Integrated Fusion, Performance Prediction, and Sensor Management for Automatic Target Exploitation

Inference-Aware Feature Extraction and Reconstruction

MURI Review Meeting

Müjdat Çetin, Emre Ertin, Al Hero, Clem Karl, Randy Moses, Lee Potter

November 3, 2008

Processing with purpose

Where were we last time?

- Sparseness v. sparseness
 - Sparse apertures
 - Sparse signal representations
 - Complexity reduction
- Physics-driven basis sets
 - Use prior information in basis sets
 - Extract object-level information
- Physical optics for model-based imaging
 - **3**D
 - Sparse apertures

MURI: Integrated Fusion, Performance Prediction, and Sensor Management for Automatic Target Exploitation

New work in 2008: Themes

- Expanding the envelope
 - Multistatic imaging of movers no bandwidth, no problem
 - Multipass 3D imaging IFSAR on steroids
 - Recursive imaging persistent surveillance made easy
 - Joint mo-comp and imaging exploiting sparsity
 - Hyperspectral moving beyond RF
- Balancing models and measurements
 - Stein's unbiased risk/L-curve selecting hyperpart
 - ML estimation *empirical Bayes*
- Closing the loop
 - Sensor placement utility metric for control
 - Posterior probabilities the language for full
 - Hyperspectral
 - Sparse imaging

New work in 2008: Themes

- Expanding the envelope
 - Multistatic imaging of movers no bandwidth, no problem
 - Multipass 3D imaging IFSAR on steroids
 - Recursive imaging *persistent surveillance made easy*
 - Joint mo-comp and imaging *exploiting sparsity*
 - Hyperspectral moving beyond RF
- Balancing models and measurements
 - Stein's unbiased risk/L-curve selecting hyperparameters
 - ML estimation empirical Bayes
- Closing the loop
 - Sensor placement utility metric for conti
 - Posterior probabilities the language for
 - Hyperspectral
 - Sparse imaging

MURI: Integrated Fusion, Performance Prediction, and Sensor Management for Automatic Target Exploitation

New work in 2008: Themes

- Expanding the envelope
 - Multistatic imaging of movers no bandwidth, no problem
 - Multipass 3D imaging IFSAR on steroids
 - Recursive imaging *persistent surveillance made easy*
 - Joint mo-comp and imaging *exploiting sparsity*
 - Hyperspectral moving beyond RF
- Balancing models and measurements
 - Stein's unbiased risk/L-curve selecting hyperparameters
 - ML estimation *empirical Bayes*
- Closing the loop
 - Sensor placement utility metric for control
 - Posterior probabilities the language for fusion
 - Hyperspectral
 - Sparse imaging

- Multistatic radar imaging (Clem)
- Hyperspectral demixing (Al)
- Bayesian matched pursuits (Lee)
- Sparse + hyperparams + mocomp (Mujdat)
- Multipass 3D (Emre)
- Recursive SAR imaging (Randy)

MURI: Integrated Fusion, Performance Prediction, and Sensor Management for Automatic Target Exploitation

Multistatic imaging

- Sparsity-based reconstruction
- Closing the loop: aperture utility metric
- Imaging moving targets

Sensing Model

Different choices for K(t), rx, tx possible

Exploitation

and Sensor Management for Automatic Target

Case 1: Stationary Tx/Rx, Wideband waveform

Case 3: Stationary Tx, Moving Rx, Wideband waveform

Case 2: Stationary Tx, Moving Rx, UNB waveform

Case 4: Monostatic Tx/Rx, Wideband waveform

- UNB (single frequency)
- $N_{tx} = 10$, $N_{rx} = 55$ Sparse coverage
- Uniform circular coverage

$$\hat{f} = \arg\min_{f} ||y - Hf||_{2}^{2} + \lambda ||f||_{1}^{1}$$

MURI: Integrated Fusion, Performance Prediction, and Sensor Management for Automatic Target Exploitation

Example: UNB Multistatic SAR

FBP, cw = 2MHz, SNR = 15dB

MURI: Integrated Fusion, Performance Prediction, and Sensor Management for Automatic Target Exploitation

