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Abstract A statistical analysis of shapes of facial surfaces can play an important role in
biometric authentication and other face-related applications. The main difficulty in devel-
oping such an analysis comes from the lack of a canonical system to represent and compare
all facial surfaces. This paper suggests a specific, yet natural, coordinate system on facial
surfaces, that enables comparisons of their shapes. Here a facial surface is represented as
an indexed collection of closed curves, called facial curves, that are level curves of a surface
distance function from the tip of the nose. Defining the space of all such representations of
face, this paper studies its differential geometry and endows it with a Riemannian metric. It
presents numerical techniques for computing geodesic paths between facial surfaces in that
space. This Riemannian framework is then used to: (i) compute distances between faces to
quantify differences in their shapes, (ii) find optimal deformations between faces, and (iii)
define and compute average of a given set of faces. Experimental results generated using
laser-scanned faces are presented to demonstrate these ideas.

1 Introduction

There has been an increasing interest in recent years in analyzing shapes of 3D objects.
Advances in shape estimation algorithms, 3D scanning technology, hardware-accelerated
3D graphics, and related tools are enabling access to high-quality 3D data. As such tech-
nologies continue to improve, the need for automated methods for analyzing shapes of 3D
objects will also grow. In terms of characterizing 3D objects, for detection, classification,
and recognition, their shape is naturally an important feature. It already plays important
roles in medical diagnostics, object designs, database search, and some forms of biometrics.
Focusing on the last topic, our goal in this paper is to develop a mathematical and statistical
framework for analyzing shapes of facial surfaces. Shape analysis involves computing metrics
and “optimal deformations” between any two given objects in a manner that is invariant to
certain similarity transformations. In Kendall’s definition of shape [11], shape is a property
that is invariant to rigid translations and rotations, and uniform scalings of the objects. In
our analysis of facial shapes, however, we have chosen the set of shape-preserving transfor-
mations to be translations and rotations only; scaling a facial surface will change its shape in
our framework. Emphasizing specific goals, we want to develop a mathematical framework
for representing and comparing shapes of facial surfaces, using metrics that are invariant to
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3D rotations and translations. In this process, we will also obtain optimal deformations of
facial surfaces from one into another. Our representations are chosen such that the ensuing
face comparisons are stable with respect to deformations of facial surfaces that results from
different facial expressions. This is an important advantage of this framework, especially
when it is used for recognizing people using shapes of their facial surfaces.

What is the main difficulty in comparing shapes of two surfaces? Shape analysis should
ideally be invariant to the choice of parameterizations, i.e. one should get the same com-
parison irrespective of parametrization of the two surfaces. To help understand this issue,
consider the problem of analyzing shapes of curves. In this case, there is a fixed ordering
of points along the curves that allows their parameterizations. This idea allows the use of
parametric representations of curves for analyzing their shapes in a manner that is invariant
to the choice of parametrization [23,16,14,17,24,34]. Returning to the problem of comparing
facial surfaces, this problem is made difficult by the fact that there is no natural ordering
of points on a surface. So, the registration (or correspondence) of points across surfaces is a
more difficult problem. As explained later, our solution is to impose a natural hierarchy (or
ordering) of points on a surface using the idea of facial curves. This additional structure re-
sults in dividing a surface into a collection of curves and the correspondence across surfaces
is obtained at two levels: first between curves and then between points along corresponding
curves.

1.1 Current Approaches

– 3D Face Analysis: There has been a number of papers in recent years in 3D shape
matching. A common theme in this literature has been to represent facial surfaces by
certain feature sets that are geometrical, such as the convex parts, areas with high
curvatures, saddle points, etc [4,3,2]. Although such feature definitions are intuitively
meaningful, the computation of curvatures involves numerical approximation of second
derivatives and is very susceptible to observation noise. Other approaches, such as those
based on shape distribution [18] and conformal geometry [32], have also been proposed.
Most of those works compare 3D shapes by comparing some corresponding features while
our goal is to compare the facial surfaces themselves. One of the few exceptions include
Glaunes et al. [7,31] where the authors have studied diffeomorphic matching of a given
pair of distributions (of points) in a general setting, with applications to various matching
problems including curves, surfaces, and unlabelled points-sets. Another approach that is
used to analyze surfaces in general is to use a spectral analysis of the Laplacian-Beltrami
operator on them. For instance, Rustamov [20] uses a “global point signature”, defined
using the eigen values and eigen functions of the Laplace-Beltrami operator, to perform
matching and classification of surfaces. A similar spectral representation has been used
by Jain et al. [10] to perform matching of 3D shapes. Although these spectral methods
are successful in modeling surface geometry in an intrinsic fashion, invariant to rigid
motions, they do not account for different re-parameterizations of surfaces. There is also
a significant literature on analyzing shapes of 3D objects using Morse functions and Reeb
graphs [6,25,30]. We believe that while this framework is important for analyzing shape
of general 3D objects, with widely varying geometries and even topologies, this may not
be as effective in comparing shapes of surfaces, such as faces, with identical topologies
and similar geometries.

