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ABSTRACT

A variational approach based on level set methods popuianage
segmentation is presented for learning discriminativesifeers it
general feature spaces. Nonlinear, nonparametric daciand
aries are obtained by minimizing an energy functional thebipo
rates a margin-based loss function. The class of level sgbui
decision boundaries is discussed in terms of the struatistamin-
imization principle. A variation or; feature subset selection is
veloped. Use of level set classifiers as base learners fatibgas
discussed.

Index Terms— pattern classification, supervised learning, level

set methods, feature selection

1. INTRODUCTION

One of the central problems of machine learning is supedviis-
criminative learning of binary classifiers. It is a fundar@mprob-
lem and the foundation for many other learning tasks as vedilea
ing important in numerous applications. Given trainingrepées in
some feature space labeled with one of two values, the gtafiisd
boundaries that divide that feature space into two pamstiohich
classify unseen examples well.

(a) (b)

Fig. 1. An illustration of the level set representation of a contou
The contour is shown in (a) and the level set function market w
its zero level set is shown in (b) as a surface plot.

away from this paradigm by using an implicit representatioh
scalar-valued functiop, known as the level set function, is used
to represent the contour. The function is zero on the cordodr
only on the contour. The contour is the zero level setpofThe
idea is illustrated in Fig. 1. Any shape can be representetljding

Segmentation is a key problem in image processing and comggjogies with disconnected pieces. The level set reptaten is
puter vision. Given an image, the goal is to find boundari@s th 1,46 flexible than parametric representations.

partition that image into regions. Regions should be imtligily

homogeneous and different regions distinct. One can natepir-

titioning images and partitioning general feature spacessanilar

problems. In this paper, we develop a methodology for sugedv
learning using the level set approach, a technique whictbbas
successfully applied to image segmentation [1].

Several well-developed techniques for supervised disnétive
learning exist in the literature, including the perceptadgorithm
[2], logistic regression [3], and support vector machir@gNis) [4].
All of these approaches, in their basic form, produce lirteaision
boundaries. Nonlinear boundary contours in the given feagpace
can be obtained using the following technique: mapping tingi-o

The problem of image segmentation is approached by comstruc
ing an energy functional with the level set function as iguanent
that is minimized when the contour divides the space into @go
segmentation. One example is mean squared error of imaayesityt
with two different ‘true’ image intensities inside the coat and out-
side the contour. In this work for general supervised clecsgion,
we develop an energy functional based on classifier marased
loss functions such as zero-one loss, hinge loss, logisss, land
exponential loss [6]. The formulation presented in Sec.r? use
any margin-based loss function, even discontinuous lasstifins,
which is not the case with many learning algorithms. (SVMstie
hinge loss by definition and logistic regression uses thistisgoss

nal feature space to a feature space of higher dimensionkingta by definition.)

nonlinear functions of the original features. Learningoaidnms are
applied to the new higher dimensional feature space byitiggatich
dimension linearly. They retain the efficiency of the oraifower
dimensional space for particular sets of nonlinear fumstithrough
the use of kernels [5]. Such contours are parametric in tiggnait

feature space.

Many approaches to image segmentation also represent boung]

ary contours parametrically. The level set approach, hewdéveaks

This work was supported in part by an NSF Graduate ResealtldwFe
ship, by Shell International Exploration and Productiow,. ) and by a MURI
funded through AFOSR Grant FA9550-06-1-0324.

By finding nonlinear contours directly in the original festu
space rather than some higher dimensional space, we céghstra
forwardly encode constraints or additional objectivesudtibe de-
cision boundaries. One such example, a variatioth deature se-
lection [7], is presented in Sec. 4. Additionally, if one igdrested
in interpreting the shape or properties of the decision Haoy do-
INg so is more direct with nonlinear contours defined in thigioal
space. Also, with the level set representation, one doebawat to
worry about parameterization selection or kernel selactio

