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Abstract—The problem of maximume-likelihood (ML) estima-
tion of discrete tree-structured distributions is consideed. Chow
and Liu established that ML-estimation reduces to the constic-
tion of a maximum-weight spanning tree using the empirical
mutual information quantities as the edge weights. Using th
theory of large-deviations, we analyze the exponent assated
with the error probability of the event that the ML-estimate of
the Markov tree structure differs from the true tree structu re,
given a set of independently drawn samples. By exploiting #n
fact that the output of ML-estimation is a tree, we establishthat
the error exponent is equal to the exponential rate of decayfoa
single dominantcrossover event. We prove that in this dominant
crossover event, a non-neighbor node pair replaces a true gd
of the distribution that is along the path of edges in the truetree
graph connecting the nodes in the non-neighbor pair. Usingdeas
from Euclidean information theory, we then analyze the sceario
of ML-estimation in the very noisy learning regime and show
that the error exponent can be approximated as a ratio, which
is interpreted as thesignal-to-noise ratio (SNR) for learning tree
distributions. We show via numerical experiments that in ths
regime, our SNR approximation is accurate.

Index Terms—Maximum-Likelihood distribution estimation,
Markov structure, tree-structured distributions, error e xponent,
large-deviations principle, Euclidean information theory.

I. INTRODUCTION

(ML) estimation of the probability distribution from a set
of i.i.d. samples drawn from the distribution. By explogin
the Markov tree structure, this algorithm reduces the ML-
estimation problem to solving a maximum-weight spanning
tree (MWST) problem. In this case, it is known that the ML-
estimator learns the distribution correctly asymptotjcaind
hence, is consistent [9].

We are interested in the rate of convergence of the ML-
estimator for tree distributions as we increase the number
of samples. Specifically, we study the rate of decay of the
error probability or the error exponent of the ML-estimator
in learning thetree structureof the unknown distribution. We
address the following questions: Is there exponentialyleta
the probability of error in structure learning as the number
of samples tends to infinity? If so, what is the exact error
exponent, and how does it depend on the parameters of the
distribution? Which edges of the true tree are most-likely t
be in error; in other words, what is the nature of the most-
likely error in the ML-estimator? We provide concrete and
intuitive answers to the above questions, thereby progidin
insights into how the parameters of the distribution infleeen
the error exponent associated with learning the structfire o
discrete tree distributions.

The estimation of a distribution from samples is a classical
and an important generic problem in machine learning and Main Contributions

statistics and is challenging for high-dimensional maltiate
distributions. In this respect, graphical models [1] pdavia
significant simplification of joint distribution as the digiution

can be factorized according to a graph defined on the set

nodes. Many specialized algorithms [2]—[8] exist for exaut]

approximate learning of graphical models with sparse ggap
When the graph is a tree, the Chow-Liu algorithm [2
provides an efficient method for the maximume-likelihoo
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the large-deviation principle (LDP) [10] we prove that the
na?st-likely error in ML-estimation is a tree which diffen®m
the true tree by a single edge. Second, again using the LDP,

e derive the exact error exponent for ML-estimation of tree
Eructures. Third, we provide a succinct and intuitive etbs

rm approximation for the error exponent which is tighttie t
very noisylearning regime, where the individual samples are
not too informative about the tree structure. The approima
error exponent has a very intuitive explanation as digmal-
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We analyze theerror exponent(also called the inaccuracy
rate) for the estimation of the structure of the unknown tree
distribution. For the error event that the structure of the-M
estimator &, given n samples differs from the true tree
structure€p of the unknown distributio®, the error exponent
is given by

KP =

Jim —logB((Ew 64D (D)


http://arxiv.org/abs/0905.0940v1

To the best of our knowledge, error-exponent analysis for a follow-up paper, studied the consistency propertieghef
tree-structure learning has not been considered before (S#how-Liu algorithm for learning trees. They concluded tifiat
Section[I-B for a brief survey of the existing literature orthe true distribution is Markov on a unique tree structunent
learning graphical models from data). the Chow-Liu learning algorithm is asymptotically consist

Finding the error exponeritp in (d) is highly non-trivial. This implies that as the number of samples tends to infirfity, t
In general, one has to consider the computationally-iniideas probability that the learned structure differs from theiQue)
combinatorial problem of finding thelominanterror event true structure tends to zero.
with the slowestrate of decay among all possible error Unfortunately, it is known that the exact learning of gehera
events [10, Ch. 1]. For learning the structure of trees,ethegraphical models is NP-hard [14], but there have been skvera
are a total ofd®=2 — 1 possible error everflswhered is the works to learn approximate models. For example, Chechetka
dimension (number of variables) of the unknown tree digtriband Guestrin [3] developed good approximations for leanin
tion P. This rules out brute-force approaches for finding thimin junction trees [15] (junction trees where the sizeshef t
error exponent in[{1), especially for high-dimensionaldat maximal cliques are small). Heckerman [16] proposed |earni

