection
imaging

1. INTRODUCTION

Synthetic aperture radar (SAR) is widely used for surveillance and has application in many areas, including
land mapping, environmental monitoring, remote mapping, and surveillance. Traditional SAR imaging entails
a mobile radar system (mounted on an aircraft or satellite, for example) that interrogates a scene of interest.
Radar images are formed by processing the data over a contiguous set of collection samples. Algorithms such as
convolution backprojection (CBP) or the Polar Format Algorithm (PFA) are typically used.1,2

Recently there has been an increased interest in SAR systems that persistently sense a scene of interest. One
concept is that of an airborne platform that flies continuous circles around the center of a scene of interest, and
forms a continual set of SAR images of that scene. These images may be registered and viewed as a movie, a
process sometimes called “SAR video.”

This paper considers recursive processing techniques that can be used for SAR video applications. The
basic idea is to consider the image formation process as a recursive estimation problem. We consider applying
techniques in recursive estimation theory3–5 to recursive SAR imaging. In particular, we are interested in
recursive image formation of the form

Ik =
M∑

m=1

αmIk−m + g(rk)

where Ik denotes the image at time k, rk denotes the SAR data collected at time k, g(rk) is the image contribution
of the present radar measurement rk. The computational advantage of such an approach, compared to direct
computation of a block-processing CBP image formation sum, may be considerable.

Of particular interest in this paper is the image quality of a recursive image formation process, as measured
by the SAR impulse response to an ideal point scattering center. We study how selection of M and of the {αm}
parameters relate to the crossrange impulse response structure. We show that for low recursion orders (M ≤ 3),
image quality metrics are similar to block-processing approaches that employ several common apodization window
functions.
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Several authors have considered recursive approaches for SAR image formation.6–8 Much of this work is
focused on recursive computation of a single SAR image, rather than a tightly-coupled sequence such as a SAR
video. In addition, the explicit connection between the regression parameters in the recursive sum and the
crossrange impulse response behavior, as described here, appears to be new.

An outline of the paper is as follows. In Section 2 we present a recursive formulation of the convolution
backprojection algorithm. Section 3 considers image quality metrics for recursive SAR; in particular, we focus
on the impulse response (IPR) of the radar image and on practical sidelobe levels obtained from realistic scattering
objects in the scene. Section 4 considers example responses, both for a synthetic scene and for measured imagery
using the Gotcha data set.9

2. RECURSIVE SAR IMAGING
2.1 Backprojection Imaging
Assume a radar system interrogates a scene by transmitting a radar waveform at time τ from radar platform
location (x̃, ỹ, z̃) = (x̃τ , ỹτ , z̃τ ); τ is referred to as “slow time”. The waveform propagates across the surveilled
area and is reflected by elements in the scene. The return waveform rτ (t) is received and recorded. This process
is repeated continuously for a sequence of discrete slow times τj .

We are interested in forming an image on a surface. Without loss of generality, we assume the surface
is centered at (x, y, z) = (0, 0, 0) and furthermore that the imaging surface is predefined by the set of points
(xi, yi, zi). Typically, this set of points is an equally-spaced rectangular grid in the x and y dimensions, and
the surface is either a horizontal surface (zi ≡ 0) or a nearly-horizontal surface in which each zi is the ground
elevation of the corresponding (xi, yi) location—a so-called digital elevation map, or DEM.

Let f(x, y, z) be the ground reflectivity function, where we assume z = z(x, y) is the height of the ground at
location (x, y). Then the measured return waveform rτ (t) is given by:

rτ (t) =
∫

R3
f(x, y, z)

∫ ωmax

ωmin

ejω(t− 2
c ‖(x,y,z)−(x̃,ỹ,z̃)‖)dω dx dy dz (1)

where c is the propagation velocity and [ωmin, ωmax] is the frequency support of the range profile measurement.
A standard method to recover the reflectivity from measurements is the convolution backprojection (CBP)
method,1,2 in which the estimated reflectivity I(x, y) is

I(x, y) =
∫ 2π

0

∫ ωmax

ωmin

r̃φ(ω)ejω(x cos φ+y sin φ)|ω|HR(ω) dω dφ (2)

where HR(ω) is a range-domain apodization window (such as a Hamming or Taylor window) that has support
on [ωmin, ωmax] and r̃φ(ω) = F{rφ(t)} is the Fourier transform of the range profile rφ(t) measured over ω ∈
[ωmin, ωmax] at angle φ. Convolution backprojection is based on the idea that the one-dimensional received
signal is first filtered (the convolution step), then “smeared”, or backprojected along a second dimension. The
convolution step is the filtering operation r̃φ(ω) → r̃φ(ω) · |ω| ·HR(ω). For applications in which the bandwidth
is small compared to the center frequency, |ω| ≈ 1 and is sometimes omitted from the convolution step.

