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ABSTRACT

A variational approach based on level set methods popular inimage
segmentation is presented for learning discriminative classifiers in
general feature spaces. Nonlinear, nonparametric decision bound-
aries are obtained by minimizing an energy functional that incorpo-
rates a margin-based loss function. The class of level set contour
decision boundaries is discussed in terms of the structuralrisk min-
imization principle. A variation onℓ1 feature subset selection is de-
veloped. Use of level set classifiers as base learners for boosting is
discussed.

Index Terms— pattern classification, supervised learning, level
set methods, feature selection

1. INTRODUCTION

One of the central problems of machine learning is supervised dis-
criminative learning of binary classifiers. It is a fundamental prob-
lem and the foundation for many other learning tasks as well as be-
ing important in numerous applications. Given training examples in
some feature space labeled with one of two values, the goal isto find
boundaries that divide that feature space into two partitions which
classify unseen examples well.

Segmentation is a key problem in image processing and com-
puter vision. Given an image, the goal is to find boundaries that
partition that image into regions. Regions should be individually
homogeneous and different regions distinct. One can note that par-
titioning images and partitioning general feature spaces are similar
problems. In this paper, we develop a methodology for supervised
learning using the level set approach, a technique which hasbeen
successfully applied to image segmentation [1].

Several well-developed techniques for supervised discriminative
learning exist in the literature, including the perceptronalgorithm
[2], logistic regression [3], and support vector machines (SVMs) [4].
All of these approaches, in their basic form, produce lineardecision
boundaries. Nonlinear boundary contours in the given feature space
can be obtained using the following technique: mapping the origi-
nal feature space to a feature space of higher dimension by taking
nonlinear functions of the original features. Learning algorithms are
applied to the new higher dimensional feature space by treating each
dimension linearly. They retain the efficiency of the original lower
dimensional space for particular sets of nonlinear functions through
the use of kernels [5]. Such contours are parametric in the original
feature space.

Many approaches to image segmentation also represent bound-
ary contours parametrically. The level set approach, however, breaks
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Fig. 1. An illustration of the level set representation of a contour.
The contour is shown in (a) and the level set function marked with
its zero level set is shown in (b) as a surface plot.

away from this paradigm by using an implicit representation. A
scalar-valued functionϕ, known as the level set function, is used
to represent the contour. The function is zero on the contourand
only on the contour. The contour is the zero level set ofϕ. The
idea is illustrated in Fig. 1. Any shape can be represented, including
topologies with disconnected pieces. The level set representation is
more flexible than parametric representations.

The problem of image segmentation is approached by construct-
ing an energy functional with the level set function as its argument
that is minimized when the contour divides the space into a good
segmentation. One example is mean squared error of image intensity
with two different ‘true’ image intensities inside the contour and out-
side the contour. In this work for general supervised classification,
we develop an energy functional based on classifier margin-based
loss functions such as zero-one loss, hinge loss, logistic loss, and
exponential loss [6]. The formulation presented in Sec. 2 can use
any margin-based loss function, even discontinuous loss functions,
which is not the case with many learning algorithms. (SVMs use the
hinge loss by definition and logistic regression uses the logistic loss
by definition.)

By finding nonlinear contours directly in the original feature
space rather than some higher dimensional space, we can straight-
forwardly encode constraints or additional objectives about the de-
cision boundaries. One such example, a variation ofℓ1 feature se-
lection [7], is presented in Sec. 4. Additionally, if one is interested
in interpreting the shape or properties of the decision boundary, do-
ing so is more direct with nonlinear contours defined in the original
space. Also, with the level set representation, one does nothave to
worry about parameterization selection or kernel selection.

We are not the first to notice the connection between level setim-
age segmentation and classification, but to the best of our knowledge,



there has been very little prior work in this area. In [8], fully gen-
eral feature spaces are not considered. In particular, examples must
be pixels in an image with the feature vector containing the spatial
index of the pixel along with other features. The work of [9] does
consider general feature spaces, but has a very different energy func-
tional than our margin-based loss functional. It is based oncounts of
training examples in grid cells and is similar to the mean squared er-
ror functional for image segmentation described above. Thelearning
is also based on one-class classification rather than standard discrim-
inative classification. In [10], using level set methods fordensity-
based clustering in general feature spaces is considered.