We are not the first to notice the connection between levétrset
age segmentation and classification, but to the best of mwlkadge,



there has been very little prior work in this area. In [8],lyujen-
eral feature spaces are not considered. In particular, gesmust
be pixels in an image with the feature vector containing teial
index of the pixel along with other features. The work of [@led
consider general feature spaces, but has a very differenggfunc-
tional than our margin-based loss functional. Itis basedaamts of
training examples in grid cells and is similar to the mearased er-
ror functional for image segmentation described above.|&@ming
is also based on one-class classification rather than sthdidarim-
inative classification. In [10], using level set methods density-
based clustering in general feature spaces is considered.

|[Ve(x)| = 1. The magnitude of the signed distance function at
a pointx equals the distance from to C, and its sign indicates
whether it is inR or R°. The signed distance function is used
because it is well-behaved with respect to calculating tivenal n
and other geometric quantities. As discussed in Sec. 2%igmed
distance function is also intimately related to classifaatmargin.

It should be noted that level set update (2) does not take the
constraint V| = 1 into account. The result of updating a signed
distance function using (2) is not a signed distance fundtiogen-
eral. A level set function may be reinitialized as a signestatice
function iteratively through the Eikonal partial diffettéal equation

The paper is organized as follows. In Sec. 2, the basic formufVe| = 1.

lation for using level set methods to train a binary classiepre-
sented. Sec. 3 discusses the issue of overfitting and thewstbrisk
minimization principle with respect to the level set cléissi Sec. 4
describes an approach for feature selection uginginimization
that can be integrated into the formulation of Sec. 2. In Sewe
discuss how level set classifiers can be used as base clasgifie
boosting. Sec. 6 provides examples on both generated andbatea
whereas Sec. 7 gives a summary of the work.

2. LEVEL SET SUPERVISED CLASSIFICATION

In this section, we give a brief primer on level set methods then
cast supervised classification in the same framework. Téeature
on level set methods is vast; we only present the ideas reayess
develop the novel classifier. One excellent source of in&tiom on
level set methods is [11].

2.1. Level Set Method for a Variational Problem

Consider the domain witkk € Q@ ¢ R, which is usually the pixel
or voxel domain in image segmentation. A cont@upartitions2
into two regionsRk and R°, which can be of any topology. A vari-
ational problem is to be solved: find the cont@uito minimize the
energy functional

B(C) = [ foix. @
R

By the calculus of variations, it may be shown that the firsiateon
g—g = fn, wheren is the unit normal vector t@'. The energy
functional is minimized Wher% = 0. Starting from some initial
contour, the minimum can be approached by moving in the ivegat
gradient direction. This is known as contour evolution. Diefj a
time parametet, the change in the contour £ = — fn.?

We represent the evolving contour as the zero level set af@ fu
tion p(x;t). The level set function satisfies the following properties:
p(x;t) < 0for x € R(t), p(x;t) > 0 for x € R°(t), and of
coursep(x; t) = 0 for x on the contou’'(¢). Evolving the contour
is equivalent to updating the level set function. The leetlupdate
to minimize (1) is:

pi(x) = f(x)n(x). @)
The energy functional can be written with instead ofC as the
argument.
The properties of the level set function given above areequit
unconstrained. The level set function is often specialipebe the
signed distance function, satisfying the additional caist that

1The equation‘;—g = 0is an Euler-Lagrange partial differential equation.

°Note that for energy functionals over the regidif, i.e. E(C) =
ch f(x)dx, the first variationg—g is —fn and the change in the contour
is %—f = fn.

2.2. Supervised Discriminative Classification

Having given a brief description of using level set methadmin-
imize energy functionals, we now come to the problem of super
vised discriminative training of classifiers. Consider ttaning set
{(x1,%1), ..., (xar,yar)}, with feature vectors,,, € Q ¢ R” and
labelsy,, € {—1,+1}. A classifier is a mapping from feature vec-
tors to labelsh : Q@ — {—1,+1}. Also consider the loss function
L(z), wherez is referred to as theargin.®

The margin of an example in the training set is its distance to
the classifier decision boundary. The sign of the margin &itpe if
the example is on the ‘right’ side of the boundary and negafithe
example is on the ‘wrong’ side. That is,,, the margin of example
m, is positive ifh(xm) = ym and negative ifi(xm) # ym. The
classifier can thus be written a$x,,) = sign(ymzm). From this
description of margin and the description of signed distafumc-
tion in Sec. 2.1, it is apparent that the following equaditigold:
Zm = ym@(xm); L(Zm) = L(ymso(xm)); @(Xm) = YmZm, and
h(xm) = sign(p(xm)).