Assume that measurements are made at discrete azimuth angles φj for j = 1, 2, . . ., taken at times τj , and
that we wish to form an image Ik(x, y) at time k using the J most recent radar measurements . Let us define
r̂φ(t) = F−1{rφ(ω)|ω|HR(ω)}. Then

Ik(x, y) =
J−1∑

j=0

r̂φk−j
(t(x, y)) (3)

where t(x, y) = 2‖(x̃k−j , ỹk−j , z̃k−j)−(x, y, z(x, y))‖/c is the round-trip time delay between the radar transmitter
location at time τk−j and the image location (x, y, z(x, y)) on the reconstruction surface. If we consider the dis-
cretized SAR image as an N×N matrix I whose ith row and lth column corresponds to position (xi, yl, z(xi, yl)),
then we see that

Ik =
J−1∑

j=0

R(r̂φk−j
) (4)



where the N × N matrix R(r̂φk−j
) is formed from the vector r̂τk−j

by the smearing operation as defined in
equation (3). For simplicity of notation, we drop the (x, y) indexing on the image.

In practice, the CBP imaging operation is applied on a finite window of azimuth angles which is generally
(much) smaller than the 2π range suggested in equation (2). For these cases, the integral in (2) is approximated by
a weighted sum, where the weighting includes an azimuth apodization window w(φ). In particular, equation (4)
is modified to be

Ik =
J−1∑

j=0

wk−jRk−j (5)

where Rk−j = R(r̂φk−j
) and where wj is an angle-dependent apodization term representing samples of w(φ). For

example, {wj} may be a Hamming or Taylor window in the azimuth direction. In addition, wj can compensate
for nonuniform angular spacing between the τj measurements.10

Direct computation of equation (5) involves J(N2 + C(R)) multiplies and adds, where C(R) is the number
of computations needed to form Rj from the measured range profile. For the case of a general window, there
does not appear to be a simple recursive formula for Ik that results in significantly fewer computations than
direct computation of equation (5). If one wishes to compute Ik for every index k, direct computation using
equation (5) involves significant computation and memory.

2.2 Recursive Convolution Backprojection

For the case in which measurements are continually being made, we are interested in a recursive formulation
of the imaging process. In particular, we are interested in recursive computation of Ik in equation (5), or close
approximations.

For general weighting functions {wj} in equation (5), direct recursive computation of Ik may impose un-
acceptably high requirements on computation or memory, or both. For example, to implement a rectangular
weighting function

wR
j =

{
1, 0 ≤ j ≤ J − 1
0, otherwise

(6)

the recursive computation of the SAR image is given by

Ik = Ik−1 + Rk −Rk−J (7)

The above equation requires only 2N2 adds per update of an N ×N image; however, the memory requirement
is much higher, as one needs to store J Rj matrices, or to store J r̂τj vectors and reconstruct each Rj as
needed in (7). This imposes a significant cost in either computation or memory or both, especially if J is
large. Moreover, for many other commonly-used windows functions, the corresponding recursive update to (5)
involves significantly more computations and memory than (7), and may result in little or no computational
savings over direct computation. Thus, for applications in which one wishes to compute images at finely-spaced
time intervals such as for every k, exact recursions from block-processing CBP equations may be extremely
expensive computationally. In order to realize a recursive computation of the SAR image, we are thus motivated
to consider whether a recursive image formation method can be used, and if so, what the effective azimuth
apodization window of such an approach would be.