The paper is organized as follows. In Sec. 2, the basic formu-
lation for using level set methods to train a binary classifier is pre-
sented. Sec. 3 discusses the issue of overfitting and the structural risk
minimization principle with respect to the level set classifier. Sec. 4
describes an approach for feature selection usingℓ1 minimization
that can be integrated into the formulation of Sec. 2. In Sec.5, we
discuss how level set classifiers can be used as base classifiers in
boosting. Sec. 6 provides examples on both generated and real data,
whereas Sec. 7 gives a summary of the work.

2. LEVEL SET SUPERVISED CLASSIFICATION

In this section, we give a brief primer on level set methods and then
cast supervised classification in the same framework. The literature
on level set methods is vast; we only present the ideas necessary to
develop the novel classifier. One excellent source of information on
level set methods is [11].

2.1. Level Set Method for a Variational Problem

Consider the domain withx ∈ Ω ⊂ R
D, which is usually the pixel

or voxel domain in image segmentation. A contourC partitionsΩ
into two regionsR andRc, which can be of any topology. A vari-
ational problem is to be solved: find the contourC to minimize the
energy functional

E(C) =

Z

R

f(x)dx. (1)

By the calculus of variations, it may be shown that the first variation
δE

δC
= fn, wheren is the unit normal vector toC. The energy

functional is minimized whenδE

δC
= 0.1 Starting from some initial

contour, the minimum can be approached by moving in the negative
gradient direction. This is known as contour evolution. Defining a
time parametert, the change in the contour is∂C

∂t
= −fn.2

We represent the evolving contour as the zero level set of a func-
tion ϕ(x; t). The level set function satisfies the following properties:
ϕ(x; t) < 0 for x ∈ R(t), ϕ(x; t) > 0 for x ∈ Rc(t), and of
courseϕ(x; t) = 0 for x on the contourC(t). Evolving the contour
is equivalent to updating the level set function. The level set update
to minimize (1) is:

ϕt(x) = f(x)n(x). (2)

The energy functional can be written withϕ instead ofC as the
argument.

The properties of the level set function given above are quite
unconstrained. The level set function is often specializedto be the
signed distance function, satisfying the additional constraint that

1The equationδE

δC
= 0 is an Euler-Lagrange partial differential equation.

2Note that for energy functionals over the regionRc, i.e. E(C) =
R

Rc f(x)dx, the first variationδE

δC
is −fn and the change in the contour

is ∂C

∂t
= fn.

|∇ϕ(x)| = 1. The magnitude of the signed distance function at
a point x equals the distance fromx to C, and its sign indicates
whether it is inR or Rc. The signed distance function is used
because it is well-behaved with respect to calculating the normaln
and other geometric quantities. As discussed in Sec. 2.2, the signed
distance function is also intimately related to classification margin.

It should be noted that level set update (2) does not take the
constraint|∇ϕ| = 1 into account. The result of updating a signed
distance function using (2) is not a signed distance function in gen-
eral. A level set function may be reinitialized as a signed distance
function iteratively through the Eikonal partial differential equation
|∇ϕ| = 1.

2.2. Supervised Discriminative Classification

Having given a brief description of using level set methods to min-
imize energy functionals, we now come to the problem of super-
vised discriminative training of classifiers. Consider thetraining set
{(x1, y1), . . . , (xM , yM )}, with feature vectorsxm ∈ Ω ⊂ R

D and
labelsym ∈ {−1, +1}. A classifier is a mapping from feature vec-
tors to labels,h : Ω → {−1, +1}. Also consider the loss function
L(z), wherez is referred to as themargin.3

The margin of an example in the training set is its distance to
the classifier decision boundary. The sign of the margin is positive if
the example is on the ‘right’ side of the boundary and negative if the
example is on the ‘wrong’ side. That is,zm, the margin of example
m, is positive ifh(xm) = ym and negative ifh(xm) 6= ym. The
classifier can thus be written ash(xm) = sign(ymzm). From this
description of margin and the description of signed distance func-
tion in Sec. 2.1, it is apparent that the following equalities hold:
zm = ymϕ(xm); L(zm) = L(ymϕ(xm)); ϕ(xm) = ymzm; and
h(xm) = sign(ϕ(xm)).

