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Topics

Design of Discriminative Sensor Models 
Under Resource Constraints

Discriminative tree models
Distributed PCA
Multi-modal Data Fusion

LIDAR/EO registration
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Common Thread

Set of problems 
formulated as inference 
in graphical models.
Exploit partial 
knowledge/assumptions 
on the structure of the 
measurements or latent 
variables
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Max-weight Discriminative Forests

Discriminative Generalization of Chow-Liu 
Method for Learning Generative Trees

Kruskal’s Algorithm
Use of J-Divergence

Interpretation & Performance bounds

Algorithm, Proof Sketch
Empirical Results

Small Sparse & Non-Sparse Models
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Probabilistic Tree Models

Tree models are fully 
described by

Marginal properties on the 
vertex set
Pair-wise relationships on 
the edge set

Exact inference in trees is 
tractable and lends itself 
to distributed computation 
Entropy of a tree model 
has a similarly 
decomposition
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Generative Tree Approximations
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Many algorithms for solving the max-weight spanning (Prim, 
Kruskal, reverse-delete, Chazelle, etc.) 

Kruskal’s is of particular interest
Greedy
Yields a sequence of optimal k-edge forests

MWST Algorithms
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J-Divergence

This is a well studied information measure (Jeffreys ’46)

Difference between the expected value of the log-likelihood 
ratio under each hypotheses for binary hypothesis
Upper and lower bound on probability of error (Hoeffding & 
Wolfowitz ’58, Kailath ’67)
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J-Divergence 

We’ll consider an alternative measure

where

If we restrict     to trees then it turns there is an 
efficient MWST algorithm for jointly learning tree 
models for p and q which optimizes 
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Multi-valued edge weights

If pA and qB are constrained to be trees: 

where

In constructing such models, adding additional edge-
related costs (e.g. comms costs) is straightforward.
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On the use Kruskal’s
 

Algorithm

The sequence of forests are optimal.
At each iteration, the number of edges in the 
respective models may be different
Early termination possible (i.e. pA and/or qB may not be 
spanning trees upon termination)
The proof optimality is similar to the generative case, 
the primary difference is that some edges may be 
precluded in one tree, but not the other.

The ws,t become  single-valued
The max is always reduced
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Empirical Results
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Empirical Results
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A somewhat contrived example
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A somewhat contrived example



MURI: Integrated Fusion, Performance Prediction, 
and Sensor Management for Automatic Target 
Exploitation 16

Comments

We have presented a discriminative method for learning trees using an 
approximation to J-divergence

Standard MWST algorithms enabled by defining a multi-valued weight function.
Resulting structures differ from generative models.
Early termination is possible resulting in a forest or non-spanning tree.

Empirical Results
Marginal improvements for graphs which are already sparse.
Constructed example demonstrates improvement over generatively learned trees 
can be significant.

Open Questions/Directions
Is there a Hoeffding-Wolfowitz type bound using the approximate measure?
What is the behavior on sparse graphs as the size of the graph grows?
Evaluate performance with empirical distributions.
Incorporation of data fusion costs in distributed systems.
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Progress in Front-end Processing

Graphical models for distributed 
decomposable PCA 
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Distributed PCA

Principle components analysis (PCA) is a model-free 
dimensionality reduction technique used for  high level 
data fusion (variable importance, regression, variable 
selection) 
Deficiencies:

PCA does not naturally incorporate priors on
Dependency structure (graphical model) 
Matrix patterning  (decomposability) 

Scalability problem: complexity is O(N^3) 
Unreliable/unimplementable for high dimensional data
Ill-suited for distributed implementation, e.g., in  sensor 
networks  
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Networked PCA

Network model: measure 
sensor outputs Xa, Xb, Xc

Two cliques {a,c} and {b,c} 
Separator {c}

Decomposable model: 
covariance matrix R 
unknown but conditional 
independence structure is 
known.
PCA of covariance matrix R 
finds linear combinations 
y=UTX that have maximum 
or minimum variance
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DPCA formulation

Precision matrix K=R-1

For decomposable model K has structure

General Representation
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1-dimensional DPCA

PCA for minimum eigenvector/eigenvalue solves

Key observation:
This constraint is equivalent to

where
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Extension to k-dimensional DPCA

k-dimensional PCA solves sequence of 
eigenvalue problems

Dual optimization
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k-dimensional DPCA (ctd) 

Dual maximization splits into local minimization with 
message passing

Message passing
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Tracking illustration of DPCA 

Scenario: Network with 305 nodes representing three 
fully connected networks with only 5 coupling nodes 

C1 = {1, · · · , 100, 301, · · · , 305},
C2 = {101, · · · , 200, 301, · · · , 305}, and
C3 = {201, · · · , 300, 301, · · · , 305}.