– Shape Analysis of Curves: There has been a significant amount of research in ana-
lyzing shapes of open and closed curves, especially in a plane. The common theme has
been to derive spaces of curves, with different representations of curves, and to study the
differential geometries of these spaces modulo the space of re-parameterizations. In the
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case of closed curves, one uses an additional constraint to ensure closure; this constraint
results in the set of relevant curves being a nonlinear sub-manifold inside some Hilbert
space. To compare any two curves, one inherits a Riemannian structure from the Hilbert
space and computes geodesic paths on the sub-manifold.

– Facial Surfaces Using Facial Curves: An important line of work in face analysis has
been to use shapes of curves that lie on facial surfaces. Similar ideas have been pursued
in brain surface analysis: shapes of sulcal curves have been used to study shapes of brain
surfaces [12]. Curves on surfaces are usually defined using level sets of functions on these
surfaces. For example, one can use the curvature tensor on a surface to obtain parabolic
and ridge curves [8], or use surface gradients to extract crest lines[29,33]. However,
computations of gradients and curvatures both involve higher order derivatives and, as
mentioned above, are numerically unstable. In [21,22], Samir et al. suggested the use of
level sets of the height function (z coordinates) as curves of interest for face analysis.
There are some fundamental limitations with this representation. Firstly, the definition
of level curves changes with the global orientation of a face and, therefore, this shape
analysis is not completely invariant to rotation. A solution is given by Bronstein et
al. [1] who use a surface distance function to define level curves that are invariant to
rigid motions. Secondly, past works have been intended for face recognition only and
not for a Riemannian analysis of facial surfaces. In other words, they lack a formal
representation of facial surfaces as elements of a Riemannian manifold that can lead to
formal geodesic paths (or optimal deformations) between faces. Consequently, interesting
statistical quantities such as the mean face were neither defined nor computed.

1.2 Our Approach

Our approach is to represent facial surfaces as indexed collections of closed curves on faces,
termed facial curves, and to apply tools from shape analysis of curves. This paper is an
extension of the framework introduced in [21] in two ways: (i) the representations, met-
rics, and analysis is now completely invariant to rigid rotations and translations of the facial
surfaces, and (ii) there is a formal Riemannian analysis on space representing facial surfaces,
with precise mathematical definitions for spaces, metrics, geodesics, and statistics of facial
surfaces. The representation of a facial surface is based on facial curves, as in [21], but the
definition of facial curves is now different. Facial curves are level curves of a surface distance

function defined to be the length of the shortest path between that point and a fixed ref-
erence point (taken to be the tip of the nose) along the facial surface. Bronstein et al. [1]
have argued that this function is stable with respect to changes in facial expressions and
have used it to crop facial surfaces at their boundaries. Hilaga [9] and others (see e.g. [30])
have used it to construct Reeb graphs of more general 3D objects. An important property
of this function is that it is invariant to rotation and translation of the facial surface. Visu-
ally, the level curves of this function seem to contain distinct features that can prove to be
important in face classification and recognition. (These curves are closed curves in R

3 while
the curves used in [21] were planar.) An indexed collection of such curves will be used to
mathematically represent the corresponding facial surface. Denoting this indexed collection
as a parameterized path on the space of closed curves in R

3, we formalize a mathematical
representation of facial surfaces and focus on the space of all such representations. Choosing
a Riemannian metric, we endow this space with a Riemannian structure and derive an algo-
rithm for computing geodesic paths between elements of this space. This tool for computing
geodesic is shown to be useful in: (i) finding optimal deformations between faces, (ii) for
registering points of facial surfaces, and (iii) for computing “average faces”.

The rest of this paper is organized as follows. A mathematical representation of a facial
surface, using facial curves, is introduced in Section 2, along with a step-by-step procedure
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Table 1 List of symbols and their definitions used in this paper.

Symbol Definition /Explanation

S a smooth facial surface without holes
dist length of the shortest path on S between any two points
λ a variable for the value of dist from the tip of the nose

cλ (s) level curve of dist on S at the level λ, parameterized by s such that dcλ(s)
ds

=constant
lλ the length of the curve cλ
pλ the starting point of the curve cλ, pλ = cλ(0)

vλ (s) the scaled velocity vector, vλ(s) = 1
lλ

dcλ(s)
ds

v0 the velocity function of a unit circle in the XY plane, v0(s) = [− sin(s) cos(s) 0]′

(a, b) the Euclidean inner product in R
3

C the set of all closed curves in R
3,

C = {v|v : [0, 2π] → S
2,

R 2π

0
v(s)ds = 0, (v(s), v(s)) = 1,∀s}

TvC the space of all tangents to C at v
it is given by {f |f : [0, 2π] → R

3, ∀s, (f(s), v(s)) = 0 }

〈f1, f2〉 the Riemannian metric on C,
R 2π

0
f1(s)f2(s)ds

φt(v1, v2) a geodesic path in C, from v1 to v2, parameterized by t ∈ [0, 1]
φ0(v1, v2) = v1, φ1(v1, v2) = v2

α an indexed collection of closed curves in R
3

α : [0, L] → R
3 × C × R+, α(λ) = (pλ, vλ, lλ)

H the space of all parameterized paths in R
3 × C × R+,

H = {α : [0, L] → (R3 × C × R+), α(0) = (r, v0, 0)}
TαH the tangent space of H at α,

TαH = {(u, w, x)|u(λ) ∈ R
3, w(λ) ∈ Tα(λ)C, x(λ) ∈ R}

〈〈(u1, w1, x1), (u2, w2, x2)〉〉 the Riemannian metric on H

=
R L

0
((u1(λ), u2(λ)) + 〈w1(λ), w2(λ)〉 + x1(λ)x2(λ)) dλ

ψt(α1, α2) the geodesic path in H from α1 to α2 parameterized by t

to generate this representation. A Riemannian analysis of closed curves in R
3 is presented in

Section 3, with its extension to Riemannian analysis of facial surfaces outlined in Section 4.
The notion of Karcher mean is applied to facial surfaces in Section 5 and the paper finishes
with a brief summary in Section 6.