The objective of discriminative training is to find the decision
boundary that minimizes the sum of the loss in the training set.
Based on the observation relating the signed distance function to
classifier margin, the objective can be written as an energy functional
like (1) with a particularf(x). The energy functional is:

E(C) =

Z

Ω=R+Rc

f(x)dx =

M
X

m=1

L(ymϕ(xm)). (3)

The level set update equation is:

ϕt(xm) = − sign(ϕ(xm)) L(ymϕ(xm))n(xm). (4)

To learn the classifier, we start with some initial contour or
equivalently signed distance function and evolve it according to the
level set update equation. Frequently reinitializing the level set func-
tion to a signed distance function is more important here than with
other energy functionals because the energy functional depends on
the actual value of the margin. The procedure is implementedon a
D-dimensional grid with values ofϕ(xm) obtained by interpolation.

3Examples of loss functions include:

Lzero-one(z) =

(

1, z < 0

0, z ≥ 0

Lhinge(z) =

(

1 − z, z < 1

0, z ≥ 1

Llogistic(z) = log(1 + e−z)

Lexponential(z) = e−z .
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Fig. 2. Controlling classifier complexity using a contour area
penalty. The plot shows the estimated VC dimensionη as a function
of the weight given to the contour area penaltyα on a logarithmic
scale.

3. STRUCTURAL RISK MINIMIZATION PRINCIPLE

The goal of learning is not good classification performance on train-
ing examples, but good performance on unseen examples. The
real criterion is not training error, but generalization error. The
structural risk minimization principle specifies a tradeoff between
training error and classifier complexity measured using theVapnik-
Chervonenkis (VC) dimension [4]. The principle begs the question:
how can the complexity of a level set classifier be controlled?

Since any shape (up to the discretization in the grid used in im-
plementation) can be represented using the level set function, over-
fitting can be an issue. One way to prevent overfitting is to regularize
the energy functional (3) with a contour area penalty as follows:

Ereg(C) =
M
X

m=1

L(ymϕ(xm)) + α

I

C

ds, (5)

whereds is an infinitesimal area element on the contourC andα is
the weight given to the regularization term. Working through the first
variation of the functional, it can be shown that the level set update
equation is:

ϕt(xm) = (− sign(ϕ(xm)) L(ymϕ(xm)) + ακ(xm))n(xm),
(6)

whereκ is the mean curvature of the contour.
We can empirically measure the VC dimension of classifiers

with the contour area penalty using the procedure outlined in [12].
Using Lzero-one(·) and random initializations, we perform contour
evolution to minimize (5) on ten sets of randomly generated train-
ing sets with3000 positive and3000 negative examples andD = 2.
Carrying this out for several values of the regularization weight α,
estimating the VC dimension using the calculation of [12], and av-
eraging over the ten trials gives a plot of estimated VC dimensionη
as a function ofα. The grid is eighty by eighty, and similar results
are obtained for other loss functions.

The relationship betweenη and α, shown in Fig. 2 is nearly
monotonic. Fig. 3 shows the classifiers for smaller and larger values
of α corresponding to one instance of the random training set and

(a) (b)

Fig. 3. Classifiers learned from one instance of a random training
set for (a) smaller and (b) larger values ofα used to estimate VC-
dimension by the procedure of [12].

(a) (b)

Fig. 4. Decision boundary that (a) uses all features, and (b) selects
the two featuresx2 andx3 for classification. Note that the figures
show the decision boundary contours, not the level set function.

one initialization. The smoother contour corresponding tothe larger
value ofα can shatter fewer points. In this section, it has been shown
empirically that the complexity of the classifier measured by VC
dimension can be directly controlled using the weight on a contour
area regularization term.

4. FEATURE SELECTION

In feature spaces where some of the dimensions are irrelevant for
classification, feature subset selection is important to prevent over-
fitting [7]. The idea is to learn classifiers which only make use of the
relevant dimensions. Linear decision boundaries in aD-dimensional
space can be specified with a lengthD vector of coefficients; feature
selection can be formulated through the preference that this coeffi-
cient vector be sparse, i.e. have few nonzero elements. Anℓ1-norm
penalty is well known for producing sparse solutions as wellas be-
ing tractable. In this section, we extend the idea ofℓ1-based feature
selection for linear decision boundaries to decision boundaries rep-
resented by level set functions.

First, let us consider what it means for a classifier to use or not
use a feature. As seen in Fig. 4, a classifier that does not use apartic-
ular feature is a cylinder with any cross-section whose axisis parallel
to that feature dimension. In other words, the decision boundary is
constant and does not change as a function of the unused featurexi.
The partial derivative of the level set function with respect to the
unused featureϕxi

(x) is zero for allx ∈ Ω.
If ϕxi

(x) = 0 for all x ∈ Ω, then the scalar value:

Z

Ω

|ϕxi
(x)|dx



Fig. 5. Contour evolution with the contour area penalty and one of
the partial derivative terms for feature selection. The evolution from
the initial contour to the final contour is shown in raster scan order.
For this illustration, the energy functional contains no training loss
term. The final contour is a cylinder.

equals zero. Consequently, a lengthD vector:

2

6

4

R

Ω
|ϕx1

(x)|dx
...