The objective of discriminative training is to find the déors
boundary that minimizes the sum of the loss in the training se
Based on the observation relating the signed distance iumad
classifier margin, the objective can be written as an enenggtional
like (1) with a particularf (x). The energy functional is:

M

E(C) = F)dx =" Ligmp(xm). ()
Q=R+Re m=1
The level set update equation is:
Pt(xm) = — sign(e(Xm)) L(yme(xm))n(xm). (4)

To learn the classifier, we start with some initial contour or
equivalently signed distance function and evolve it acecgrdo the
level set update equation. Frequently reinitializing #heel set func-
tion to a signed distance function is more important here thigh
other energy functionals because the energy functionardépon
the actual value of the margin. The procedure is implemeoted
D-dimensional grid with values @f(x.,) obtained by interpolation.

SExamples of loss functions include:

1, 2<0

Lzero-one(z) = {0 2>0
1—-2, z<1
Lhinge(z) = {0 2>1

Llogistic(z) =log(l+e %)

Lexponenlia(z) =e *.
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Fig. 2. Controlling classifier complexity using a contour area
penalty. The plot shows the estimated VC dimensj@s a function

of the weight given to the contour area penaltyn a logarithmic
scale.

3. STRUCTURAL RISK MINIMIZATION PRINCIPLE

The goal of learning is not good classification performantérain-
ing examples, but good performance on unseen examples.
real criterion is not training error, but generalizatiomoer The
structural risk minimization principle specifies a tradeoétween
training error and classifier complexity measured usingvidgenik-
Chervonenkis (VC) dimension [4]. The principle begs thestjioa:
how can the complexity of a level set classifier be contr@lled
Since any shape (up to the discretization in the grid usechin i

plementation) can be represented using the level set amativer-
fitting can be an issue. One way to prevent overfitting is tolaize
the energy functional (3) with a contour area penalty agfait

M

Ew(C) = 3 Llymplxn)) +a  ds,

m=1 C

®)

whereds is an infinitesimal area element on the contéuandc is
the weight given to the regularization term. Working thrbige first
variation of the functional, it can be shown that the levelgelate
equation is:

pr(xm) = (= sign(p(xm)) L(yme (xm)) + ar(xn)) n(xm),
(6)

wherex is the mean curvature of the contour.
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Fig. 3. Classifiers learned from one instance of a random training
set for (a) smaller and (b) larger values@fused to estimate VC-
dimension by the procedure of [12].

o)
8

Fig. 4. Decision boundary that (a) uses all features, and (b) tselec

Thie two features:, andxs for classification. Note that the figures

show the decision boundary contours, not the level setifumct

one initialization. The smoother contour correspondinth&larger
value ofa can shatter fewer points. In this section, it has been shown
empirically that the complexity of the classifier measurgd\C
dimension can be directly controlled using the weight on rat@ar
area regularization term.

4. FEATURE SELECTION

In feature spaces where some of the dimensions are irrelévan
classification, feature subset selection is important &vemt over-
fitting [7]. The idea is to learn classifiers which only make o$the
relevant dimensions. Linear decision boundariesindimensional
space can be specified with a lend®hvector of coefficients; feature
selection can be formulated through the preference thatcteffi-
cient vector be sparse, i.e. have few nonzero elementZ; Axorm
penalty is well known for producing sparse solutions as aelbe-
ing tractable. In this section, we extend the idedebased feature

We can empirically measure the VC dimension of classifiersSelection for linear decision boundaries to decision bauied rep-

with the contour area penalty using the procedure outlindd 2).
Using Lzero-ond-) and random initializations, we perform contour
evolution to minimize (5) on ten sets of randomly generatai#
ing sets with3000 positive and3000 negative examples and = 2.
Carrying this out for several values of the regularizaticzight o,
estimating the VC dimension using the calculation of [12id av-
eraging over the ten trials gives a plot of estimated VC disiam,

as a function ofx. The grid is eighty by eighty, and similar results
are obtained for other loss functions.