2 Mathematical Representation of a Facial Surface

Consider a facial surface S to be a two-dimensional smooth, connected manifold with genus
zero. We assume that holes on S, associated with eyes, nose, and mouth, have already been
patched smoothly. In practice S will be a triangulated mesh with a collection of connected
edges and vertices, but we will start by assuming that it is a continuous surface. Some
pictorial examples of S are shown in Figure 1 where 2D images and their corresponding
facial surfaces for six facial expressions (neutral, smile, frown, angry, squint, scared) of the
same person are displayed.

As mentioned earlier, the biggest challenge in analyzing the shape of S is to represent it
in a way that allows for efficient comparison of faces. Our approach is to represent a facial
surface as an indexed collection of closed curves or, equivalently, as a parameterized path
in the space of closed curves, that allows the decomposition of a 2D registration problem
into two independent 1D registration problems. Let r be a prominent reference point on S
that is easily detectable. In this paper, we have chosen r ∈ S as the tip of the nose. Then,
we define a function dist : S × S → R to be the surface distance function from r to
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Fig. 1 2D images and their corresponding facial surfaces of same person under different facial
expressions: neutral, smile, frown, angry, squint, and scared.

any point on the facial surface. In other words, dist(r, q) is the length of the shortest path
connecting r and q while staying on S. Using this function, one can define facial curves as
the level sets of the function dist(r, ·):

cλ = {q ∈ S|dist(r, q) = λ} ⊂ S , λ ∈ [0,∞). (1)

For large values of λ, cλ is naturally empty while for λ = 0, cλ is the singleton {r}. For
values of λ in between those two extremes, we expect cλ to capture certain local geometry
of S. So far cλ is just a collection of points but these points can be ordered to form a
parameterized, closed curve cλ(s) that is parameterized by constant speed over the interval

[0, 2π], i.e. dcλ(s)
ds

= constant. Three sets of variables describe this curve:

– Initial Position: We will denote the starting point on this curve by pλ ∈ R
3, i.e.

cλ(0) = pλ.
– Length: Let lλ denote the length of the curve cλ.
– Velocity function: Define the velocity function vλ : [0, 2π] → S

2, where vλ(s) =
1

‖
dc

λ
(s)

ds
‖

dcλ(s)
ds

.

We will represent the original curve cλ(s) by the triple (pλ, vλ, lλ). For λ = 0, cλ collapses
into the point r and we will use the convention that c0(s) = (r, v0(s), 0) where v0(s) =
[− sin(s) cos(s) 0]′ is the velocity function of a unit circle in the XY plane. We will choose
an upper bound L of λ so that cλ for λ ≤ L is a continuous, smooth, closed curve in R

3.
This helps in cropping some erroneous and unreliable points towards the boundary of S.

Next we need to specify the space in which these representations take values. Define a
set:

C = {v : [0, 2π] → S
2|

∫ 2π

0

v(s)ds = 0, (v(s), v(s)) = 1, ∀s} .

C is the set of all velocity functions that correspond to constant-speed, closed, parameterized
curves in R

3. For a given triple (p, v, l), one can re-construct the curve using cλ(τ) = pλ +
lλ
∫ τ

0 vλ(s)ds.

2.1 Mesh Pre-Processing

In practice one does not have continuous surfaces but rather discrete meshes, obtained by
sampling facial surfaces in an irregular fashion. The extraction of facial curves from such
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Fig. 2 Top: the scanned surface (left) and the surface after removal of disconnected parts (right).
Bottom: A nonuniform mesh before regularization (left), the uniform mesh after regularization
(middle), and a part of regularized mesh enlarged (right).

meshes involves several steps to ensure robustness. First we remove disconnected parts so
that the surface distance function dist is well defined. Shown in the top row of Figure 2 is
an example of this removal. The next step is to fill holes in the mesh. Since holes denote
missing points from the mesh, we need to use the observed parts to predict the missing
parts. We use a uniform sampling and a linear interpolation between visible points to fill in
the missing points. Once we have a complete mesh, i.e. without holes, we regularize them
using routines from the GNU triangulated surface library. This step forces the triangles in
the mesh to be within a certain size interval – larger triangles are made small by division
and smaller triangles are made large by union. This step is not energy driven; it is simply
based on a sorted list of triangles according to their edge lengths and treating them in that
order. Finally, using the same library, we can increase the number of vertices to obtain a
finer resolution. Shown in the bottom row of Figure 2 is an illustration of preprocessing a
facial surface. The original, non-uniform mesh is shown in the left panel and the regularized
mesh is shown in the middle panel. The last panel shows a zoom of a part of the regularized
mesh to demonstrate its uniformity.