A computationally simple recursive imaging approach is to use a first-order recursion of the form

Ik = λIk−1 + Rk (8)

where λ is an exponential forgetting factor satisfying 0 < λ ≤ 1. The exponential forgetting recursion is often
used in recursive least squares estimation3–5 to update a covariance matrix estimate. The recursion can be shown
to result in the exponentially-weighted sum and corresponding exponential window function given by

Ik =
k∑

j=0

λjRk−j =⇒ wk−j = λj , j = 0, 1, . . . , (9)



Neither the exponential nor the rectangular window are commonly used for SAR image formation because
of the high crossrange sidelobes that result from the step discontinuity of the window. Instead, an apodizing
window which smoothly transitions from 0 to 1 to 0 for j = 1, . . . , J−1 is used. Commonly-used windows include
the Hamming, Taylor, or Kaiser-Bessel windows.11

Equation (8) can be seen as an autoregression (AR) of order 1, or AR(1) recursion. A straightforward
generalization is to consider an Mth order autoregressive recursion:

Ik =
M∑

m=1

αmIk−m + Rk (10)

The Mth order AR recursion requires MN2 memory locations to store the M previous images, and requires
MN2 multiplications per recursive step. In addition, the computations are well-matched for parallel or hardware
implementations because, except for the computation of Rk, the multiplies and adds are carried out identically
on each of the N2 image pixel values.

The choice of M and the AR coefficients {αm}M
m=1 determine the effective apodization window of the SAR

imaging process. The azimuth window is found from the inverse Z-transform of

1
AM (z−1)

=
1

1 + α1z−1 + · · ·+ αMz−M
(11)

Specifically, wj = Z−1
[

1
AM (z−1)

]
.

In particular, for M = 2, the AR coefficients may be chosen to satisfy

A2(z−1) = 1 + α1z
−1 + α2z

−2 =
(
1− λejµz−1

) (
1− λe−jµz−1

)
(12)

Here, the effective azimuth window is a damped sinusoid with damping factor λ and oscillation frequency µ.

wj = βλj sin(jµ), j = 0, 1, . . . (13)

where β is a constant that does not affect the window shape. Similarly, for M = 3, one obtains (with two
complex-conjugate poles)

A3(z−1) = 1 + α1z
−1 + α2z

−2 + α3z
−3 =

(
1− λejµz−1

) (
1− λe−jµz−1

) (
1− γz−1

)
(14)

3. IMAGE QUALITY ANALYSIS

In this section we consider the image quality using the first, second, and third order image formation recursions,
and compare with the image quality one obtains from a nonrecursive formulation with a traditional apodizing
window.

For SAR imaging, one of the primary methods for assessing image quality is to define metrics from the
impulse response (IPR) of the imaging operation. The IPR is the response to an ideal point scattering center at
location (x0, y0, z0), where usually z0 is chosen to be on the imaging surface. Two primary measures of image
quality are the mainlobe width and the sidelobe levels of the IPR.

To simplify the image quality analysis, we make two assumptions. First, we assume that the object being
imaged is in the far field of the interrogating radar. Further, we assume that the image surface can be approxi-
mated as planar in the local region surrounding an object. In this case, the “smearing” operation to obtain Rk

from r̂φk
is locally along straight lines, and CBP imaging can be equivalently computed using the Polar Format

Algorithm (PFA).1,2 The second assumption we make is that the apodizing function applied to the image for-
mation process is separable, or approximately separable, as a function of frequency and aspect. This is the case
when the azimuth extent of measurements used to form the SAR image is modest. For many radar systems, this
assumption holds true; for example, an X-band radar with center frequency of 10 GHz uses approximately 3◦ of



azimuth extent to form an image with 0.3m×0.3m resolution. We discuss this second assumption in more detail
below.

In PFA, the imaging operation can be considered as follows: the Fourier transforms r̃φ(ω) of measurements
rφ(t), Rφ(ω) are measurements along radial lines in a two-dimensional frequency space, or k-space. As the radar
system moves, the measurements form a discrete measurement grid with support on a toroidal segment of k-space.
The Polar Format Algorithm involves resampling these data to a rectilinear grid, applying a two-dimensional
apodizing window, and computing the inverse DFT, usually using a two-dimensional FFT algorithm.

When the azimuth extent of the toroidal support region is modest, then the apodizing window is either
approximately or exactly separable in the kx and ky directions. In this case, the mainlobe width and sidelobe
levels in the downrange direction are determined by the apodizing window HR(ω) in equation (2), while the
mainlobe width and sidelobe levels in the crossrange are dictated by the azimuth apodization window, {wj}
in equation (5). Since we are mainly interested in the effective crossrange apodization, we will focus on the
crossrange response below.

