

Innovative Front-End Signal Processing

MURI Kickoff Meeting

Integrated Fusion, Performance Prediction, and Sensor Management for Automatic Target Exploitation

Randolph L. Moses

July 21, 2006

MURI: Integrated Fusion, Performance Prediction, and Sensor Management for Automatic Target Exploitation

Begin with the End in Mind

- Front-end processing (e.g. image formation) is not done for its own sake, but rather to *feed into ATE systems*
 - Processing should be tuned to optimize ATE objectives.
- Front-end processing is part of a closed-loop ATE system
 - ATE Objectives
 - Sensor Management

and must be designed to fit into this loop.

MURI: Integrated Fusion, Performance Prediction, and Sensor Management for Automatic Target Exploitation

What is needed:

Robust, directable feature extraction

- Capable of incorporating prior knowledge about sensor physics and phenomenology
- Capable of incorporating prior knowledge about context, current hypothesis state, etc. from fusion process
- Capable of providing features and feature uncertainties to higher-level processing.
 - Interface with fusion (graphical model inputs)
- Capable of providing performance predictions:
 - Cost/performance metrics for sensor management
- A common framework for multiple signal modalities.
- Flexible:
 - Different signal modalities
 - Waveform diversity; jamming, etc.

Signal Processing: Key Research Questions

Front-end Processing Interfaces

Our Approach:

A Unified Statistical Sensing Framework

Sensor observations:

measurements features or reconstruction g = Tf + n \leftarrow Nonparametric g = T(f) + n \leftarrow Parametric

$$\widehat{f} = \arg\min_{f} \{-\log p(g|f) + \Psi(f)\}$$

- Statistical framework provides features and feature uncertainties (pdfs)
 - Not just point estimates

Why should we believe this framework is the right approach for this MURI?

What are we going to do?

Advantages of Our Approach

- Unified parametric and nonparametric techniques
 - Continuum of methods that trade performance with robustness
 - Unified framework for
 - Analytical performance and uncertainty characterization
 - Directed processing from Information Fusion level
- Statistical framework
 - Feeds into graphical model for fusion
 - Analytical predictions for sensor mgmt
- Adaptable
 - Sparse, nonlinear apertures
 - Dynamic signal environment (e.g. jamming)
- Directable
 - Regions/features of interest

Flexible, Relevant feature sets

- Use physics, priors to identify 'good' basis sets:
 - Sparse, high information content
 - Attributed scattering primitives (RF)
 - Multi-resolution corners (EO)
 - Shape (RF+EO)
- Use context, hypotheses to manage complexity

RF: Attributed Scattering Models

Canonical Shape	Icon	Scattering Model $S_{T(m)}$	
Top-hat	Ú.	$S_{top} = \left(j\frac{f}{f_c}\right)^{1/2} \sin(\theta - \theta_m)$ $\theta \in (\theta_m, \theta_m + \frac{\pi}{4})$	
Trihedral		$S_{trih} = \left(j\frac{f}{f_{e}}\right)\sin(\phi - \phi_{m})\cos\theta\sin(\theta - \theta_{m})$ $\theta \in (\theta_{m}, \theta_{m} + \frac{\pi}{4}) \qquad \phi \in (\phi_{m}, \phi_{m} + \frac{\pi}{4})$	
Dihedral		$S_{dih} = \left(j\frac{f}{f_c}\right)\sin(\theta - \theta_m)$ $\cdot \operatorname{sinc}\left[\frac{2\pi f}{c}L_m\cos\psi_m\cos\phi_m\sin(\phi - \phi_m)\cos(\theta)\right]$ $\theta \in (\theta_m, \theta_m + \frac{\pi}{4}) \qquad \phi \in (\phi_m - \frac{\pi}{2}, \phi_m + \frac{\pi}{2})$	
Cylinder		$S_{cyl} = \left(j\frac{f}{f_c}\right)^{1/2} \operatorname{sinc}\left[\frac{2\pi f}{c}L_m \cos\psi_m \cos\phi_m \sin(\phi - \phi_m)\cos(\theta)\right]$ $\phi \in \left(\phi_m - \frac{\pi}{2}, \phi_m + \frac{\pi}{2}\right)$	
		Jackson + Moses (OSU)	

MURI: Integrated Fusion, Performance Prediction, and Sensor Management for Automatic Target Exploitation

'Data Dome' Representation in k-space

MURI: Integrated Fusion, Performance Prediction, and Sensor Management for Automatic Target Exploitation

Shape as a Statistical Feature

- Statistical models for shape
 - Across modalities
- Bayesian shape estimation
 - Uncertainty
- Invariance of shape across wavelength (HSI), sensor modality

Contour evolution using data likelihood and shape prior

Srivastava (FSU)

MURI: Integrated Fusion, Performance Prediction, and Sensor Management for Automatic Target Exploitation

Combined Signal Processing and Fusion

Cross-Modality Processing

Modality 1: Tomographic

Modality 2: Image

Mode 1 Mode 2 Fused Edges Image: Combined-Mode Reconstructions Mode 1 Mode 2 Image: Combined Co

Exploitation

$$\widehat{f} = \arg\min_{f} \{-\log p(g|f) + \Psi(f)\}$$

Changing $\Psi(f)$ changes image and enhances/suppresses features of interest.

Cetin (MIT) + Karl (BU)

MURI: Integrated Fusion, Performance Prediction, and Sensor Management for Automatic Target Exploitation

What we'll be doing

I: Topics where we're up and running

- Attributed Scattering Centers
 - Models for sparse, multistatic, 3D apertures
 - Robust parameter estimation
 - Links to priors, decision-directed FE
- Model-based, decision-directed image formation
 - Sparse and non-standard apertures
 - Feature uncertainty
 - Joint multi-sensor inversion and image enhancement
- Statistical Shape Models
 - Represent shapes as elements of infinite-dimensional manifolds
 - Analyze shapes using manifold geometry
 - Develop statistical tools for clustering, learning, recognition

What we'll be doing

II: Topics that are on the horizon

- Decision-Directed Feature Extraction
 - Higher-level hypotheses-driven signal processing (for feature extraction and to answer "queries")
 - For example: High-level information to guide choice of sparse representation dictionaries
 - Think PEMS
 - Object-level models in the signal processing framework
- Unified Parametric/Nonparametric Processing
 - Basis sets and sparseness metrics derived from parametric models
 - Sampling/linearization connection between parametric and nonparametric
 - Feature extraction and feature uncertainty

What we'll be doing

II: Topics that are on the horizon

- Shape/object-regularized inversion.
 - Include object shape information into front-end processing
- Multi-modal imaging and feature extraction
 - Joint multi-modal approaches.
- Compressed sensing
 - Focus sensing on information of interest.
 - Links to model-based formulations