2.2 Surface Distance Function dist

Once a facial surface is pre-processed, the tip of the nose can be detected using standard
methods. We use a combination of the location and the curvature to find the tip. Although
there is a possibility of variability in this detection step, due to mesh noise and other
measurement errors, we have found that the regularization and smoothing steps in the
pre-processing help stabilize this part. Several methods have been proposed in the past to
compute distances on discrete graphs or meshes. Considering the trade off between compu-
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Fig. 3 Level set extraction. Left: cλ for a larger δ and for un-regularized mesh. Right: cλ for a
small δ and for a regularized and refined mesh.

tational cost and accuracy, we employ a relatively simple method in which geodesic distance
is approximated by Dijkstra’s algorithm [5] based on the edge lengths. It has a computa-
tional cost of order O(n log(n)) with n being the number of vertices in the mesh. Other
techniques, such as those presented in [28] or [15], can also be used instead.

2.3 Facial Curves Extraction

Once we have a tool for computing dist on the mesh, we consider the task of extracting a
level curve cλ. In practice, the definition of cλ is expanded to include a (thin) strip rather
than a curve. Now cλ consists of all points whose distance dist from r is in [λ− δ, λ+ δ], for
a small δ > 0. Once dist has been computed for all vertices in the mesh, the extraction of
cλ is simply a selection of appropriate vertices. The selected points are then ordered using
the Euclidean Minimum Spanning Tree algorithm to approximate a parameterized curve.
To this end, we first form a graph that consists of the given set of points as its nodes and
the pairwise Euclidean distances between them as the edge weights. Then, we search for the
optimal spanning tree of this graph, and apply an averaging technique iteratively to smooth
the curve. To specify the starting point pλ for a given curve cλ, in this work, we choose pλ

to be the intersection between cλ and the plane containing the bridge of the nose.

Shown in Figure 3 are examples of extracted cλ corresponding to two different values of
δ: large (left panel) and small (right panel). To further emphasize the role of regularization,
the left set is for an un-regularized mesh while the right panel is for its regularized version.
Note that δ is proportional to the distance between two nodes on the regularized mesh, and
when δ is small enough, the inter-set distances from cλ are relatively large. Using this fact,
the ordering and smoothing process is very successful, and doesn’t significantly affect the
shape of the curve. Figure 4 shows more examples of extracted facial curves, drawn directly
on the original surface. The number of curves increases from left to right.

Returning to the issue of errors in detection of the reference point (nose tip), an important
question is: How are the shapes of facial curves affected by small changes in the location of
the reference point? In our experiments, these shapes are found to be quite stable to small
variations in reference location. This is due to the regularization of facial surfaces in the
pre-processing.

We summarize the steps needed to extract cλ from a discrete observation of S in Algo-
rithm 1.
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Fig. 4 Representation of a facial surface by an indexed collection of curves. For the surface shown
in the left panel, we show an increasing number of level curves of dist(r, ·) from left to right.

Algorithm 1 : Facial curve extraction and parametrization

Given a facial surface S, the cλs are determined as follows:

1- Preprocess the surface according to Section 2.1.
2- Calculate dist value for all the vertices of the mesh according to Section 2.2.
3- Crop the mesh at dist value L.
4- Extract the level set of dist (collection of unordered points) at the level λ ∈ [0, L] according to
Section 2.3.
5- Order these points and smooth the resulting curve cλ.
6- Uniformly re-sample cλ.
7- Compute the tangent vector function vλ(s) and the curve length lλ; and set the parametrization
cλ = (pλ, vλ, lλ).

2.4 Face Representation Using Collection of Facial Curves

Now we are ready to state our mathematical representation of a facial surface. Consider a
path α : [0, L] → (R3 × C × R+), such that α(λ) = (pλ, vλ, lλ) for λ ∈ [0, L]. Additionally,
fix the starting point of α to be (r, v0, 0). Let H be the set of all such paths, i.e.

H = {α : [0, L] → (R3 × C × R+) | α(0) = (r, v0, 0)} . (2)

We will represent facial surfaces and analyze them as elements of H. Note that not all
elements of H are reasonable representations of facial surfaces. This issue is complicated by
the lack of a formal definition of what is a facial surface. Our idea is to represent faces as
elements of this larger set H and to perform analysis in H. Shown in Figure 5 are examples
of facial surfaces represented by their corresponding elements in H. The top row shows a
number of surfaces S while the bottom row shows the corresponding elements of H. From an
implementation point of view, one has to settle for a finite number of curves in representing
S. The actual choice of which and how many curves are used in the analysis shall ultimately
depend on the application.
We note the following properties of this representations:

1. Invariance to Rotation and Translation: The choice of the surface distance function
dist to define facial curves ensures the invariance shapes of level curves cλ to rotation
and translation of S. Since α is simply a collection of facial curves cλs, it is also invariant
to these transformations.

2. Surface Reconstruction: In representing S by α, have we lost any information about
S? For an arbitrary point p ∈ S, there exists a λ such that p lies on the curve cλ.
Therefore, all points on S are present in α on one level curve or another. The facial
curves cλs are non-overlapping and, hence, no point p is represented twice in α. Thus,
each point p is present once and only once in the set α. Therefore, S and α are identical as
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Fig. 5 Top row: Facial surfaces of the same person under different facial expressions. Bottom row:
Their correspondents representations in H.

