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Processing with purpose

Adaptive Front-End Signal 
Processing

• Decision-directed Imaging and 
Reconstruction

• Modeling and Feature Extraction
• Statistical Shape Estimation

• Physics-based  feature 
representations

• Decision-directed imaging and 
reconstruction

• Feature uncertainty characterization
• Statistical shape estimation 
• Adaptation and Learning

Feature sets and feature 
uncertainties that permit fusion 

across modalities

Problem formulations that admit 
context, priors and directed 

queries 
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Where were we last time?

 Sparseness v. sparseness
 Sparse apertures
 Sparse signal representations
 Complexity reduction

 Physics-driven basis sets 
 Use prior information in basis sets
 Extract object-level information

 Physical optics for model-based imaging
 3D
 Sparse apertures

x

y

 
 



MURI: Integrated Fusion, Performance Prediction, 
and Sensor Management for Automatic Target 
Exploitation 4

New work in 2008: Themes
 Expanding the envelope

 Multistatic imaging of movers no bandwidth, no problem
 Multipass 3D imaging IFSAR on steroids
 Recursive imaging persistent surveillance made easy
 Joint mo-comp and imaging exploiting sparsity
 Hyperspectral moving beyond RF

 Balancing models and measurements
 Stein’s unbiased risk/L-curve selecting hyperparameters
 ML estimation empirical Bayes

 Closing the loop
 Sensor placement utility metric for control
 Posterior probabilities the language for fusion 

 Hyperspectral
 Sparse imaging
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New work in 2008: Themes
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Tour de MURI

 Multistatic radar imaging (Clem)

 Hyperspectral demixing (Al)

 Bayesian matched pursuits (Lee)

 Sparse + hyperparams + mocomp (Mujdat)

 Multipass 3D (Emre)

 Recursive SAR imaging (Randy)
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Multistatic imaging

 Sparsity-based reconstruction 
 Closing the loop: aperture utility metric
 Imaging moving targets 

Karl
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Multistatic Radar

 Sensing Model

 Different choices for K(t), rx, tx possible

B = bistatic angle
uB = bistatic bisector
tx = transmitted 

frequency

B
tx uB

c






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2
cos2 

Tx frequency Tx/Rx geometryReflectivity

From Wicks et al

Transmit Freq

Karl
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Many Sensing Options…

Case 1: Stationary Tx/Rx, Wideband 
waveform

Case 3: Stationary Tx, Moving Rx, 
Wideband waveform

Case 2: Stationary Tx, Moving Rx, UNB 
waveform

Case 4: Monostatic Tx/Rx, Wideband 
waveform

Karl
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Example: UNB Multistatic SAR

 UNB (single frequency)
 Ntx=10, Nrx = 55  Sparse coverage
 Uniform circular coverage
 Fourier support (resolution) 
 UNB frequency

tx

tx

Karl
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Example: UNB Multistatic SAR

LS‐L1, cw = 2MHz, SNR = 15dB

FBP, cw = 2MHz, SNR = 15dB

Truth

Karl
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Understanding Performance

 Predict performance of sensor configurations
 Guidance for sensor management

 Compressed sensing theory: performance bounds 
from Restricted Isometry constant
 Use mutual coherence of H as tractable surrogate
 # of measurements needed to reconstruct sparse scene is 

proportional to (mutual coherence)2

Karl
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Example Sampling Strategies
M
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Karl
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Results: image quality prediction

 Mutual coherence lower for multistatic configuration 
as number of probes are reduced
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Results, continued

Ground Truth Monostatic Multistatic

 Example reconstruction for Ntx/N=10 case
 Reconstructions confirm prediction

Karl
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Dynamic Scenes: Moving Targets

 Augment model to include velocity

 Insight: use sparsest solution to jointly 
identify correct velocity and scattering:





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txrx dreerfty itxirxitxirxref

ii
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))((]))[((
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Static targets at a reference time Phase shift due to motion

 
p

t
ppp nfvAy ref

 Pixels
)(

A depends on unknown scatterer velocity v in pixel p, so nonlinear problem!