In contrast, we establish that the search for the dominaht structure of Bayesian networks by using the Bayesian
error event for learning the structure of the tree can betdichi Information Criterion [17] (BIC) to penalize more complex
to a polynomial-time search space (). Furthermore, we models and by putting priors on various structures. Other
establish that this dominant error event of the ML-estim&o authors used the maximum entropy principle or (sparsity-
given by a tree which differs from the true tree by only a singlenforcing) ¢, regularization as approximate graphical model
edge. We provide a polynomial algorithm with(((T»)d?) learning techniques. In particular, Dudét al. [8] and Leeet
complexity to find the error exponent ial (1), whej€l's) is al. [5] provide strong consistency guarantees on the learned
the diameter of the tre@'». We heavily exploit the mecha- distribution in terms of the log-likelihood of the samples.
nism of the ML Chow-Liu algorithm [2] for tree learning toJohnsonet al. [6] also used a similar technique known as
establish these results, and specifically, the fact thatthe maximum entropy relaxation (MER) to learn discrete and
estimator tree distribution dependsly on the relative order Gaussian graphical models. Wainwrigét al. [4] proposed
of the empirical mutual information quantities betweentlad a regularization method for learning the graph structursetia
node pairs (and not their absolute values). on /; logistic regression and provided strong theoretical guar-

Although we provide a computationally-efficient way tcantees for learning the correct structure as the number of
compute the error exponent ia (1), it is not available in etbs samples, the number of variables, and the neighborhood size
form. In Sectiol VI, we use Euclidean information theory][12 grow. In a similar work, Meinshausen and Buehlmann [7]
[13] to obtain an approximate error exponent in closed-forrnonsidered learning the structure of arbitrary Gaussiadeatso
which can be interpreted as the signal-to-noise ratio (SNR3ing the Lasso [18]. They show that the error probability
for tree structure learning. Numerical simulations on @asi of learning the wrong structure, under some mild technical
discrete graphical models verify that the approximatiaigist conditions on the neighborhood size, decays exponentially
in the very noisy regime. even when the size of the graphgrows with the number

In Section VI, we extend our results to the case when tld samplesn. However, the rate of decay is not provided
true distributionP is not a tree. In this case, given samplesxplicitly. Zuk et al.[19] provided bounds on the limit inferior
drawn independently fron®, we intend to learn theptimal and limit superior of the error rate for learning the struetaf
projection P* onto the set of trees. Importantly, # is not a Bayesian networks but, in contrast to our work, these bounds
tree, there may be several trees that are optimal projecf@n are not asymptotically tight. In addition, the work in Zek
and this requires careful consideration of the error evalles al. [19] is intimately tied to the BIC [17], whereas our analysis

derive the error exponent even in this scenario. is for the Chow-Liu ML tree learning algorithm [2].
There have also been a series of papers [20]-[23] that
B. Related Work quantify the deviation of the empirical information-thetic

) o guantities from their true values by employing techniquesif
The seminal work by Chow and Liu in [2] focused ongrge.deviations theory. Some ideas from these papersusil

learning tree models from data samples. The authors showgf 1o he important in the subsequent development because we
that the learning of the optimal tree distribution essdigtia oy p|oit conditions under which the empirical mutual inf@m

decouples into two distinct steps: (i) a structure learrst®p oy quantities do not differ “too much” from the true values

and (ii) a parameter learning step. The structure learr®g, s This will ensure that structure learning succeeds with high
which is the focus on this paper, can be performed eﬁ'c'e”?%obability.

using a max-weight spanning tree algorithm with the empir-
ical mutual information quantities as the edge weights. The _
parameter learning step is a maximum-likelihood estinmatié>. Paper Outline

procedure where the_ parameters c_)f the learned model aré equahis paper is organized as follows: In Sectidds I 1,
to those of the empirical distribution. Chow and Wagner [9jye state the system model and the problem statement and

Lo _ provide the necessary preliminaries on undirected graphic
Since the ML output&y. and the true structur€p are both spanning

trees overd nodes and since there a#€—2 possible spanning trees [11], we m_Od.els .and the ChOW'UU algo”_thm [2] for _|eam|ng tree
haved?—2 — 1 number of possible error events. distributions. In Sectioh 1V, we derive an analytical exgmien



for the crossover rate of two node pairs. We then relate tBe Problem Statement
crossover rates to the overall error exponent in Se€tomV. | |y this paper, we consider a learning problem, where

Section[V], we leverage on ideas in Euclidean informatiqge gre given a set ofn iid. d-dimensional samples
theory to state sufficient conditions that allow approxioag n .— (x, . x,1} from an unknown distribution? &

of the crossover rate and the error exponent. We obtain @@X'd), which is Markov with respect to a tré& € 7¢. Each
intuitively appealing closed-form expression. By redefii sample or observatiogy, := [z1.1, .. ., z1.4)7 is a vector ofd

the error event, we extend our results to the case when Hjgensions where each entry can only take on one of a finite
true distribution is not a tree in Sectin VIl. We compare thg,mber of values in the alphabat

true and approximate crossover rates by performing nualeric Gjyenx”, the ML-estimator of the unknown distributiaf

experiments for a given graphical model in Sectlon Mllkg defined as

Perspectives and extensions are discussed in Sécflon IX. n

Py = argmax Zlog Q(xx), 4)
QeD(x4,Td) =,

II. SYSTEM MODEL AND PROBLEM STATEMENT whereD(x4,T4) ¢ P(X?) is defined as the set of all tree

distributions on the alphabet? over d nodes.