(a) (b) (c) (d)

Fig. 6 Reconstruction example: (a) an original facial surface, (b) its representation as α ∈ H, as
a collection of curves, (c) a Delauney triangulated mesh formed from α, and (d) the reconstructed
surface.

sets of points in R
3. Can we reconstruct a facial surface using its representation α ∈ H?

Yes. We can generate a Delaunay triangulation of the set of points contained in α and
use this triangulation to render a surface. An example is shown in Figure 6 which shows
the original surface (left), a collection of facial curves (second), the corresponding dense
mesh generated using Delaunay triangulation (third), and the rendered facial surface
using that triangulation (right).

The next step is to impose a Riemannian structure on H and to compute geodesic paths
between observed facial surfaces. Towards that goal, we first study the differential geometry
of C and present algorithms for computing geodesics between given facial curves.

3 Riemannian Analysis of Facial Curves

A facial curve defined in the previous section is represented by: (i) a starting point p ∈ R
3,

(ii) a velocity function v ∈ C, and (iii) a length l ∈ R+. Given two such facial curves, we
address the question: How to form a geodesic path between them in an appropriate space of
curves under a chosen Riemannian metric? While the parts dealing with p and l are simple,
the main difficulty lies in computing a geodesic path between the velocity functions of the
two given curves in C. This exact problem has been solved in Klassen et al. [13], and we
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will adapt that solution to our case. For the benefit of readers, the main idea behind that
approach has been summarized in this section.

To develop a geometric framework for analyzing elements of C, it is important to under-
stand its tangent bundle and to impose a Riemannian structure on it. Recall that for any
v ∈ C, we have ‖v(s)‖ = 1; thus, v can also be seen as a path on S

2 and a vector f tangent
to C at v becomes a set of vectors tangent to S

2 along the path v. The space of all such
tangent vectors, denoted by Tv(C), is given by:

Tv(C) = {f |f : [0, 2π] → R
3, ∀s (f(s) · v(s)) = 0,

∫ 2π

0

f(s)ds = 0 } . (3)

The last condition comes from the fact that
∫ 2π

0 v(s)ds = 0 for a closed curve. To impose
a Riemannian structure on C, we will assume the following inner product on Tv(C): for
f, g ∈ Tv(C),

〈f, g〉 =

∫ 2π

0

(f(s) · g(s))ds . (4)

For any two closed curves, denoted by v0 and v1 in C, we are interested in finding a
geodesic path between them in C under the metric given in Eqn. 3. This is accomplished
using a path-straightening approach presented in [13]. The basic idea is to start with any
path φ(t) connecting v0 and v1. That is φ : [0, 1] → C such that φ(0) = v0 and φ(1) = v1.
Then, one iteratively “straightens” φ until it achieves a local minimum of the energy:

Ec(φ) ≡
1

2

∫ 1

0

〈

dφ

dt
(t),

dφ

dt
(t)

〉

dt ,

over all paths from v0 to v1. The iteration is performed using a gradient approach, i.e. up-
date φ iteratively in the direction of negative gradient of Ec until the gradient becomes zero.
It has been shown in [26] (in general) and in [13] for our case, that a critical point of Ec is
a geodesic on C. Shown in Figure 7 are two examples of geodesic paths between two facial
curves and the corresponding evolution of Ec during path straightening.

Remark: One difference between the framework in [13] and here is that the origin on
the individual facial curves are kept fixed here. In [13], the variability due to origins was
modeled using the action of unit circle S

1 on C and the geodesics were actually computed in
the quotient space C/S

1. However, in the current paper we use the vertical plane containing
the bridge and the tip of the nose to determine the starting points on each facial curve, and
we fix them. Hence, the geodesics here are computed in C and not in the quotient space
C/S

1. The reason for doing so is to reduce the computational cost.

4 Riemannian Analysis of Faces as elements of H

Now we describe our approach to construct an “optimal” deformation from one facial surface
to another. Since facial surfaces are represented as elements of H, a natural formulation of
“optimal” is to consider the two corresponding elements in H and to construct a geodesic
path connecting them in H. The definition of geodesic depends upon a Riemannian metric,
which in this case measures amount of work done in bending of facial surfaces. To actually
compute geodesics, we need to study the differential geometry of H. The tangent space of
H is given by:

Tα(H) = {(u, w, x)| ∀λ ∈ [0, L], uλ ∈ R
3, wλ ∈ Tvλ

(C), xλ ∈ R} , (5)
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Fig. 7 Two examples of geodesic paths between facial curves. Each row shows a geodesic path
between the end curves (left) and the evolution of energy Ec in finding this geodesic (right).

where Tvλ
(C) is as specified in Eqn. 3. H is an infinite-dimensional nonlinear manifold and

we give it a Riemannian structure by imposing the metric:

〈〈(u1, w1, x1), (u2, w2, x2)〉〉 =

∫ L

0

((u1(λ), u2(λ)) + 〈w1(λ), w2(λ)〉 + x1(λ)x2(λ)) dλ , (6)

where (·, ·) is the Euclidean inner product in R
3 and 〈·, ·〉 is defined in Eqn. 4.