3.1 Azimuth Impulse Response Characteristics

We consider first the first-order AR recursion. The azimuth window for an exponential forgetting factor is then
given by

w(φk−j) = λju[j] (15)

which, for equally-spaced φk = k∆φ is a discrete-sample equivalent of, for continuous-valued φ

w(φ) = e−σφu(φ) (16)

where σ = − ln λ/(∆φ). The Fourier transform of this function is

F [w(φ)] = W (Φ) =
1

jΦ + σ
(17)

whose sidelobes (for large Φ) decrease on the order of (1/Φ). This is the same behavior as a rectangular pulse
wR(φ) whose Fourier transform is a sinc function. In fact, for any rectangular window of width J samples, where
J is sufficiently large, there is a corresponding value of λ given by

λ = 1− 2
J

(18)

whose effective crossrange mainlobe width and sidelobe response closely match those of the rectangular window.
Thus, if one wishes to emulate a block-processing CPB image formation using a rectangular window with J
azimuth measurements, one can use the first-order recursive recursion in (8) with λ = 1− 2/J as in (18).

Figure 1 shows a rectangular azimuth window and its corresponding exponential window, in both the azimuth
index domain and in the corresponding Fourier transform domain. This Fourier transform domain, Φ, corresponds
to the crossrange dimension in a reconstructed SAR image, and the functions shown represent the crossrange
slices of the two-dimensional IPR of the SAR imaging system under the assumptions stated previously. We see
that the response of the recursive window has similar mainlobe characteristics as the corresponding rectangular
window response. In the sidelobe region, the crossrange response matches the “envelope” of the corresponding
rectangular window sidelobe response, and has the same decay rate.

A similar analysis can be carried out for the second-order AR imaging recursion. In the bottom row of
Figure 1 we compare the Bartlett (triangular) window and its corresponding crossrange response to that of a
second-order AR window with µ and λ parameters in equation (12) chosen as:

µ =
π
3
2J

, λ = 1− 2
J

(19)

The second-order AR crossrange response has similar characteristics to the Bartlett window response because
a second-order recursion has a ramp-like initial response similar to that of a Bartlett window.



To realize recursive image formation algorithms whose effective azimuth apodization window closely emulates
those of commonly-used block-processing windows, a recursion of order M = 3 (or higher) is needed. A third-
order recursion yields an impulse response whose initial behavior mimics a quadratic; such a response has a
smooth first and second order derivative near zero. Figure 2 shows the effective window function, and its
corresponding azimuth impulse response function, for a third-order model whose coefficients are chosen to match
the behavior of a Hanning window, and one whose coefficients are chosen to match a Hamming window. The
window functions and crossrange impulse responses match well for the Hanning window, somewhat less well for
the Hamming window. A higher-order AR model could be chosen to realize a better match, but at the expense
of corresponding higher memory and computation requirements for each update.

For the windows shown in Figure 2, the recursion parameters can be selected to match a desired window.
We find that for both the Hanning and Hamming windows:

µ ≈ π
2
3J

, λ ≈ 1− 2.8
J

, γ ≈ 1− 3
J

(20)

(where µ, λ, and γ are defined in equation (14)) provides a close match of these block-processing windows to
an effective third-order recursive window. More generally, one can solve an optimization procedure to choose
the αm parameters that “best” approximate any given block-processing window, where “best” is in the sense of
minimizing some criterion such as a weighted `2 norm difference of the azimuth-domain coefficients or a weighted
L2 norm difference of their crossrange impulse response patterns.
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Figure 1. Azimuth windows (left) and their corresponding crossrange impulse response functions in dB (right). Top:
Rectangular and AR(1) exponential window. Bottom: Bartlett and AR(2) window.

We note that with slight modification, the recursive imaging methods can accommodate significant changes
in the effective azimuth window width used to form the images. As an example, Figure 3 shows three azimuth
apodization windows that result from different values of {α1, α2}. The number of computations are the same,
with the only change being the choice of the {αm} parameters used in equation (10).
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Figure 2. Azimuth windows (left) and their corresponding crossrange impulse response functions in dB (right) for third-
order recursive SAR windows whose {αm} parameters are chosen to emulate a Hanning window (top row) and Hamming
window (bottom row).