In 1968, Chow and Liu showed that the above ML-estimate
An undirected graphical modél] is a probability distribu- P.. can be found efficiently via a MWST algorithm [2], and
tion that factorizes according to the structure of an uryitegl is described in SectionJIl. We denote the tree graph of the
undirected graph. More explicitly, a vector of random vialés ML-estimate B, by T\, = (V, &) with vertex set) and

x:=[z1,...,74]T is said to beMarkovon a graphg = (V,€£) edge set,.

A. Graphical Models

with vertex setV = {1,...,d} and edge sef C (‘2’) if Given a tree distribution?, define the probability of the
error event that the set of edgesnist estimated correctly by
P(ziley (i) = P(ail@apay), Vi€V, 2) the ML-estimator as
A = {&w # Ep} (5)

wherenbd(:) is the set of neighbors afin G, i.e,, nbd(i) :=

{j € V:(ij) € £}. Eq. @) is called the (local) Markov We denote := P as then-fold product probability measure
property and states that if random variablgis conditioned of the n samplesx™ which are drawn i.i.d. fromP. In this

on its neighboring random variables, thep is independent paper, we are interested in studying taee or error exponerit

of the rest of the variables in the graph. Kp at which the above error probability exponentially decays

In this paper, we assume that each random variapte X', With the number of samples, given by,

and we also assume that is a known finitesed Hence, Ko oe i 11 P 6
the joint distributionP € P(X'?), the set of all distributions pi= lim ——log P(An), (©)

d o . .
supported ont*. whenever the limit exists. Indeed, we will prove that theitim

We limit our analysis in this paper to the set of strictlyp () exists in the sequel. With the notatioff, @) can be
positivél graphical modelsP, in which the graph ofP is a \yritten as

tree on thed nod(_as, denoted’» = (V,Ep). T_hus,Tp is an P(A,) = exp(—nKp). 7)
undirected, acyclic and connected graph with vertexiset N o )
{1,....d} and edge sefp, with d — 1 edges. LetT@ be the A Positive error exponentk’p > 0) implies an exponential

set of spanning treesn d nodes, and hencd;p € T¢. Tree decay of error probability in ML structure learning, and we

distributions possess the following factorization prapgt]  Will establish necessary and sufficient conditions to emshis.
Note that we are only interested in quantifying the proba-

P j(x,x5) bility of the error in learning thestructure of P in (G). We
P(x) = HPi(xi) H mv (3) are not concerned about the parameters that define the ML
i€y (i.j)e€p tree distributionP,, . Since there are only finitely many (but

a super-exponential number of) structures, this is in faot a

to an ML problem where the parameter space is discrete and
finite [27]. Thus, under some mild technical conditions, we
Lan expect exponential decay in the probability of error as
“nentioned in [27]. Otherwise, we can only expect convergenc
with rateO(1/+/n) for estimation of parameters that belong to

a continuous parameter space [28]. In this work, we quantify

where P; and P; ; are the marginals on nodes V and edge
(i,7) € Ep respectively. Sincdp is spanning,P; ; # P, P;
for all (i,7) € Ep. Hence, there is a substantial simplificatio
of the joint distribution which arises from the Markov tre
dependence. In particular, the distribution is complesggc-
ified by the set of edge§p and pairwise marginal®; ; on
the edges of the treg, j) € £p. In Section[ VI, we extend

our analysis to general distributions which are not necégsa 4in the maximum-likelihood estimation literature (e.g. [225]) if the limit
Markov on a tree. in (6) exists,K p is also typically known as the inaccuracy rate. We will be
using the terms rate, error exponent and inaccuracy radechngeably in
the sequel. All these terms refer f6p.
2We defer the analysis of learning the structure of jointhu&san variables ~ 5The = notation (used in [26]) denotes equality to the first ordetha
where X = R to a companion paper. exponent. For two real sequencgs, } and {b,}, an = b, if and only if
3A distribution P is said to be strictly positive i?(x) > 0 for all x € X4, limp—co = log(an /bn) = 0.



the error exponent for learning tree structures using the Mif random variables;; and z;, which is a function of the

learning procedure precisely. empirical distribution?,.
Proof: For a fixed tree distributio) € D(x?,7%), Q
[1l. M AXIMUM -LIKELIHOOD LEARNING OF TREE admits the factorization if[3), and we have