Let S0 and S1 be any two given facial surfaces, and α0 and α1 be the correspond-
ing elements in H, respectively. Our goal is to construct a geodesic path Ψ(t) in H, pa-
rameterized by time t, such Ψ(0) = α0 and Ψ(1) = α1. For each λ ∈ [0, L], we have
αi(λ) = (pi,λ, vi,λ, li,λ) ∈ (R3 × C × R+). For each of the components we compute the
geodesic paths independently by defining: for t ∈ [0, 1]

Ψ(t) = {Ψλ(t), λ ∈ [0, L]}, where Ψλ(t) = (Ψp
λ(t), Ψv

λ(t), Ψ l
λ(t)) . (7)

Ψλ is the geodesic path between the corresponding facial curves; it is composed of three
components. Ψp

λ is the geodesic for the position component, Ψv
λ is for the shape component,

and Ψ l
λ is for the length component. These individual components are computed as follows:

1. Shape of Curves: Let Ψv
λ(t) be a geodesic path in C, constructed using path straight-

ening as discussed in Section 3, such that Ψv
λ(0) = v0,λ and Ψv

λ(1) = v1,λ.
2. Initial Position: The geodesic path between the starting points p0,λ and p1,λ in R

3 is
given by a straight line in R

3. That is, Ψp
λ : [0, 1] → R

3, t → tp1,λ + (1 − t)p0,λ.
3. Length: The geodesic path between the lengths l0,λ and l1,λ in R

+ is given by a straight
line in R

+. That is, Ψ l
λ : [0, 1] → R

+, t → tl1,λ + (1 − t)l0,λ.

Proposition 1 The path Ψ defined in Eqn. 7 is a geodesic in H, such that Ψ(0) = α0 and

Ψ(1) = α1.
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Proof: For a fixed λ, the three components (Ψp
λ , Ψv

λ , Ψ l
λ) are individually geodesics in the

spaces R
3, C, and R+, respectively, by construction. Thus, Ψλ is a geodesic in the product

space with respect to the metric given in Eqn. 6. As shown in Appendix, the set of all
geodesics Ψ = {Ψλ|λ ∈ [0, L]} is a geodesic in H if each one of Ψλ is a geodesic in (R3×C×R+).
�

We have summarized the main steps for computing geodesic paths between given two
facial surfaces in H in Algorithm 2.

Algorithm 2 : Computation of geodesic between S1 and S2

Given two different surfaces S1 and S2, this algorithm summarizes computational steps to construct
a geodesic path between their representations in H.

1- Extract level curves c1λ and c2λ, λ ∈ [0, L], for S1 and S2, respectively, using Algorithm 1.
2- Represent each surface as an element of H and denote them by α0 and α1.
3- Compute the geodesics Ψλ(t), at each level λ ∈ [0, L], in R

3 × C × R+.
4- Combine these geodesic paths to form a path Ψ(t) in H.
5- Reconstruct a facial surface for finitely spaced samples of t ∈ [0, 1], using the collection
{Ψλ(t), λ ∈ [0, L]}.

We took facial surfaces of a number of people under different facial expressions and con-
structed geodesic paths between them. Some examples are shown in Figures 8 - 11. Figures
8(a) and (b) show two facial surfaces of the same person under the two expressions: neutral
and smile, respectively and (c) shows the resulting geodesic path between them. Drawn in
(c) are facial surfaces denoting five equally spaced points in H along the geodesic path Ψ(t).
With respect to the chosen Riemannian metric, this path denotes the optimal deformation
from one face to another, and the path-length quantifies the amount of deformation. Two
additional examples of geodesics are shown in Figure 9. In 9(a) we show a geodesic path
between two facial surfaces of the same person, while in 9(b) we show the same for faces
belonging to different persons. Each path has been shown from three different viewpoints
to help illustrate the 3D deformation. Figures 10 and 11 show several additional examples
of these geodesic paths from the front view.

In some cases it is important to study the deformations resulting from geodesic paths be-
tween facial surfaces. Since these deformations are optimal, in the sense of geodesic lengths,
they can provide important visual information about variability of facial shapes. There are
several ways to visualize these deformations; a simple way is to compute the magnitude of
the initial velocity vector, d

dt
Ψ(t)|t=0, and display it as a scalar field on the initial surface

Ψ(0). This is presented in Figure 12 where deformation fields resulting from geodesic paths
from one face to several others are shown. The top row is for different faces of the same
person while the bottom row is for faces from different persons. It can be seen in the top
row that the deformation field is larger when a person changes from neutral expression to
smile, due to deformations near the lips and cheeks. For the remaining faces in the upper
row, the expressions were less pronounced and, consequently, the deformations are rather
small. The deformations across persons are relatively much larger, as can be seen from the
examples in the bottom row.

