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= Design of Discriminative Sensor Models
Under Resource Constraints

= Discriminative tree models
= Distributed PCA
= Multi-modal Data Fusion

= LIDAR/EO registration
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I Common Thread

= Set of problems
formulated as inference
in graphical models.

= Exploit partial
knowledge/assumptions
on the structure of the
measurements or latent
variables
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l Max-weight Discriminative Forests

= Discriminative Generalization of Chow-Liu
Method for Learning Generative Trees

= Kruskal's Algorithm

= Use of J-Divergence
= Interpretation & Performance bounds

s Algorithm, Proof Sketch

= Empirical Results
= Small Sparse & Non-Sparse Models
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I Probabilistic Tree Models

= Tree models are fully
described by

= Marginal properties on the
vertex set

= Pair-wise relationships on
the edge set
= Exact inference in trees is
tractable and lends itself
to distributed computation

= Entropy of a tree model
has a similarly
decomposition

= [[pteo) [T 2

seV s, €€
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; Generative Tree Approximations

Let p be an N-variate distribution.

Let G denote the set of all N-variate probabilistic models
whose graphical structure corresponds to a tree.

For a given gg € G and associated pg having the same tree
structure as gg, but edge-wise marginalizations match p.

D (pllgg) = D (pllpg) + D (pgllag)
= H (pg) — H (p) + D (pg

qc)

There are N¥ =2 unique spanning trees over N nodes.

The closest tree model in a K-L divergence sense to any dis-
tribution can be found by finding the max-weight spanning-
tree (MWST), complexity O ((N — 1)log N), over pair-wise
mutual information terms, (Chow-Liu 68).
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l MWST Algorithms

= Many algorithms for solving the max-weight spanning (Prim,
Kruskal, reverse-delete, Chazelle, etc.)
O (|E[log|V])
= Kruskal's is of particular interest
= Greedy
= Yields a sequence of optimal k-edge forests

Algorithm 1 The ‘k-edge’ MWST algorithm
Require: 1 <k <n — 1, wgy:
1: T{H = {}
2 we = Sort(ws);
3 fori=1:kdo
if (s.1) does not form a cycle in edges in tree then
TE — TH U (s,);
i end if
7: end for
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l J-Divergence

= This is a well studied information measure (Jeffreys '46)

J(p,q) = f(:u—f;f)log (g) = D (pllq) + D (ql|p)

= Difference between the expected value of the log-likelihood
ratio under each hypotheses for binary hypothesis

= Upper and lower bound on probability of error (Hoeffding &
Wolfowitz '58, Kailath '67)

1 . —J J —1/4
5 F‘I“IIF‘I(P(}.j P]_)e < Pr(err) </ PoP; (Z)
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I J-Divergence
= We'll consider an alternative measure

j(p: Q:pA?QB) — / (p - Q) log (z—;)

where pA,9qB €0

= If werestrict G to trees then it turns there is an
efficient MWST algorithm for jointly learning tree
models for p and q which optimizes J (p,q,p4,q5)
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l Multi-valued edge weights

= If p, and g are constrained to be frees:

J(p,q,pa,98) = ), J(ps,qs) + ), wy
SEV (S,t)ESE;U&;

[ Ip (zs; ) — I (ws; )

where +D (gs,llpst) — D (asatllpspe) (5,6) € Ep\ Epg

wst = Iq (s, ) — Ip (55 24)
+D (ps,tllast) — D (pspellasar) (s, t) € €\ Epg

| J(Pst, gst) — J (PsPt, sqt) (s,1) € Epq

= In constructing such models, adding additional edge-
related costs (e.g. comms costs) is straightforward.
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N l On the use Kruskal's Algorithm

= The sequence of forests are optimal.

= At each iteration, the number of edges in the
respective models may be different

= Early termination possible (i.e. p, and/or gz may not be
spanning trees upon termination)

= The proof optimality is similar to the generative case,
the primary difference is that some edges may be
precluded in one tree, but not the other.

= The w,; become single-valued
= The max is always reduced
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Empirical Results

Discriminatively Learnt Forest Model

Qriginal Grid Model Generatively Learnt Tree Model
—
——

Original Cycle Model Generatively Learnt Tree Model

Discriminatively Learnt Forest Model
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Empirical Results

6 x 6 Grid Model
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l A somewhat contrived example

I'n Pn I'n
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! A somewhat contrived example
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I Comments

We have presented a discriminative method for learning trees using an
approximation to J-divergence

= Standard MWST algorithms enabled by defining a multi-valued weight function.

= Resulting structures differ from generative models.

= Early termination is possible resulting in a forest or non-spanning tree.
Empirical Results

= Marginal improvements for graphs which are already sparse.

= Constructed example demonstrates improvement over generatively learned trees

can be significant.

Open Questions/Directions

= Is there a Hoeffding-Wolfowitz type bound using the approximate measure?

= What is the behavior on sparse graphs as the size of the graph grows?

= Evaluate performance with empirical distributions.

= Incorporation of data fusion costs in distributed systems.
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' Progress in Front-end Processing

= Graphical models for distributed
decomposable PCA

and Sensor Management for Automatic Target
Exploitation
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2 | Distributed PCA

= Principle components analysis (PCA) is a model-free
dimensionality reduction technique used for high level
data fusion (variable importance, regression, variable
selection)
= Deficiencies:
= PCA does not naturally incorporate priors on
= Dependency structure (graphical model)
= Matrix patterning (decomposability)
= Scalability problem: complexity is O(N"3)
Unreliable/unimplementable for high dimensional data

Ill-suited for distributed implementation, e.g., in sensor
networks
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I Networked PCA

= Network model: measure
sensor outputs X,, X,, X.