R

Ω
|ϕxD

(x)|dx

3

7

5

may be constructed, which should be sparse for feature subset selec-
tion.

Applying the ℓ1-norm to this vector and appending it to (5),
gives the following energy functional:

Efs(C) = Ereg(C) + β

D
X

i=1

Z

Ω

|ϕxi
(x)|dx, (7)

whereβ is the weight given to the feature selection term. The level
set function update is readily obtained:

ϕt(xm) = − sign(ϕ(xm)) L(ymϕ(xm))n(xm)

+

 

ακ(xm) + β

D
X

i=1

|ϕxi
(xm)|

!

n(xm). (8)

The above contour evolution may be used for feature subset selection
integrated with classifier training in the same way as, for example,
ℓ1-regularized logistic regression for linear decision boundaries [7].
In Fig. 5, we show contour evolution from an initial contour with
the energy functional containing one of theD partial derivative fea-
ture selection terms and containing no training loss term. The final
contour is a cylinder, as in Fig. 4b.

5. BASE CLASSIFIERS FOR BOOSTING

Boosting and in particular the AdaBoost algorithm is a way tose-
quentially design ensemble classifiers from a set of base classifiers
[13]. We propose the use of level set classifiers as base classifiers

Fig. 6. Classifier learned from 500 examples using zero-one loss.
The magenta× markers are training examples with label+1 and the
black+ markers are training examples with label−1 plotted on the
x1–x2 plane. The blue lines are the classifier decision boundaries.

for boosting. Boosting is quite general with few requirements on the
base classifiers.

The first requirement is the ability to weight the examples inthe
training set. The energy functional (3) is easily modified with non-
negative weightswm that sum to one:

M
X

m=1

Mwm L(ymϕ(xm)). (9)

The second requirement is that there should be an ordering ofthe
base classifiers.

In most instances of boosting, the base classifiers are so-called
‘weak learners’ and counting their votes is a way to make a strong
classifier. Here, the motivation is not so much due to the baseclas-
sifiers being weak, but that implementation of level set methods for
large feature space dimensionD becomes cumbersome due to the
need to store and update aD-dimensional grid. Consequently, the
base classifiers that we employ are level set classifiers which use
d < D dimensions of the feature space. We randomly sample the
dimensions without replacement to obtain an ordering. Proceeding
through this order in sets of cardinalityd gives the base classifiers
for the sequential learning of the ensemble classifier by boosting.

6. EXAMPLES

In this section, we give a few examples of classifiers learnedfrom
both generated and real data, including with the integratedfeature
selection. The real data comes from geology and geophysics;the two
classes are sandstone and shale, and the features are rock properties.
We also compare the ten-fold cross-validation error of the level set
classifier described in this paper with other classifiers on two stan-
dard datasets from the UCI machine learning repository [14].

The first training set consists of 500 examples of generated two-
dimensional data, as shown in Fig. 6. A linear decision boundary
would clearly be unable to well-classify this type of data. The clas-
sifier that is learned using the zero-one loss in (5), also shown in



Fig. 7. Classifier learned from 500 examples using logistic loss. The
magenta× markers are training examples with label+1 and the
black+ markers are training examples with label−1 plotted on the
x1–x2 plane. The blue lines are the classifier decision boundaries.

Fig. 6, partitions the domain into three regions, the outer two corre-
sponding to label+1 and the inner one corresponding to label−1.

The second training set is also 500 examples of generated two-
dimensional data, shown in Fig. 7. A classifier is learned using the
logistic loss function. The circular boundary matches wellwith the
training examples. There are also some decision boundariesat the
corners of the domain where there are no training examples. These
boundaries have little effect on classifier performance.

The third training set consists of real geologic data. The two
features are density and acoustic velocity, i.e. the speed at which
sound waves propagate through the material. The data was acquired
with wireline logs in an offshore oilfield, along with various other
measurements. On the basis of the other features, the examples have
been assigned a rock type: sandstone and shale. The trainingset is
shown in Fig. 8. A classifier is learned on this set using the logistic
loss function as well. The decision boundary that is learnedis fairly
complex, but not overly so. The large curved boundary on the bottom
right does not affect training error, but does affect the logistic loss;
its presence reduces the loss incurred by misclassified examples.