Experiments show that the proposed geodesic distance is relatively stable to changes
in facial expressions. That is, the deformation caused by changes in expressions is much
smaller in terms of the geodesic distances, when compared to the distances between faces
of different people. Shown in Figure 13 are two examples of such experiments. Each of
the 12 × 12 matrix shows pairwise distances between 12 facial surfaces, where the first
six belong to the same person (under different expressions) and the next six belong to six
different persons. The resulting distances are shown as images in Figure 13; the brightness
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Fig. 8 (a) and (b): Facial surfaces S1 and S2 of the same person under neutral and smile, respec-
tively. (c): The geodesic paths between S1 far left and S2 far right; drawn in between are facial
surfaces denoting equally spaced point along this geodesic path. (d): The evolution of the path
energy as a function of straightening iterations.

of a pixel is proportional to the geodesic distance between the corresponding faces. Since the
last six faces belong to different people, in each case, these images correctly shows brighter
rows and columns beyond the first 6 × 6 block.

5 Karcher Means of Facial Surfaces

For future statistical analysis, we are interested in defining a notion of “mean” for a given
set of facial surfaces. The Riemannian structure defined on H enables us to perform such
statistical analysis for computing means and variances of faces. There are at least two ways
of defining a mean value for a random variable that takes values on a nonlinear manifold.
The first definition, called the extrinsic mean, involves embedding the manifold in a larger
vector space, computing the Euclidean mean in that space, and then projecting it down to
the manifold. The other definition, called the intrinsic mean or the Karcher mean utilizes
the intrinsic geometry of the manifold to define and compute a mean on that manifold. It
is defined as follows: Let d(Si, Sj) denote the length of the geodesic from Si to Sj in H. To
calculate the Karcher mean of facial surfaces {S1, ..., Sn} in H, define the variance function:

V : H → R,V(S) =

n
∑

i=1

d(Si, Sj)
2 (8)

The Karcher mean is then defined by:

S = arg min
µ∈H

V(µ) (9)

The intrinsic mean may not be unique, i.e. there may be a set of points in H for which the
minimizer of V is obtained. To interpret geometrically, S is an element of H, that has the
smallest total deformation from all given surfaces.
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(a)

(b)

Fig. 9 Geodesic paths between: (a) faces from the same person under different facial expressions,
viewed from three different viewpoints, and (b) faces from different persons.

We present a commonly used algorithm for finding Karcher mean for a given set of
facial surfaces. This approach, presented in Algorithm 3, uses the gradient of V , in the space
Tµ(H), to update the current mean µ. Since this is a gradient approach, it only ensures a local
minimizer of the variance function V . The underlying manifold H seems too complicated to
derive any additional conclusions about reaching a global minimizer of V . For a discussion
on uniqueness and existence of intrinsic means, please refer to Pennec [19].

Several examples of using the Karcher mean to compute average faces are shown in
Figure 14. Here the sample set consists of six facial surfaces of the same person under
different facial expressions, and the mean face is shown in the far right panel. We have
magnified the display of Karcher mean to study the features retained by this surfaces from
the original set. Figure 15 shows the Karcher mean face for six different persons. Note that
the facial surfaces of the same person, under different facial expressions are quite close to
their Karcher mean. For a clustering or an identification purposes, they could be reasonably
represented by their Karcher mean. However, the Karcher mean of faces of different people
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Fig. 10 Geodesic paths between facial surfaces of same person under different expressions.

Fig. 11 Geodesic paths between facial surfaces of different people.
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Fig. 12 Magnitude of deformations resulting from geodesic paths shown as scalar fields. The upper
row shows the deformations between the same person under different expressions, while the bottom
row is for different persons. In each case, we use the same source face, but the target faces are
different.

Algorithm 3 : Gradient search

Set k = 0. Choose some time increment ǫ ≤ 1
n
. Choose a point µ0 ∈ H as an initial guess of the

mean. (For example, one could just take µ0 = S1.)

1- For each i = 1, ..., n choose the tangent vector fi ∈ Tµk
(H) which is tangent to the geodesic

from µk to Si, and whose norm is equal to the length of this shortest geodesic. The vector
g =

Pi=n

i=1 fi is proportional to the gradient at µk of the function V.
2- Flow for time ǫ along the geodesic which starts at µk and has velocity vector g. Call the point
where you end up µk+1, i.e. µk+1 = Ψ(µk; ǫ; g).
3- Set k = k + 1 and go to step 1.

is far, in terms of the geodesic distance, to each of the faces, and appears to be a blurred
version of the individual faces.

6 Extensions to More General Surfaces

The framework proposed in this paper can be applied to more general surfaces if there is a
natural way of representing them as indexed collections of closed curves. There is an emerging
literature of studying shapes of surfaces by defining a certain Morse function on them and
to generate Reeb graphs using the critical points of that function [30]. Our approach would
be to use the level curves of those Morse functions to develop natural representations of
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(a)

(b)

Fig. 13 Two examples of matrices of pairwise distances between 12 facial surfaces in H. In each
case, the first six belong to the same person while the next six belong to six different persons.
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Fig. 14 The same person, at each row, under six facial expressions in the left panel, and the
corresponding Karcher mean in the right panel.

Fig. 15 Karcher mean (right) for the six different faces in the left.