DISTRIBUTIONS FROMSAMPLES 5 =~
. . . ) _ D(P||Q)+ H(P)
In this section, we review the classical Chow-Liu algo-

rithm [2] for learning the ML tree distributio®, given a set Z X) log H Qilx:) H Qi j (i, ;)

of n samplex™ drawn i.i.d. from a tree distributio?. Recall = by e i(2)Q(zy) |’
the ML-estimation problem i.{4), whe#, denotes the set of < (t9)€a

edges of the tre®,,. on whichP,_ is tree-dependent. Note that = Z Z P () log Qq(x3)

since P, is tree-dependent, fromhl(3), we have the result that i€V 2 €X

it is completely specified by the structufg, and consistent _ 5 Qi j (i, 7))
pairwise marginals, (z;, ;) on its edgegi, j) € Eu.. 2D Pulwwlo Qi(zi)Q;(x;) B9

In order to obtain the ML-estimator, we need the notion of (hi)eq (wiej)ex?

a type or empirical distributionof P, givenx", defined as  For a fixed structureZq, it can be shown [2] that the above
guantity is minimized when the pairwise marginals over the

P(x|x") = X|X Z §{xp = x}, (8) edges o are set to that of, i.e, for all Q € D(x4, T%),
i) ) D(P||Q) + H(P)
WhereN x|x™) is the number of timex € X“ occurred in
1 1 P 7
. For convenience, in the rest of the paper, we will denote Z Z (ws) log Pi(:)

the empirical distribution b)P( ) instead ofP(x|x ). vy ~
Fact 1: The ML-estimator in[(#) is equivalent to the fol-  _ Z Z ﬁij(zi,xj)logw- (15)
lowing optimization problem: (D)o (rianex? Pi(xi) Pj(z;)

P, = argmin D(P||Q), @ =D _HPEP)- D IF). (16)
QeD(X4,T4) iy (i,5)€€q
where P is the empirical distribution ok™, given by [8). The first term in [(IB) is a constant with respect €
Proof: By the definition of the KL-divergence, we have Furthermore, sincé€, is the edge set of the tree distribution
Q € D(x?,T?), the optimization for the ML tree distribution

D(P[|Q) = —nH(P)—n Z P(x)log Q(x), P,. reduces to the MWST search for the optimal edge set as
xGXd :
in (12). [ |
_ —nH ZlogQ X5), (10) Hence, the optimal tree probability distributidf, is the

reverse l-projection of” onto the optimal tree structure given

by (I2). Thus, the optimization problem il (9) essentiably r
where we use the fact that the empirical distributi®rin @) duces to a search for thatructureof Py, . The structure of,,
assigns a probability mass ofn to each sample. B completely determines its distribution, since the paramseaire
The minimization over the second variable i (9) is alsgiven by the empirical distribution ifi_{13). To sohEKlZ)ew
known as thereverse I-projection29] of P onto the set yse the samples” to compute the empirical distributiof?
of tree distributionsD(X?,77). We now state the main ysing [8), then usé® to computel(P.), for each node pair
result of the Chow-Liu tree learning algorithm [2]. In thise ¢ (‘;) Subsequently, we use the set of empirical mutual

paper, with a slight abuse of notation, we denote the mutygformation quantltles{l( ) iec (12;)} as the edge weights
information I(z;; z;) between two random variables and o the MWST problenﬁ

x; corresponding to nodesand j as: We see that the Chow-Liu MWST spanning tree algorithm
P j(z,x5) is an efficient way of solving the ML-estimation problem,
I(Py):= Y Pijlw,a;)log m (11) especially when the dimensiod is large. This is because
(wi,25)€X? I there ared?—2 possible spanning trees over nodes [11]

If e = (i, 7), then we will also denote the mutual informatiofuling out the possibility for performing an exhaustive e
asI(P.) = I(P,;). for the optimal tree structure. In contrast, the MWST can

Theorem 1 (Chow-Liu Tree Learning [2])The structure be found, say using 2Kruska|’_s algorithm [30], [31] or Prim’s
and parameters of the ML-estimak, in QZ_II) are given by  algorithm [32], inO(d" log d) time.

Ew = argmax Z I (12) IV. LDP FOREMPIRICAL MUTUAL INFORMATION
£@:QED(XIT4) ‘g,

. The goal of this paper is to characterize the error exponent
Pu(wiszj) = P, xg),  V(i,j) €&, (13) for ML tree learningK p in (B). As a first step, we consider a

where P is_the emPiriC‘?‘l diStribUt.i(_)n in[(8) gi\(en the _data 6if we use the true mutual information quantities as inputths MWST,
x", andI(P.) = I(P; ;) is theempirical mutual information then the true edge sép is the output.