Karl
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Overcomplete Problem Solution

 Linearize by sampling velocity

1
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Example: Multistatic MT imaging

 Multistatic configuration with Ntx= 10, Nrx = 55
 Dictionary does not contain true velocities

CW = 4MHz, ODTruth

Karl
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Hyperspectral image Hero

AVIRIS (JPL)
Moffett Field, CA
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Hyperspectral Unmixing

[graphic adapted from R. Baraniuk]

Hero
Sp
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ds

pixels
endmembers

abundances
noise

Abundances:
•Nonnegative
•Columns sum to 1

Endmembers:
•Nonnegative

concrete redbrick
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 Mixing coefficients lie on R-1 dimensional simplex

HeroDimension reduction

Thus, exploit parsimony

Represent signals in the 
subspace identified by PCA 
(eigendecomposition of 
the data covariance 
matrix)
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Hierarchical Bayesian model

 Graphical model structure induces posterior

• Abundances: uniform prior on simplex

• Endmembers: multivariate Gaussian; invGamma
hyperparameters with Jeffries hyperprior

Hero
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Unmixing results: data projected to simplex Hero

MCMC 
computation
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Unmixing results: endmembers Hero
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AVIRIS Data Moffett Field, CA

189 spectral bands (after deletion of water absorption bands)

Endmember estimates

Image segmentation
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Hyperspectral unmixing: summary

 Jointly estimate endmembers and abundances 
using a unified graphical model
 Combines hierarchical graphical models and dimension reduction

 significantly improves performance wrt state-of-the-art (N-FINDR, VCR) ‏

 Yield MMSE solution by averaging over likely 
solutions
 Report posterior confidence

Hero
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Sparse Linear Regression

“Are you guys still working on As + n ?”
Thomas Kailath, c. 1988

“The thing that hath been, it is that which shall be; and that which is done is that which shall be done: 
and there is no new thing under the sun.”

Ecclesiastes 1:9, c. BC  250
“There is nothing new under the sun but there are lots of old things we don't know.”

Ambrose Bierce, The Devil's Dictionary, US author & satirist (1842 - 1914)
“Neurosis is the inability to tolerate ambiguity.”

Sigmund Freud (1856 – 1939)
[graphic adapted from R. Baraniuk]

Potter
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Detection and Estimation Goals
 Soft-decision 

detection

 MMSE estimation

0.51 0.16 0.13 0.09

Potter
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Desiderata

 Report ambiguity
 Compute posterior densities for variable sets & values
 Allow arbitrary correlation among columns of Φ

 Minimize mean square estimation error
 MMSE estimate of variables

 Use domain knowledge, if available
 Interpretable family of priors with known hyperparameters, or
 ML estimation of hyper-parameters

 Compute with low complexity
 Keep order of complexity of Orthogonal Matched Pursuits

 Admit complex-valued data
 Band-pass signals in radar, spectroscopy and communications

Potter
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In a Nutshell…

 Bayesian model: Gaussian mixture
 Effective tree search for high-probability set
 Fast update of posterior
 Generalized EM for unknown hyperparameters

Potter

0
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In a Nutshell…
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Potter

0.51 0.16 0.13 0.09
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In a Nutshell…

 Bayesian model: Gaussian mixture
 Effective tree search for high-probability set
 Fast update of posterior
 Generalized EM for unknown hyperparameters

Potter

Exponential search, O(2N) 
becomes linear O(NMK)
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In a Nutshell…

 Bayesian model: Gaussian mixture
 Effective tree search for high-probability set
 Fast update of posterior
 Generalized EM for unknown hyperparameters

Potter

Learn hyperparameters from data.
ML estimate “empirical Bayes.”