3.2 Sidelobe Levels for Non-Persistent Scattering Centers
While the IPR mainlobe width and sidelobe levels are useful metrics for image quality, they may not always
suggest the SAR image characteristics for practical scattering centers in the scene. The reason for this is that
the IPR mainlobe width gives the crossrange resolution for a persistent scattering center over the azimuth extent
of the imaging operator. In addition, the sidelobe levels seen in the IPR apply to an ideal point scatterer; that
is, a scattering center whose amplitude is constant across the azimuth extent of the imaging operator, and whose
phase is linear as a function of kx and ky. For scattering centers whose amplitude or phase do not match that
of an ideal point scattering center, the true image response is the convolution of the IPR with the scattering
center response function. In many cases, the sidelobe level of the convolution is (much) lower than that of the
IPR function itself.

To illustrate this point, consider a scattering center whose response amplitude varies with azimuth as a
Gaussian amplitude profile, as shown in Figure 4. Such a response might arise from an object with nonzero
length, such as a dihedral or side of a building.12 In this figure, we consider a scattering center with linear phase
but a Gaussian amplitude profile, and being imaged recursively with an imaging operator using an exponential
azimuth weighting function as in equation (9). Shown in the bottom row are crossrange response slices of the
two-dimensional SAR impulse response functions, taken along the downrange distance of the scattering center,
for four different SAR images corresponding to four azimuth apertures. The four azimuth apertures are shown
by the light-colored exponential windows in the top row. These four apertures can be considered as four time
snapshots of a time-updated SAR video. For comparison, the crossrange response function corresponding to the
exponential window is shown in the bottom row of plots as the light-colored line.

When the discontinuity of the exponential window in Figure 4 overlaps the large-amplitude region of the
scattering response, as shown in the second column of plots in the figure, the azimuth sidelobes are high.
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Figure 3. Three aperture windows corresponding to three sets of {α1, α2} parameter pairs in the second-order recursive
image formation. The selection {α1, α2} = (1.983,−0.983) gives a 3-degree window, {α1, α2} = (1.995,−0.995) gives a
15-degree window, and {α1, α2} = (1.998,−0.998) gives a 35-degree window.

However, when the exponential window is to the left of the scattering center (as in the first column), or when the
window includes most or all of the scattering center response, as in the right two columns, the sidelobes are much
lower, about 35 dB below the peak response in the example shown. In this latter region, the sidelobe response
is primarily dictated by the scattering object’s azimuth response, not by the apodization window. If the SAR
image were displayed as a video, one would expect high sidelobe ‘flashes’ to be limited to these short transient
events. For video SAR applications, such transient high-sidelobe events may be acceptable if they occur for a
relatively short transient time.
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Figure 4. For scattering centers with limited persistence, high sidelobes are seen only during the transient period in which
the window overlaps only part of the response (2nd from left). Shown are the azimuth amplitude of the scattering center
(top row, blue) and the exponential window corresponding to a recursive SAR image at four ‘current’ values of azimuth
(top, yellow). The bottom row shows the azimuth response of the scattering center (blue) at the range of the scattering
center, in dB. For comparison, the azimuth response of the exponential window is also shown (yellow).



For scattering centers with large azimuth persistence angles, such as tophats, trihedrals, and spheres, the
azimuth sidelobes are dominated by the azimuth IPR response of the SAR imaging operator; for these types of
scattering centers, one would expect a crossrange response similar to the responses given in Figures 1 and 2.

4. NUMERICAL RESULTS

In this section we present numerical results comparing traditional, nonrecursive SAR images with those obtained
using the recursive update equations. We consider first a synthetic SAR scene consisting of several canonical
scattering shapes, and then present results using the Gotcha public release dataset.9

4.1 Synthetic Scene

We first present results using synthetic SAR data of a scene containing several canonical scattering shapes. The
20m × 20m scene is shown in Figure 5. Six canonical scattering objects are in the scene, namely (from top to
bottom and left to right) a 2 meter dihedral, a tophat with 1 meter radius, two ideal point scatterers, a trihedral
with 2 meter edges, and an ellipsoid (elongated sphere) with major and minor radii of 2.5 meters and 1 meter,
respectively. The peak amplitudes of these scattering responses were (artifically) set to be equal so that all could
be clearly seen in the images.

We simulate a radar whose center frequency is 9.6 GHz and bandwidth is 640 MHz. The radar traverses
a circular path of radius 10km from scene center. Measurements are taken in equal azimuth increments, with
azimuth spacing of 1

120

◦. These are approximately the radar measurement parameters of the Gotcha data
presented in Section 4.2.