simpler event, which may potentially lead to an error in ML-  Proof: (Sketch The proof hinges on Sanov’s theorem [26,

estimation. In this section, we derive the LDP rate for thi€h. 11] and the contraction principle in large-deviatioh8,[

event, and in the next section, we use the result to détive Sec. Ill.5]. The existence of the minimizer follows from the

the exponent associated to the error evdptdefined in [b). compactness of the constraint set and Weierstrauss’ egtrem
Since the ML-estimate uses the empirical mutual informaalue theorem [33, Theorem 4.16]. The rake.. is strictly

tion quantities as the edge weights for the MWST algorithmpositive since we assumeaspriori, that the two node pairs

the relative values of the empirical mutual informationofira ande’ satisfy I(F.) > I(Per). As a resultQ; ., # P . and

ties have an impact on the accuracy of ML-estimation. Inoth®(Q} .. || Pec/) > 0. See Appendik A for the details. m

words, if the order of these empirical quantities is diffare In the above theorem, which is analogous to Theorem 3.3

from the true order then it can potentially lead to an erran [22], we derived the crossover ratg ., as a constrained

in the estimated edge set. Hence, it is crucial to study th@nimization over a submanifold of distributions R(X*)

probability of the event that the empirical mutual inforinat (See Fig[¥), and also proved the existence of an optimizing

quantities of any two node pairs is different from the trudistribution@Q*. However, it is not easy to further simplify the

order. rate expression i (19) since the optimization is non-canve
Formally, let us consider two distinct node pairs with no Importantly, this means that it is not clear how the param-

common nodes, ¢’ € (‘2’) with unknown distributionP, .- € eters of the distributiorP. .. affect the rate/. .., hence [(IB)

P(X*). Assume that the order of the true mutual informatiois not intuitive to aid in understanding the relative ease or

quantities followI(P.) > I(P./). A crossover evefitoccurs difficulty in estimating particular tree-structured dibtrtions.

if the corresponding empirical mutual information quaest In Section[V], we assume tha? satisfies some (so-called

are of the reverse order, given by very noisy learning) conditions and use Euclidean inforamat
~ ~ theory [12], [13] to approximate the rate in {19) in order to
Ceer i= {I(Pe) < I(Pe’)} : (17)  gain insights as to how the distribution parameters affieet t

L ... crossover rate/, .. and ultimately, the error exponehip for
As the number of samples — oo, the empirical quantities | : oc y P P
earning the tree structure.

approach the true ones, and hence, the probability of theeabo -
PP =P y Remark 1: Theorem[2 specifies the crossover rafg,.
event decays to zero. When the decay is exponential, we have a . , :
; when the two node pairs and e’ do not have any common
LDP for the above event, and we term its rate asdfossover

o . . o ) nodes. If e and ¢’ share one node, then the distribution
rate for empirical mutual informatiomuantities, defined as 3 -
P.. € P(X°) and here, the crossover rate for empirical

1 . .
Joe = lim —=logP (Cor), (18) mutual information is
n

n—oo

assuming the limit in[(18) exists. Indeed, we show in the proo Jeer = Qe%;n&.a) {D@IIPeer) : 1(Qer) = 1(Qe)} - (21)

of Theoren® that the limit exists. Intuitively (and as seen i

our numerical simulations in SectiGn VI, if the differem The results in the sequel do not depend on whethand e’
between the true mutual information quantitiés>,) — /(P,.) Share a common node.

is large (.e., I(P.) > I(P./)), we expect the probability of the
crossover everd, .- to be small. Thus, the rate of decay would ) .
be faster and hence, we expect the crossover.fate t)(; be A. Bxample: Symmetric Star Graph

large. In the following, we see that ., depends not only on It is now instructive to study a simple example to see how
the difference of mutual information quantitié&?, ) —I(P..), the overall error exponenk'p for structure learning in[{6)
but also on thelistribution P. . of the variables on node pairsdepends on the set of crossover ratds. : e, e’ € (‘2’)} We

e and e, since the distributiorP, .. influences the accuracy consider a graphical modé? with an associated tre€p =

of estimating them. (V, Ep) which is ad-order star with a central nodeand outer
Theorem 2 (Crossover Rate for Empirical MIsjhe nodes2,...,d, as shown in Figl]l. The edge set is given by
crossover rate for a pair of empirical mutual informatiodp = {(1,4):i=2,...,d}.
quantities in[(IB) is given by We assign the joint distribution®),,Q, € P(X?) and
. Qup € P(X?) to the variables in this graph in the following
Je,e’ = QEEPn(f;\"L) {D(Q || Pe,e’) : I(QE’) = I(Qe)} ’ (19) Speciﬁc way:

1) P;=Q,forall 2 <i<d.
2) P j=Qyforal2<4,5<d, i#j.
3) Pl,i,j,k = Qa,b for all 2 <1,7, k<d, 1 }é_] }é k.
Qe = ZQ, Qe = ZQ- (20) Thus, we have identical pairwise distributiofs; = Q, of
Ter Te the central nodd and any other nodé, and also identical
The infimum in [I®) is attained by some distributigyt ,, € pairwise distributionsP; ; = @, of any two distinct outer

P(X*) satisfyingI(Q*,) = I(Q*) and J. .. > 0. nodesi andj. Furthermore, assume thAtQ,) > 1(Qy) > 0.
(25 VingZ(Qz) (@) ’ Note that the distribution), , € P(X*) completely specifies