We now show the effect of training with theℓ1 feature selection
term of Sec. 4 included. A classifier, shown in Fig. 9, is learned on
the geologic data set, again with logistic loss. It can be noted that the
classifier is not fully a cylinder like the final contour of Fig. 5, but
is much more cylindrical than the classifier without featureselection
given in Fig. 8. Density is a more relevant feature than acoustic
velocity in distinguishing shale from sandstone, but acoustic velocity
is not completely irrelevant either.

The final example looks at using the feature selection term when
all of the features are completely relevant. We train a classifier on the
same generated training set as above that produced the circular de-
cision boundary in Fig. 7, but this time with theℓ1 feature selection.
The learned classifier, shown in Fig. 10, is nearly identicalto the
classifier learned without feature selection. This exampleshows that
training with feature selection does not eliminate features that are
important for classification performance. One difference between
the classifier learned with feature selection and without feature se-
lection is that the artifactual decision boundaries on the corners are
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Fig. 8. Classifier learned from 1210 examples using logistic loss.
The magenta× markers are training examples with labelshale and
the black+ markers are training examples with labelsandstone plot-
ted on the acoustic velocity–density plane. The blue lines are the
classifier decision boundaries.

not present with feature selection. By removing these corner bound-
aries, the value of theℓ1 term is decreased with very little change to
the loss term and contour area term.

We now look at the testing performance of classifiers designed
by contour evolution to minimize (5). Two standard datasetsare
considered, the Pima Indians diabetes dataset and the Wisconsin di-
agnostic breast cancer dataset [14]. Test performance is measured
using ten-fold cross-validation. AdaBoost withd = 2, as described
in Sec. 5, is used with logistic loss. The regularization parameter
α is manually set to0.4 beforehand for both datasets. A principled
method of selecting the parameter such as by cross-validation may
be used in future work; hence there is room for improvement inthe
results.

We perform four rounds of boosting on the eight-dimensional
feature space of the Pima Indians diabetes dataset, obtaining 25.95%
ten-fold cross-validation error. With fifteen boosting rounds on
the thirty-dimensional feature space of the Wisconsin diagnostic
breast cancer dataset, the ten-fold cross-validation error is 6.68%.
These preliminary results are competitive with other classifiers.
The error percentages reported in [9] for other classifiers on the
two datasets are: (23.69%, 7.02%) for the naı̈ve Bayes classifier,
(25.64%, 4.92%) for the Bayes net classifier, (27.86%, 3.68%) for
the k-nearest neighbor classifier with inverse distance weighting,
(27.33%, 7.20%) for the C4.4 decision tree, (26.17%, 6.85%)for
the C4.5 decision tree, (25.64%, 7.21%) for the naı̈ve Bayestree
classifier, (22.66%, 2.28%) for the SVM classifier with polynomial
kernel, (24.60%, 5.79%) for the radial basis function network clas-
sifier, and (29.94%, 6.50%) for the level learning set classifier of
[9].

7. CONCLUSION

In this paper, a novel, nonlinear, nonparametric classifierhas been
developed that minimizes margin-based training loss. The approach,
a type of level set segmentation of the feature space, can incorporate
any margin-based loss function. Any shape decision boundary can
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Fig. 9. Classifier learned from 1210 examples using logistic loss and
integrated feature selection. The magenta× markers are training
examples with labelshale and the black+ markers are training ex-
amples with labelsandstone plotted on the acoustic velocity–density
plane. The blue lines are the classifier decision boundaries.

be obtained; the complexity of the classifier can be controlled using
contour area regularization. Feature subset selection maybe incor-
porated into the level set method and level set classifiers may be used
in boosting.

The preliminary test results indicate that performance on par
with various other classifiers can be obtained. Further improvements
are possible by choosing parameters in a principled way, choosing
the order of the features for the boosting rounds in a principled way,
and trying various other loss functions.

It is a known fact that no one type of classifier is best for all
types of datasets. Performance of classifiers may vary quitea bit
depending on the data characteristics. Some say that choosing clas-
sifiers is more of an art than a science; here we have given the artist
another color in the palette. The ability to plug in various loss func-
tions within a common framework and incorporate different geomet-
ric preferences about the decision boundary may be useful inthis
regard as well.
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