An Intrinsic Framework for Analysis of Facial Surfaces 19

Fig. 16 Examples of geodesic-based deformations between more general surfaces. In the first case,
we show both the surfaces and the level curves. while for the next two cases we show only the
surfaces.

surfaces. If one wants to restrict to the surface distance function, as in our approach for
faces, it becomes important to define a reference point with respect to which dist will be
defined. If this step is feasible for a surface, the rest of our approach applies directly. Shown
in Figure 16 are some illustrative results on computing geodesics between more general kinds
of surfaces. The top row shows a geodesic path between the heads of a cow and a horse,
and the second row shows the same path but each surface is now displayed as a collection
of curves (in H). The third row is a geodesic between the head of a cow and a human face,
and the bottom row is a geodesic between a generic blob and a face. In these examples, the
reference points for the non-facial surfaces were picked manually but the remainder of the
procedure is completely automatic.

7 Summary

In this paper we have introduced a new computational framework for analyzing shapes of
facial surfaces. The basic idea is to choose a specific representation of facial surfaces that is
composed of level curves of the surface distance function (measured from the tip of nose).
Each surface is represented as a path on the space of closed curves in R

3. Focusing on the
set of such paths, we impose a Riemannian structure on it that measures the amount of
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work done in bending one surface into another. The main computational tool presented in
this paper is the construction of geodesic paths between arbitrary two facial surfaces in the
aforementioned set. There are multiple applications of this geodesic construction. The length
of a geodesic between any two facial surfaces quantifies differences in their shapes; it also
provides an optimal deformation from one to the other. Using the Riemannian structure
one can define simple statistics such as the sample mean, as is demonstrated for facial
surfaces in this paper. A future application of this framework is in biometrics, for example
in recognition of humans using shapes of their facial surfaces. An extension of this framework
to more general surfaces is also presented. This extension assumes that for these surfaces
it is possible to define reference points and distance functions so that the surfaces can be
represented by level curves.

The geodesics between facial surfaces, or more explicitly facial curves, are computed
using the idea of path-straightening [13] under a bending-only metric. There are other
metrics and methods in the literature for computing geodesics between closed curves. An
important idea is the use of elastic curves where the curves are allowed to stretch and
compress for computing geodesic paths [17]. In a more recent paper we have proposed to
apply the framework of elastic curves to analyze facial curves [27].
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Appendices

Note: To apply this appendix to the proof of Proposition 1, let M = R
3 × C × R+ and let

F = H.
Let M be a Riemannian manifold and denote by I the unit interval [0, 1]. Also, denote

by F the space of measurable functions [0, L] → M . F is a manifold; its tangent space is
given as follows. If α ∈ F , then

Tα(F) =

{

w : [0, L] → TM : ∀λ ∈ [0, L], w(λ) ∈ Tα(λ)(M) and

∫ L

0

〈w(λ), w(λ)〉 dλ < ∞

}

In other words, this is just the set of first-order deformations of α ∈ F . We now make F
into a Riemannian manifold. If w1, w2 ∈ Tα(F), define

〈w1, w2〉 =

∫ L

0

〈w1(λ), w2(λ)〉 dλ

where the inner product inside the integral uses the Riemannian metric on M .

Theorem 1 Suppose we are given a path in F represented as φ : [0, L] × I → F . For each

λ ∈ [0, L], define φλ : I → M by φλ(t) = φ(λ, t). Then φ is a geodesic in F if ∀λ ∈ [0, L],
φλ is a geodesic in M .

Proof:

First, we review a useful characterization of geodesics in M . Suppose v0 and v1 are two
points in M . Let B denote the space of all smooth paths in M , parameterized by I, which
start at v0 and end at v1:
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B = {γ : I → M | γ is smooth, γ(0) = v0 and γ(1) = v1} .

Define an energy functional E : B → R by

E(γ) ≡
1

2

∫ 1

0

〈γ′(t), γ′(t)〉 dt,

Then, γ is a geodesic in M , connecting v0 and v1, if and only if the gradient of E with
respect to γ is zero. In other words, γ is a critical point of the energy function E [26].

Now suppose that φ̃ : [0, L]× I × (−ǫ, ǫ) → M is an arbitrary variation of φ in the space
of curves in F , i.e., we are assuming that for all λ ∈ [0, L] and t ∈ I, φ̃(λ, t, 0) = φ(λ, t) and
for all λ ∈ [0, L] and h ∈ (−ǫ, ǫ), φ̃(λ, 0, h) = φ(λ, 0) and φ̃(λ, 1, h) = φ(λ, 1). For each value
of h ∈ (−ǫ, ǫ), we calculate the energy of the path φ̃(., ., h) in F as follows:

E(φ̃(., ., h)) =
1

2

∫ 1

0

∫ L

0

〈

∂φ̃

∂t
(λ, t, h) ,

∂φ̃

∂t
(λ, t, h)

〉

dλdt

=
1

2

∫ L

0

∫ 1

0

〈

∂φ̃

∂t
(λ, t, h) ,

∂φ̃

∂t
(λ, t, h)

〉

dtdλ

Differentiating with respect to h at h = 0 gives:

d

dhh=0
E(φ̃(., ., h)) =

1

2

∫ L

0

d

dhh=0

(

∫ 1

0

〈

∂φ̃

∂t̃
(λ, t, h) ,

∂φ̃

∂t̃
(λ, t, h)

〉

dt

)

dλ

If we assume that φλ is a geodesic in M for every λ ∈ [0, L], then it follows immediately that
the function we are integrating over [0, L] in the right hand side of the above expression is
0 for every λ, proving that φ is a geodesic in F . �
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