"The eventC, ., in (I7) depends on the number of samplesout we the above gr_aphical model with a star graph. Also, frqm the
suppress this dependence for convenience. above specifications, we see tliat and (@, are the marginal

whereQ., Q.. € P(X?) are marginals of) over node pairs
e ande’, which do not share common nodés,,



rate. In general, it is not straightforward to derive theoerr
exponentKp from the set of crossover ratds/. .-} since
they may not all be equal and more importantly, crossover
events for different node pairs affect the learned stracfiyr

in a complex manner. In the next section, we provide an exact
expression forK p by identifying the (sole) crossover event
related to a dominant error tree. Finally, we remark that the
crossover evert, .- is related to the notion of neighborhood
selection in the graphical model learning literature [4], [

Fig. 1. The star graph witlh = 9. Q, is the joint distribution on any pair V. ERROREXPONENT FORSTRUCTURELEARNING

of variables that form an edge e.g3 andz2. Qy is the joint distribution on  The analysis in the previous section characterized the rate
any pair of variables that do not form an edge ewg.andzs3. By symmetry, J. .. for the crossover evenf. .. between two empirical
there is only one crossover rate. ©:€ . ) . € .
mutual information pairs. In this section, we connect these
set of rate functiongJ, .} to the quantity of interest, viz.,
distributions ofQ, ; with respect to to node paird,i) and the error exponent for ML-estimation of edge #¢€b in (6).

(j, k) respectivelyi.e., Recall that the everd, .. denotes an error in estimating the
order of mutual information quantities. However, such ¢sen

Qo = Z Qab, Qy = Z Qab- (22) (.. need not necessarily lead to the error eveptin (5)

Tk *1,%i that the ML-estimate of the edge s}, is different from the

Proposition 3 (Error Exponent for symmetric star graph): true set€p. This is because the ML-estimafg, is a tree and
For the symmetric graphical model with star graph @hgd, this global constraint implies that certain crossover évean
as described above, the error exponent for structure legrnbe ignored. In the sequel, we will identify useful crossover
Kp in (@), is equal to the crossover rate between an edgeents through the notion of dominant error tree
and a non-neighbor node pair

Kp = Jeo, forany ecé&p, e ¢ Ep, (23) A. Dominant Error Tree
By using the fact that> = P™ is a measure (and hence
is countably-additive), we can decompose the error evant fo
Jee = inf  {D(Ri234||Qap): I(R12)=1(Rs4)}, Structure estimatiotd,, in (B) into a set of mutually-exclusive
Ri,2,3,4€P(X4) events

with Ry 2 and R34 as the marginals oR; 2 3 4, i.€,

Ry = Z Ri234, R3a= Z Rigsa.  (24) FlA) = P( U L{n(T)> N Z PU(T))

TeT\{Tp} TeT\{Tp}
T3,T4 Tr1,Tr2 (25)

Proof: Since there are only two distinct distributio®s, where eachi/,,(T") denotes the event that the graph of the
(which corresponds to a true edge) apgl(which corresponds ML-estimateT,, is a treeT different from the true tre@p.
to a non-edge), there is onlgne unique rateJ. .-, namely In other words,
the expression in[(19) witlP. ., replaced byQ, ;. If the {

where from [(IP), the crossover rate is given by

. o . Tw=T if TeTd\{T
eventC, ., in (I7), occurs, an error definitely occurs. This U, (T) := é M b i TiT \{Tr}
corresponds to the case wharey oneedgee € £p is replaced ’ P
by any othernode paire’ not in £ m Note thatt/,(T') NU,(T") = O wheneverT’ # T'. The large-

Hence, we have derived the error exponent for learningdgviation rate or the exponent for each error evéntT’) is
symmetric star graph through the crossover thtg between ) 1
any node paire which is an edge in the star graph and T(T) = lim ——loglP (Un(T)), (27)
T
another node paie” which 'S not an eglge. Note that eacrQ/vhenever the limit exists. Among all the error evettg 7)),
such crossover event results in an error in the learnedtsteuc : . .
. : P : we identify the dominant one with the slowest rate of decay.
since it leads ta’ being declared an edge insteadeofDue . . ) .
. Definition 1 (Dominant Error Tree):A dominant error tree
to the symmetry, all such crossover rates between paarsd .~ V,£5) is a spanning tree given b
¢’ are equal. By the “worst-exponent-wins” rule [10, Ch. 1], i,trP =& P 9 9 y
is more likely to have a single crossover event than multiple Tj = argmin  Y(T). (28)
ones. Hence, the error exponent is equal to the crossoer rat TeT\{Tr}
between an edge and a non-neighbor pair in the symmetkigughly speaking, a dominant error tree is the tree that is
star graph. the most-likely asymptotic output of the ML-estimator ireth

The symmetric star graph possesses symmetry in the disgiyent of an error. Hence, it belongs to the g&t\ {T»}. In
butions and hence it is easy to reldtg> to a sole crossover

(26)

SWe will use the notatiomargmin extensively in the sequel. It is to be
8Also see theore]5 and its proof for the argument that the mlambierror  understood that if there is no unique minimueng(in (8)), then we arbitrarily
tree differs from the true tree by a single edge. choose one of the minimizing solutions.