12

- Predict performance of sensor configurations
 - Guidance for sensor management

- Compressed sensing theory: performance bounds from Restricted Isometry constant
 - Use *mutual coherence* of H as tractable surrogate
 - # of measurements needed to reconstruct sparse scene is proportional to (mutual coherence)²

$$\mu[H] = \max \frac{h_i^T h_j}{\|h_i\| \|h_j\|}$$

Example Sampling Strategies

MURI: Integrated Fusion, Performance Prediction, and Sensor Management for Automatic Target Exploitation

14

 Mutual coherence lower for multistatic configuration as number of probes are reduced

MURI: Integrated Fusion, Performance Prediction, and Sensor Management for Automatic Target Exploitation

Example reconstruction for N_{tx}/N_θ=10 case
 Reconstructions confirm prediction

MURI: Integrated Fusion, Performance Prediction, and Sensor Management for Automatic Target Exploitation

Augment model to include velocity

$$y_{rx_{i},tx_{i}}(t) = \iint_{|r| \le L} f^{t_{ref}}(r) e^{-jK(t)[(s_{rx_{i}} - s_{tx_{i}}) \cdot r]} e^{j\varphi_{rx_{i},tx_{i}}(v(r))} dr$$

Static targets at a reference time Phase shift due to motion

Insight: use sparsest solution to jointly identify correct velocity and scattering:

$$y = \sum_{\text{Pixels } p} A_p(v_p) f_p^{t_{ref}} + n$$

A depends on *unknown* scatterer velocity *v* in pixel *p*, so nonlinear problem!

Linearize by sampling velocity

$$\hat{\mathbf{f}} = \arg\min_{\mathbf{f}_{b}} || y - \mathbf{A}(\widetilde{V})\mathbf{f} || + \lambda || \mathbf{f} ||_{1}^{1}$$
$$\hat{f}_{p}^{t_{ref}} = \max_{\widetilde{V}_{p}} \hat{\mathbf{f}}_{p}$$

MURI: Integrated Fusion, Performance Prediction, and Sensor Management for Automatic Target Exploitation

Example: Multistatic MT imaging

- Multistatic configuration with Ntx= 10, Nrx = 55
- Dictionary does not contain true velocities

MURI: Integrated Fusion, Performance Prediction, and Sensor Management for Automatic Target Exploitation

MURI: Integrated Fusion, Performance Prediction, and Sensor Management for Automatic Target Exploitation

Hero

MURI: Integrated Fusion, Performance Prediction, and Sensor Management for Automatic Target Exploitation

[graphic adapted from R. Baraniuk]

Dimension reduction

Mixing coefficients lie on R-1 dimensional simplex

Thus, exploit parsimony

Represent signals in the subspace identified by PCA (eigendecomposition of the data covariance matrix)

MURI: Integrated Fusion, Performance Prediction, and Sensor Management for Automatic Target Exploitation

Graphical model structure induces posterior

$$\begin{split} f\left(\mathbf{C}, \mathbf{T}, \boldsymbol{\sigma}^{2} \middle| \mathbf{Y}\right) &\propto \prod_{p=1}^{R} \mathbf{1}_{\mathcal{S}}\left(\mathbf{c}_{p}\right) \\ &\times \prod_{r=1}^{R} \exp\left[-\frac{\left\|\mathbf{t}_{r} - \mathbf{e}_{r}\right\|^{2}}{2s_{r}^{2}}\right] \mathbf{1}_{\mathcal{T}_{r}}\left(\mathbf{t}_{r}\right) \\ &\times \prod_{p=1}^{P} \left[\left(\frac{1}{\sigma_{p}^{2}}\right)^{\frac{L}{2}+1} \exp\left[-\frac{\left\|\mathbf{y}_{p} - \left(\mathbf{U}\mathbf{T} + \bar{\mathbf{y}}\right)\mathbf{a}_{p}\right\|^{2}}{2\sigma_{p}^{2}}\right]\right] \end{split}$$

- Abundances: uniform prior on simplex
- Endmembers: multivariate Gaussian; invGamma hyperparameters with Jeffries hyperprior

Fig. 5. Scatter plot in the lower-dimensional space V_2 : projected dataset (black points), actual endmembers (black circles), endmembers estimated by N-FINDR (blue stars), endmembers estimated by VCA (green stars) and endmembers estimated by proposed approach (red stars).