Local MLEs computed over
sliding time windows of length n = 500
400 samples overlap. 

Centralized PCA computation: EVD O(305)^3 flops
DPCA computation: EVD O(105)^3 flops + message passing 
of a 5x5 matrix M
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DPCA  min-eigenvalue tracker

Iteration 1

Iteration 2

Iteration 3



MURI: Integrated Fusion, Performance Prediction, 
and Sensor Management for Automatic Target 
Exploitation 26

DPCA network anomaly detection

SNV 
A

STTL

LOSA KSCY

HSTN

DNVR
CHIN

IPLS

ATLA

WASH
NYCM

Multiple measurement sites (Abilene) 
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DPCA anomaly detection

PCA (centralized) 

DPCA (E-W decomp) 

DPCA (E-W-S decomp) 

DPCA (Random decomp) 
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Discussion

Take home message: Combination of model-free 
dimensionality reduction and model-based graphical model 
can significantly reduce computational complexity of PCA-
based high-level fusion
Complexity scales polynomially in clique size not in overall 
size of problem. Example: 100,000 variables with 500 
cliques each of size 200  

Centralized PCA: complexity is of order 1015
DPCA: complexity is of order 106

If one can impose similar decomposability constraints on 
graph Laplacian matrix,  be extended to non-linear 
dimensionality reduction: ISOMAP, Laplacian eigenmaps, 
dwMDS.
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LIDAR/Optical Registration

Laser Radar
3D Model Generation

Delaunay mesh formation
Model Demo

Camera Model
Statistical Registration Methods
Results

Probing Experiments
Registration Demo
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Laser Radar

3D point cloud
Not gridded
Typical lateral resolution 
of 0.5 – 1.0 meters
Linear mode sensors: 

Slower collects
Probability of detection 
(pdet) values

Geiger mode sensors: 
Faster collects
Geometry only
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3D Model Generation

Ladar point cloud

Inferred surface

Registered optical image

Projective texture mapping
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3D Model Generation

Point cloud Mesh 3D Model

Optical image
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Automatic Registration Challenges

GPS/INS has low precision
Matching colors with geometry (inherently low mutual 
information)
Occlusion reasoning with point cloud projection
3D rendering
Resolution differences
Previous work

Line correspondences (Frueh, Sammon, Zakhor 2004)
Vanishing points (Ding, Lyngbaek, Zakhor 2008)
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Projective Camera
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Initial Registration

Manual calibration is prohibitive
User selected correspondence points
Minimization of sum of algebraic error

T is parameterized by f, Cx, Cy, Cz, α, β, γ
Levenberg-Marquardt iterative optimization 
(derivative free)

2
alg ),(min i

i
iT

Td XX∑ ′

22
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Statistical Registration Methods

Commonly used for registration of multi-modal medical 
imagery
Information theoretic similarity measure with optimization 
algorithm

Ladar Image

Optical Image

Feature detection / 
classification

Feature detection / 
classification

Registration
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Example: Joint Entropy

Pdet ValuesLuminance

Optical image
iTi

i
T

T
JE vupvupT ]),([log)],([minarg ∑−=

T: camera projection matrix
u: optical image features/labels
v: ladar image features/labels
p(·): probability mass function

JE 
Registration
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Automatic Registration Demo

Minimum joint entropy with optical 
luminance and ladar elevation
Downhill simplex optimization (derivative 
free)
Ladar rendered using OpenGL
Entire ladar data set in graphics memory
Approximate initial registration



MURI: Integrated Fusion, Performance Prediction, 
and Sensor Management for Automatic Target 
Exploitation 39

Unsupervised LIDAR/Optical Registration
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