Theorem 5 (Error exponent as a single crossover event):
*********************************************** The error exponent for ML-tree estimation [d (6) is given by

r(e’) € Path(e’; Ep)
l ° wherer(e*) is the dominant replacement edge, definedin (32),
associated te* ¢ £p ande* is the optimizing non-neighbor
Fig. 2. The path associated to the non-edge= (u,v) ¢ Ep, denoted pode pair
Path(e’;Ep) C Ep, is the set of edges along the unique path linking the
end points ofe’ = (u,v). The edger(e’) = argmingcpasn(er;ep) Je,ef 1S
the dominant replacement edge associated @ Ep.

KP = Jr(e*)e* = min min Je.eH (33)
’ e'¢Ep ecPath(e’;Ep) ’

e” = argmin Jy(er)er- (34)
e'¢Ep

The dominant error tre@’;, = (V, ;) in (28) has edge set

the following, we note that the error exponent[ih (6) is equal Ep=Ep Ui\ {r(en)}

to the exponent of the dominant error tree. Proof: (Sketch)The edge set of the dominant error tree
Proposition 4 (Dominant Error Tree & Error Exponent): &5, differs from £p in exactly one edge (See Appendix B).

The error exponenk'p for structure learning is equal to theThis is because i€}, were to differ from&p in strictly more

exponentY' (1) of the dominant error tre@'. than one edge, the resulting error exponent would not be the

minimum, hence contradicting Propositibh 4. To identife th

dominant error tree, we use the union bound adin (25) and

the “worst-exponent-wins” principle [10, Ch. 1], to condki

that the rate that dominates is the minimuim. .. over all

P (U, (T)) = exp(—nY(T)), VT € T4\ {Tp}. (30) possible non-neighbor node pais¢ £p. See AppendiX B

Kp = T(T}). (29)

Proof: From [2T), we can write

for the details. [ |
Now from (23), we have The above theorem relates the set of crossover fates },
. ) N which we characterized in the previous section, to the dvera
P(An) = Z exp (=nT(T)) = exp (=nT(Tp)), (31) error exponenk p, defined in[(6). Note that the result ih {33)

TeT\{Tr} is exponentially tightn the sense that(A,) = exp(—nKp),

from the “worst-exponent-wins” principle [10, Ch. 1] anceth unlike the work in [19], where bounds on the limit inferiordan

definition of the dominant error treg;, in (28). m the limit superior were established. We numerically coraput
Thus, by identifying a dominant error tr&&;, we can find the error exponenKp for different discrete distributions in

the error exponent{p = Y(T%). To this end, we revisit SectionVIIl.

the crossover event§, . in (L7), studied in the previous From [33), we see that if at least one of the crossover rates

section. Consider a non-neighbor node pdirwith respect Je,er in the minimization is zero, the overall error exponent

to £p and the unique path of edgesdip connecting the two K p is zero. This observation is important for the derivation

nodes, which we denote &ath(e’; £p). See FiglR, where we of necessary and sufficient conditions fiir to be positive,

define the notion of the path given a non-edgeNote thate’ and hence, for the error probability to decay exponentially

andPath(e’; £p) necessarily form a cycle; if we replace anyhe number of samples.

edgee € &£p along the path of the non-neighbor node pair

¢/, the resulting edge seéip \ {e} U {€'} is still a spanning B. Conditions for Exponential Decay

tree. Hence, all such replacements are feasible outputseof t \yu now provide necessary and sufficient conditions that

ML-estimation in the event of an error. As a result, all sucg e that , is strictly positive. This is obviously of crucial
crossover events... need to be considered for the errof,,,ance since ifc > 0, this implies exponential decay of
event for structure learning.,, in (5). However, for the error o gegired probability of errdP(A,,), where the error event
exponentK p, again by the “worst-exponent-wins” prmmple,A is defined in(5).

we only need to consider the crossover event between eachnaorem 6 (Condition for exponential decasihe follow-
non-neighbor node pai’ and its dominant replacement edg(?ng three statements are equivalent.

r(e’) € Ep defined below.

Definition 2 (Dominant Replacement Edgdjor each non-
neighbor node pair’ ¢ £p, its dominant replacement edge Kp > 0. (35)
r(e’) € Ep is defined as the edge in the unique path al6pg
connecting the nodes it having the minimum crossover rate

(a) The probability of erroP(.A,,) decays exponentialiye.,

(b) The mutual information quantities satisfy:
I(P.,)#I(P.), Vee€Path(e;Ep), ¢ ¢ Ep. (36)

r(e) == argmin  Je., (32)
e€Path(e/;Ep) (c) Tp is not a proper foré&} as was assumed in Sectigh I1.
where the crossover rat. .. is given by [I9). Proof: (Sketch We first show that (a}= (b).

We are now ready to characterize the error expoéntn (=) We assume statement (a) is trie, Kp > 0 and
terms O.f the C.rossover rate between non-nelghbor node palrl%A proper forest ond nodes is an undirected, acyclic graph that has
and their dominant replacement edges. (strictly) fewer thand — 1 edges.