Hero

Endmember estimates

Image segmentation

189 spectral bands (after deletion of water absorption bands)

- Jointly estimate endmembers and abundances using a unified graphical model
 - Combines hierarchical graphical models and dimension reduction
 - significantly improves performance wrt state-of-the-art (N-FINDR, VCR)
- Yield MMSE solution by averaging over likely solutions
 - Report posterior confidence

 $y = \Phi x + e$

"Are you guys still working on As + n ?"

Thomas Kailath, c. 1988

"The thing that hath been, it is that which shall be; and that which is done is that which shall be done: and there is no new thing under the sun."

Ecclesiastes 1:9, c. BC 250

"There is nothing new under the sun but there are lots of old things we don't know."

Ambrose Bierce, The Devil's Dictionary, US author & satirist (1842 - 1914)

"Neurosis is the inability to tolerate ambiguity."

Sigmund Freud (1856 - 1939)

- Report ambiguity
 - Compute posterior densities for variable sets & values
 - Allow arbitrary correlation among columns of Φ
- Minimize mean square estimation error
 - MMSE estimate of variables
- Use domain knowledge, if available
 - Interpretable family of priors with known hyperparameters, or
 - ML estimation of hyper-parameters
- Compute with low complexity
 - Keep order of complexity of Orthogonal Matched Pursuits
- Admit complex-valued data
 - Band-pass signals in radar, spectroscopy and communications

- Bayesian model: <u>Gaussian mixture</u>
- Effective tree search for high-probability set
- Fast update of posterior
- Generalized EM for unknown hyperparameters

MURI: Integrated Fusion, Performance Prediction, and Sensor Management for Automatic Target Exploitation

- Effective <u>tree search</u> for high-probability set
- Fast update of posterior
- Generalized EM for unknown hyperparameters

MURI: Integrated Fusion, Performance Prediction, and Sensor Management for Automatic Target Exploitation

Potter

- Bayesian model: Gaussian mixture
- Effective tree search for high-probability set
- Fast update of posterior
- Generalized EM for unknown hyperparameters

MURI: Integrated Fusion, Performance Prediction, and Sensor Management for Automatic Target Exploitation

- Bayesian model: Gaussian mixture
- Effective tree search for high-probability set
- Fast update of posterior
- Generalized EM for <u>unknown hyperparameters</u>

Learn hyperparameters from data. ML estimate "empirical Bayes."

MURI: Integrated Fusion, Performance Prediction, and Sensor Management for Automatic Target Exploitation

Posterior, p(x|y)

MURI: Integrated Fusion, Performance Prediction, and Sensor Management for Automatic Target Exploitation

N = 512, M = 128, SNR = 15 dB, $D_{max} = 5$, $E_{max} = 20$, T = 2500

MURI: Integrated Fusion, Performance Prediction, and Sensor Management for Automatic Target Exploitation

MURI: Integrated Fusion, Performance Prediction, and Sensor Management for Automatic Target Exploitation

MURI: Integrated Fusion, Performance Prediction, and Sensor Management for Automatic Target Exploitation

- ... but requires the selection of the hyper-parameter λ
- Goal: Automatic choice of hyper-parameter

Approaches and Numerical Methods Cetin

- Adaptation of the following parameter choice methods for sparsity-driven SAR imaging:
 - Stein's unbiased risk estimator (SURE)
 - Generalized cross-validation (GCV)
 - L-curve
- Numerical tools for efficient implementation of these methods, including
 - Randomized trace estimation
 - Derivative-free optimization through Golden section search
 - Numerical derivative computation and backtracking line search

Conventional

GCV≈SURE

L-curve

Learn model parameters from data: balance models with measurements

Joint imaging and model correction

- SAR observation model may not be known perfectly, due to e.g. uncertainties in platform location
- This leads to phase errors in observed data
- We have extended our sparsity-based imaging framework to optimize over the reflectivities and model parameters simultaneously:

$$(\hat{f}, \hat{\phi}) = \arg\min_{f, \phi} || y - H(\phi) f ||_2^2 + \lambda || f ||_p^p$$

model parameters

Results: Backhoe Data Set

Model Errors

MURI: Integrated Fusion, Performance Prediction, and Sensor Management for Automatic Target Exploitation