The relationship between and «, shown in Fig. 2 is nearly

monotonic. Fig. 3 shows the classifiers for smaller and largkies

of a corresponding to one instance of the random training set and

resented by level set functions.

First, let us consider what it means for a classifier to useobr n
use afeature. As seen in Fig. 4, a classifier that does notpetie
ular feature is a cylinder with any cross-section whoseigxarallel
to that feature dimension. In other words, the decision Haonis
constant and does not change as a function of the unuseddeatu
The partial derivative of the level set function with resptxthe
unused feature.., (x) is zero for allx € Q.

If oo, (x) = 0for all x € Q, then the scalar value:

[ 1o Golax
Q
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Fig. 5. Contour evolution with the contour area penalty and one ofrjg 6 Cjassifier learned from 500 examples using zero-one loss.

the partial derivative terms for feature selection. Thdugian from
the initial contour to the final contour is shown in rastemsoeder.
For this illustration, the energy functional contains rairimg loss
term. The final contour is a cylinder.

equals zero. Consequently, a lengihvector:

Jo 1@ (%)|dx

Joy 2 (%) dx

may be constructed, which should be sparse for feature ssilee-
tion.

Applying the ¢;-norm to this vector and appending it to (5),
gives the following energy functional:

D
Eu(C) = Fg(C) + 83 / |par (30|,

i=1 Q

@)

The magenta markers are training examples with label and the
black+ markers are training examples with label plotted on the
x1—x2 plane. The blue lines are the classifier decision boundaries

for boosting. Boosting is quite general with few requireitsesn the
base classifiers.

The first requirement is the ability to weight the examplethin
training set. The energy functional (3) is easily modifiedhwion-
negative weightsv,,, that sum to one:

M
Z Mwm L(y77LQ0(Xm))~

m=1

9)

The second requirement is that there should be an orderitigeof
base classifiers.

In most instances of boosting, the base classifiers arelBuica
‘weak learners’ and counting their votes is a way to make @nsgtr
classifier. Here, the motivation is not so much due to the bkse
sifiers being weak, but that implementation of level set mdshfor

where is the weight given to the feature selection term. The levellarge feature space dimensid@h becomes cumbersome due to the

set function update is readily obtained:
@1 (xm) = — sign(o(xm)) L(yme(xm))n(xm)

D
+ (aﬁ(xm) +0) Iwwi(xm)|> n(xm).  (8)

i=1

The above contour evolution may be used for feature subleetise

integrated with classifier training in the same way as, famegle,

£1-regularized logistic regression for linear decision kaanes [7].

In Fig. 5, we show contour evolution from an initial contouittw
the energy functional containing one of thepartial derivative fea-
ture selection terms and containing no training loss terime flhal

contour is a cylinder, as in Fig. 4b.

5. BASE CLASSIFIERS FOR BOOSTING

Boosting and in particular the AdaBoost algorithm is a wagee
quentially design ensemble classifiers from a set of bassifilers
[13]. We propose the use of level set classifiers as basefidess

need to store and updatelzdimensional grid. Consequently, the
base classifiers that we employ are level set classifiershwise

d < D dimensions of the feature space. We randomly sample the
dimensions without replacement to obtain an ordering. &rding
through this order in sets of cardinalitigives the base classifiers
for the sequential learning of the ensemble classifier bytiog.

6. EXAMPLES

In this section, we give a few examples of classifiers leafneth
both generated and real data, including with the integrégature
selection. The real data comes from geology and geophykiEsyo
classes are sandstone and shale, and the features areapektigs.
We also compare the ten-fold cross-validation error of éwell set
classifier described in this paper with other classifiersvam stan-
dard datasets from the UCI machine learning repository. [14]
The first training set consists of 500 examples of generated t
dimensional data, as shown in Fig. 6. A linear decision bamd
would clearly be unable to well-classify this type of datdeTclas-
sifier that is learned using the zero-one loss in (5), alsevehio



Fig. 7. Classifier learned from 500 examples using logistic lose T
magentax markers are training examples with labell and the
black + markers are training examples with label plotted on the
x1—x2 plane. The blue lines are the classifier decision boundaries

Fig. 6, partitions the domain into three regions, the owter ¢orre-
sponding to label-1 and the inner one corresponding to labdl.