= Two cliques {a,c} and {b,c}
= Separator {c}

= Decomposable model:
covariance matrix R
unknown but conditional
independence structure is
known.

= PCA of covariance matrix R
finds linear combinations
y=UTX that have maximum
or minimum variance

OHIO
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I DPCA formulation

= Precision matrix K=R-1

= For decomposable model K has structure

Kaa Kac O
Kc,a KEC K{;b
0  Kpe Kpp

= Geneml Represen’rahon

o O 0 0 0 0 0 0
HII
K= 0 |+] 0 _ .. |—|0 K0
K_'
0 0 0 0 0 0 0
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I 1-dimensional DPCA

s PCA for minimum eigenvector/eigenvalue solves
A= Mgmlu {H'-'J

= Key observation: =sup t st f<eigy, (K)
= This constraint is equivalent to

S Uigmiu{ﬂﬁ.b]

_ [ 0 0
ir_' { {.' ]H I.Hi.“. Kf'. 5 f"| _ W
lu M ()

where f'h"I{” — H;-_h{ﬂh.h — f[]_l |

MURI: Integrated Fusion, Performance Prediction,
and Sensor Management for Automatic Target
Exploitation

OHIO

21



: I Extension to k-dimensional DPCA

= k-dimensional PCA solves sequence of
eigenvalue problems

111 Iy u!Kn
=1

| ulu, =0 ,i=1-- k-1
= Dual optimization

A = max

S LT by
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! k-dimensional DPCA (ctd)

= Dual maximization splits into local minimization with

message passing
< elgoa (Hh-h T lU]I’-‘-: lU];)
e '“jgm'm (Hf'. o — EMy; {TJ ET}
= Message passing
_ !- | Ly -|
| wf, |

(Hh.h + U]y, (U], - “)_I [ Koo (Ul ] ‘

My (1)

Pt
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&\ ! Tracking illustration of DPCA

Scenario: Network with 305 nodes representing three
fully connected networks with only 5 coupling nodes

« C1={1,---,100, 301, - - -, 305},
« C2={101,---,200, 301, ---, 305}, and
« C3={201,---,300,301,---, 305}
Local MLEs computed over
= sliding time windows of length n = 500
= 400 samples overlap.
Centralized PCA computation: EVD O(305)” 3 flops

DPCA computation: EVD O(105)"3 flops + message passing
of a 5x5 matrix M
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DPCA min-eigenvalue tracker
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DPCA network anomaly detection
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- DPCA anomaly detection
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L ) Discussion

= Take home message: Combination of model-free
dimensionality reduction and model-based graphical model
can significantly reduce computational complexity of PCA-
based high-level fusion

= Complexity scales polynomially in clique size not in overall
size of problem. Example: 100,000 variables with 500
cliques each of size 200

= Centralized PCA: complexity is of order 1015
= DPCA: complexity is of order 106
= If one can impose similar decomposability constraints on
graph Laplacian matrix, be extended to non-linear

dimensionality reduction: ISOMAP, Laplacian eigenmaps,
dwMDS.
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I LIDAR/Optical Registration

= Laser Radar

» 3D Model Generation
= Delaunay mesh formation
= Model Demo

= Camera Model
s Statistical Registration Methods

= Results
= Probing Experiments
= Registration Demo
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I Laser Radar

3D point cloud

Not gridded

Typical lateral resolution
of 0.5 - 1.0 meters
Linear mode sensors:

= Slower collects

= Probability of detection
(pdet) values

Geiger mode sensors:
= Faster collects
= Geometry only
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I 3D Model Generation

Projective texture mapping

/ Inferred surface

Registered optical image

Ladar point cloud
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I 3D Model Generation

Point cloud

S

X . aﬁ'

Opca-l image
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g Automatic Registration Challenges

= GPS/INS has low precision

= Matching colors with geometry (inherently low mutual
information)

= Occlusion reasoning with point cloud projection
= 3D rendering
= Resolution differences

= Previous work
= Line correspondences (Frueh, Sammon, Zakhor 2004)
= Vanishing points (Ding, Lyngbaek, Zakhor 2008)
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l Projective Camera

View direction Parameters
(characterized by 3 Euler angles) to es_tlm_ate:

i f

;| C,

Cy

CZ

z
N Image plane o
B
Field of view L7
\ R (determined by focal length)

Center of projection
X
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24 ) Initial Registration

= Manual calibration is prohibitive
s User selected correspondence points
= Minimization of sum of algebraic error

mTinZi:da,g (X, TX;)?

Ay (X, TX) = dy (X', X') = (W —UW)? + (W — )2

alg

= Tis parameterized by 7, C,, C,, €, a,B,y

= Levenberg-Marquardt iterative optimization
(derivative free)
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! Statistical Registration Methods

= Commonly used for registration of multi-modal medical
imagery

= Information theoretic similarity measure with optimization
algorithm

Feature detection /
Ladar Image

Registration

Feature detectio
classification

n/
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: Example: Joint Entropy

Optical image T, =arg min—z p([u,v; 1); log p([u, v, ]),
| T i

T: camera projection matrix

¢ optical image features/labels
v. ladar image features/labels
p(:): probability mass function

Pdet Values
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) Automatic Registration Demo

Minimum joint entropy with optical
luminance and ladar elevation

Downhill simplex optimization (derivative
free)

Ladar rendered using OpenGL
Entire ladar data set in graphics memory
Approximate initial registration
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Unsupervised LIDAR/Optical Registration
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