50

100

150

200

250

Results: Backhoe Data Set Conventional image Sparsity-based image 50 Without 100 Model 150 Errors 200 250 50 150 200 250 Conventional image Proposed Sparsity-based image with 50 With model error 100 Model correction Errors 150 200 250 50 100 150 200 250 ediction, and Sensor Management for Automatic Target Exploitation

- 3D Imaging by Circular SAR is constrained by
 - Limited Persistence of Reflectors: anisotropy
 - Sparse Elevation Sampling
 - Dynamically varying nonuniform spacing in elevation

3D from circular multipass SAR

Sparse Elevation Sampling

ESPRIT based parametric interferometric phase estimation

Limited Persistence of Reflectors

Subaperture imaging matched to reflector persistence

Time-varying nonuniform spacing in elevation

Interpolation through sparsity regularized enhancement of single pulse images

47

Frequency

Nonuniform Elevation Sampling

Interpolation: sparsity regularized single pulse images

Range

- Narrow-angle imaging with the virtual interpolated flight paths
- use ESPRIT for height estimation

MURI: Integrated Fusion, Performance Prediction, and Sensor Management for Automatic Target Exploitation

Recursive Image Updating for Persistent Synthetic Aperture Radar Surveillance

Moses

I(x,y)

- Persistent SAR
 - SAR video
 - Imagery on demand
 - Variable aperture integration
- Insight: recursive imaging spreads computation over time and avoids block processing memory load

$$I_k = \lambda I_{k-1} + R_{\phi_k}$$

Range profile by filtering and backprojecting

 $r_{\phi_j}(t) o R_{\phi_j}(x,y)$

- Window w_i controls crossrange sidelobes
- J N² computations per image
- Recursively:

$$I_{k} = \sum_{m=1}^{m} \alpha_{m} I_{k-m} + \beta R_{\phi_{k}},$$

MURI: Integrated Fusion, Performance Prediction, and Sensor Management for Automatic Target Exploitation

Moses

Third Order Recursion

 $I_{k} = \alpha_{1}I_{k-1} + \alpha_{2}I_{k-2} + \alpha_{3}I_{k-3} + \beta R_{\phi_{k}}$

 Can choose α_i coefficients to emulate many common apodization windows (e.g. Hamming).

GOTCHA: f_c =9.6 GHz, 640 MHz BW, 45° elev, 3° azimuth

Flop-free change in effective aperture Moses

Recursive Processing 3° Azimuth Window

Recursive Processing 25° Azimuth Window

MURI: Integrated Fusion, Performance Prediction, and Sensor Management for Automatic Target Exploitation

- Memory
 5.9GB to 6.0MB (1000:1)
- Computation
 - Naturally distributed in time
- Consequence
 - Enable real-time, single-CPU, SAR video

Recursive Processing 25° Azimuth Window

MURI: Integrated Fusion, Performance Prediction, and Sensor Management for Automatic Target Exploitation

Continuing aims

- Flexible processing responsive to fusion and management
 - Accept nonconventional apertures and frequency support
 - Incorporate priors or learn from data
 - Exploit nature's parsimony
 - Manage complexity
- Processing methods for complex scenes
 - Target motion
 - 3D scene structure
 - Anisotropic behavior
- Understanding of performance consequences of sensing choices
 - Pre-sensing impact of sensing choices for management (e.g. frequency *versus* geometric diversity)
 - Post-sensing estimates and uncertainties for fusion

What's next ...

- Multistatic processing
 - Imaging dynamic and anisotropic scenes
 - Reduction in computational complexity
 - Waveform diversity
- Nonlinear models
 - Exploit sparsity on low-dimensional manifolds
- Performance prediction
 - Expand scope of pre-sensing impact metrics
 - Posterior odds for parts matching
- Uncalibrated sensing
 - Addressing calibration uncertainty/mocomp