0
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Posterior, p(x|y)
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Potter
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Numerical Experiments
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NMSE
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Sparsity
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Runtime

FBMP≈OMP
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Hyperparameter Selection

• Sparsity-based L2-Lp reconstruction

• … but requires the selection of the hyper-parameter λ
• Goal: Automatic choice of hyper-parameter

p
pf

fHfyf ||||||||minargˆ 2
2 

backhoe model                  conventional image sparsity-based image

Cetin
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Approaches and Numerical Methods

 Adaptation of the following parameter choice methods for 
sparsity-driven SAR imaging:
 Stein’s unbiased risk estimator (SURE)
 Generalized cross-validation  (GCV)
 L-curve

 Numerical tools for efficient implementation of these
methods, including
 Randomized trace estimation
 Derivative-free optimization through Golden section search
 Numerical derivative computation and backtracking line search

Özge Batu 28 August 2008

Cetin



MURI: Integrated Fusion, Performance Prediction, 
and Sensor Management for Automatic Target 
Exploitation 42

Results: Backhoe, 500 MHz bandwidth

Conventional GCV≈SURE L-curve

Cetin

Learn model parameters from data: 
balance models with measurements



MURI: Integrated Fusion, Performance Prediction, 
and Sensor Management for Automatic Target 
Exploitation 43

Joint imaging and model correction

 SAR observation model may not be known perfectly, due to 
e.g. uncertainties in platform location

 This leads to phase errors in observed data
 We have extended our sparsity-based imaging framework to 

optimize over the reflectivities and model parameters 
simultaneously:

p
pf

ffHyf ||||||)(||minarg)ˆ,ˆ( 2
2,



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model parameters

Cetin
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Results: Backhoe Data Set
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Cetin
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Results: Backhoe Data Set
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Cetin
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Circular SAR

 3D Imaging by Circular SAR is constrained by
 Limited Persistence of Reflectors: anisotropy
 Sparse Elevation Sampling
 Dynamically varying nonuniform spacing in 

elevation

Ertin
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3D from circular multipass SAR

 Sparse Elevation Sampling 

 Limited Persistence of Reflectors

 Time-varying nonuniform spacing in elevation

ESPRIT based parametric interferometric phase estimation

Interpolation through sparsity regularized enhancement
of single pulse images

Ertin

Subaperture imaging matched to reflector persistence
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Nonuniform Elevation Sampling

 Interpolation: sparsity regularized single pulse images

range-height
image

Ertin
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Nonuniform Elevation Sampling

 Narrow-angle imaging with the virtual interpolated 
flight paths

 use ESPRIT for height estimation

Different 
Passes

Ertin
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3D from Circular SAR Ertin
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Recursive Image Updating for Persistent 
Synthetic Aperture Radar Surveillance

 Persistent SAR
 SAR video
 Imagery on demand
 Variable aperture integration

 Insight: recursive imaging spreads 
computation over time and avoids block 
processing memory load

Moses
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Convolution Backprojection

 Range profile by filtering and backprojecting

 Window wj controls crossrange sidelobes
 J N2 computations per image 
 Recursively: 

Moses
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Third Order Recursion

 Can choose i coefficients to emulate many common 
apodization windows (e.g. Hamming).
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GOTCHA C-SAR Video Snapshots
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Moses
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Flop-free change in effective aperture

 

Recursive Processing
3° Azimuth Window

Recursive Processing
25° Azimuth Window

Moses
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Enabling video SAR

 

Recursive Processing
25° Azimuth Window

Moses

 Memory
 5.9GB to 6.0MB 

(1000:1)

 Computation
 Naturally distributed in 

time

 Consequence
 Enable real-time, 

single-CPU, SAR video
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Continuing aims

 Flexible processing responsive to fusion and management
 Accept nonconventional apertures and frequency support
 Incorporate priors or learn from data
 Exploit nature’s parsimony
 Manage complexity

 Processing methods for complex scenes
 Target motion
 3D scene structure
 Anisotropic behavior 

 Understanding of performance consequences of sensing choices
 Pre-sensing impact of sensing choices for management 

(e.g. frequency versus geometric diversity)
 Post-sensing estimates and uncertainties for fusion
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What’s next …

 Multistatic processing
 Imaging dynamic and anisotropic scenes
 Reduction in computational complexity
 Waveform diversity

 Nonlinear models
 Exploit sparsity on low-dimensional manifolds

 Performance prediction
 Expand scope of pre-sensing impact metrics
 Posterior odds for parts matching

 Uncalibrated sensing
 Addressing calibration uncertainty/mocomp