The second training set is also 500 examples of generated tw

dimensional data, shown in Fig. 7. A classifier is learnedgithe
logistic loss function. The circular boundary matches wéth the
training examples. There are also some decision boundairite
corners of the domain where there are no training exampleesa
boundaries have little effect on classifier performance.

The third training set consists of real geologic data. The tw
features are density and acoustic velocity, i.e. the spéechizh
sound waves propagate through the material. The data wagedq
with wireline logs in an offshore oilfield, along with variswther
measurements. On the basis of the other features, the esmirgple
been assigned a rock type: sandstone and shale. The tragtiig
shown in Fig. 8. A classifier is learned on this set using tlygsta
loss function as well. The decision boundary that is leaiadairly
complex, but not overly so. The large curved boundary on titeain
right does not affect training error, but does affect thadtig loss;
its presence reduces the loss incurred by misclassifiedmzam

We now show the effect of training with thg feature selection
term of Sec. 4 included. A classifier, shown in Fig. 9, is learon
the geologic data set, again with logistic loss. It can beadthat the
classifier is not fully a cylinder like the final contour of Fif, but
is much more cylindrical than the classifier without featsetection
given in Fig. 8. Density is a more relevant feature than agous
velocity in distinguishing shale from sandstone, but atowglocity
is not completely irrelevant either.

The final example looks at using the feature selection teremwh
all of the features are completely relevant. We train a dies®n the
same generated training set as above that produced théacida4
cision boundary in Fig. 7, but this time with tkie feature selection.
The learned classifier, shown in Fig. 10, is nearly identioalhe
classifier learned without feature selection. This exarsptavs that
training with feature selection does not eliminate feauteat are
important for classification performance. One differenetween
the classifier learned with feature selection and withoatuie se-
lection is that the artifactual decision boundaries on tmers are
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Fig. 8. Classifier learned from 1210 examples using logistic loss.
The magentax markers are training examples with lalselle and

the black+ markers are training examples with labahdstone plot-

ted on the acoustic velocity—density plane. The blue lirestiae
classifier decision boundaries.

not present with feature selection. By removing these ¢draend-

gries, the value of thé, term is decreased with very little change to

the loss term and contour area term.

We now look at the testing performance of classifiers designe
by contour evolution to minimize (5). Two standard datasets
considered, the Pima Indians diabetes dataset and the WSiaadi-
agnostic breast cancer dataset [14]. Test performance asured
using ten-fold cross-validation. AdaBoost with= 2, as described
in Sec. 5, is used with logistic loss. The regularizationapzeter
« is manually set td.4 beforehand for both datasets. A principled
method of selecting the parameter such as by cross-validatay
be used in future work; hence there is room for improvemetiién
results.

We perform four rounds of boosting on the eight-dimensional
feature space of the Pima Indians diabetes dataset, olyél6i95%
ten-fold cross-validation error. With fifteen boosting ndis on
the thirty-dimensional feature space of the Wisconsin mtagc
breast cancer dataset, the ten-fold cross-validatiorr &16.68%.
These preliminary results are competitive with other dfess.
The error percentages reported in [9] for other classifierdhe
two datasets are: (23.69%, 7.02%) for the naive Bayesifitass
(25.64%, 4.92%) for the Bayes net classifier, (27.86%, 3)6&#b6
the k-nearest neighbor classifier with inverse distance weighti
(27.33%, 7.20%) for the C4.4 decision tree, (26.17%, 6.85%0)
the C4.5 decision tree, (25.64%, 7.21%) for the naive Baness
classifier, (22.66%, 2.28%) for the SVM classifier with palymal
kernel, (24.60%, 5.79%) for the radial basis function netn@as-
sifier, and (29.94%, 6.50%) for the level learning set cfagsof

9.

7. CONCLUSION

In this paper, a novel, nonlinear, nonparametric clasdiféer been
developed that minimizes margin-based training loss. Pipeaach,
a type of level set segmentation of the feature space, canpoate
any margin-based loss function. Any shape decision boynckan
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