We form SAR images of the synthetic data in four ways. We form standard, block-processing SAR images
using a convolution backprojection algorithm with both a rectangular azimuth window and a Hamming azimuth
window. In both cases we use a 3◦ aperture, so J = 360. We also form two recursive images, using both the
first-order recursion with λ chosen using equation (18) and the third-order recursion with µ, λ, and γ chosen
using equation (20). These images can be considered as snapshots of SAR videos.

Figure 5 shows four SAR images for an azimuth centered at 45◦; here, the radar is located in the direction
of the top-right corner of the images. We see good agreement between the responses of the rectangular window
and the first-order recursive estimate; the rectangular window sidelobes are oscillatory, while the envelopes of
the recursively-formed images are smooth, but the crossrange sidelobes decay at the same rate. The downrange
responses are similar, because the same (Hamming) downrange apodization window HR(ω) was applied to the
measurements in all four cases. The third-order AR and Hamming-weighted images are also similar to each
other. The Hamming-weighted image shows slightly wider crossrange responses, and slightly lower sidelobes,
than the third-order AR image, which is consistent with the crossrange IPR slices shown in Figure 2.

4.2 Gotcha Data Set

In this section we present results of block-processing and recursive imaging using measured SAR data from the
Gotcha Public Release dataset.9 The Gotcha radar data has a center frequency of 9.6 GHz, a bandwidth of 640
MHz, and an azimuth measurement sampling in azimuth of approximately 1/120◦. For this data, the radar flies
a circular path with a radius of approximately 10 km from scene center, at a nominal elevation angle of 45◦.

Figure 6 shows two snapshot images from SAR videos of a parking lot containing several vehicles from the
Gotcha data set. Block-processing Hamming-weighted CBP images were formed using an azimuth extent of 3◦,
and recursive images using the AR(3) parameters as in equation (20) were generated. As can be seen, these
images are quite similar to each other.

As mentioned previously, the recursive imaging methods can accommodate significant changes in the effective
azimuth window width used to form the images simply by changing the {am} parameters used in the recursion.
To illustrate this, Figure 7 shows a snapshot of the third-order recursive Gotcha image sequence, where the
recursion coefficients were in this case chosen to give an effective azimuth window whose width is approximately
25◦. The computations are the same as those used to form Figure 6(b), with the only change being the choice
of the {αm} parameters used in equation (10).
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Figure 5. SAR images of a synthetic scene consisting of six canonical scattering shapes. The top two images are formed
using block-processing methods with a rectangular and Hamming azimuth window. The bottom two images are formed
recursively using a first-order and third-order recursion. The azimuth windows of all four methods are those in Figure 1
and 2. The image resolution is approximately 0.3m×0.3m.

5. CONCLUSIONS

We have presented an approach for recursively computing backprojection SAR imagery, using a low-order au-
toregression. After each radar measurement is obtained, the SAR image is updated as a linear combination of M
past values of the image and the current convolved and backprojected measurement. The number of multiplies
is on the order of MN2, where N2 is the number of image pixels. In addition, the storage requirement is approx-
imately (M + 1)N2 complex numbers. This recursive update involves significantly fewer computations than is
needed for block processing computations of successive SAR images, and is therefore well-suited for applications
in which composite videos of successive SAR images is desired.

We have studied the effective azimuth apodization window that can be obtained for low-order (M ≤ 3)
recursive updates. A first-order update fits closely to a rectangular window. A second-order recursion, with
appropriate choice of recursion parameters, can be made to approximate a Bartlett (triangular) window, and
with a third-order recursion one can select regression coefficients to closely approximate a Hanning window, and
can select coefficients to somewhat less closely approximate a Hamming window.

An important property of the recursive window is that simply by changing the scalar autoregressive coeffi-
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Figure 6. SAR images of a parking lot using phase history data from the Gotcha Public Data Set. (a) Block-processing
image using the Hamming azimuth window. (b) Third-order recursive image. The azimuth windows are those in Figure 2.
The image resolution is approximately 0.3m×0.3m.
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Figure 7. SAR image of a parking lot using phase history data from the Gotcha Public Data Set. The image is formed
using a third-order recursion, with coefficients selected to give an azimuth window whose width is approximately 25◦.

cients in the recursion, the effective azimuth integration width of the SAR image can be adjusted. Thus, SAR
images that integrate over, say, 3 degrees or 25 degrees of aperture involve the same number and same type of
computations; only the M {αm} scalars in the recursive update equation are changed. This allows for on-the-fly
changing of aperture, or for forming images at multiple aperture widths, with modest additional computation
and memory requirements.
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