Pe,e’

Pl(xl) Z1

' Pee
P2|1(I2|I1) P4‘1(SE4|.§C1) ( e,e || )

{Q € P(X4) : I(Qe/) = I(Qe)}

Fig. 4. A geometric interpretation of {19) wher@, .. is projected onto
the submanifold of probability distribution§@ € P(X?*) : I(Qe.) =
nbd(2) @nbd(3) @nbd(4) P el p y $ (1) 1(Qe)
Fig. 3. lllustration for Exampl&]1.

This example demonstrates tHatA,,) decays exponentially
prove that statement (b) is true. Suppose, to the conttaay, tfor almost everytree distribution. More precisely, the tree
I(P./) = I(P.) for somee € Path(e’; Ep) and some’ ¢ Ep.  distributions in whichP(.A,,) does not decay exponentially
Then J.(y« = 0, wherer(e’) is the replacement edgehas measure zero iR(X?).
associated te’. By (33), Kp = 0, which is a contradiction.

(<) We now prove that statement (a) is true assumlng stae- Computational Complexity

ment (b) is truei.e, I(P..) # I(P.) for all e € Path(e’; Ep) .
ande’ ¢ Ep. By Theoren[lz the crossover rafg .- in (19) Finally, we provide an upper l:_)ound on the complexﬁy to
is positive for alle’ ¢ £p. From [33),Kp > 0 since there are computeXp in (33). The complexny depends on td@meter
only finitely manye’, hence the minimum i (34) is attainec®’ the treeTr = (V, &p) defined as

at some non-zero valuee.,, Kp = ming¢gg, Jy(ery,er > 0. ¢(Tp) := max L(u,v), (37)
Statement (c) is equivalent to statement (b). The proof isf th w,vev

claim makes use of the positivity condition th&tx) > 0 for where L(u,v) is the length (number of hops) of the unique
all x € X% and the fact that if variables;, z; andz; form path between nodes and v. For example L(u,v) = 4 for
Markov chainsz; — 2 — 3 andx; — z3 — 2, thenz; is  the non-edge’ = (u,v) in the subtree in Fid]2.

jointly independenbdf z, and z3. Since this proof is rather Theorem 7 (Computational Complexity fafp): The
lengthy, we refer the reader to Appendik C for the detalls. number of computations ofl. . to computeKp, denoted
Condition (b) states that, for each non-edgeve need/(P.) N(Kp), satisfies

to be different from the mutual information of its dominant

replacement edgé(P,(..)). Condition (c) is a more intuitive N(Kp) < —<(Tp)(d 1)(d - 2). (38)
condition for exponential decay of the probability of error o ]
P(A,). This is an important result since it says that oty Proof: Given a non-neighbor node paif ¢ &p, we

non-degenerate tree distribution in which all the painjéset Perform a maximum of (T) calculations to determine the
distributions are not product distributionse(, not a proper dominant replacement edgge’) from (32). Comb|n|ng this
forest), then we have exponential decay in the error prdibabi ‘f"th the fact that there are a total i) \&p| = () —(d—1) =

In the following example, we describe a simple random(? — 1)(d — 2) node pairs not inf», we obtain the upper
process for constructing a distributian such that all three P0und. .

conditions in Theorenil]6 are satisfied with probability one Thus. if the diameter of the tre¢ is relatively low and
(w.p. 1). See Fig13. independent of number of nodésthe complexity is quadratic

in d. For instance, for a star graph, the diametéfp) = 2.
For a balanced tr@z ¢(Tp) = O(logd), hence the number
of computations i<0(d? log d)

Example 1:Suppose the structure d?, a spanning tree
distribution with grapil’s = (V, £p), is fixed and¥ = {0, 1}.
Now, we assign the parameters &f using the following
procedure. Let:; be the root node. Then randomly draw the
parameter of the Bernoulli distributiaf (1) from a uniform VI. EUCLIDEAN APPROXIMATIONS
distribution on[0, 1] i.e., Py (z1 = 0) = 6,0 andf,o ~ U[0, 1]. In order to gain more insight into the error exponent, we
Next letnbd(1) be the set of nelghbors of;. Regard the set make use ofEuclidean approximationgl3] of information-
of variables{z; : j € nbd(1)} as children ofz;. For each theoretic quantities to obtain an approximate but closethf
j € nbd(1), sample bothP(z; = 0jz1 =0) =0 20109 @S well solution to [I9), which is non-convex and hard to solve dyact
asP(z; =0lz1=1)=90 20z} from mdependent uniform dis- Our use of Euclidean approximations for various informatio
tributions onl0, 1] i.e., 6,0/,0 ~ U[0, 1] andb,0\,1 ~ U0, 1]. theoretic quantities is akin to various problems considéne

Repeat this procedure for ‘all children of. Then repeat the other contexts in information theory [12], [13], [34].

process for all other children. This construction resuttsai ~ We first approximate the crossover rafg. for any two
joint distribution P(x) > 0 for all x € X% w.p. 1. In this node pairse and ¢’, which do not share a common node.

case, by continuity, all mutual informations are distincpw |, _ _
A balanced tree is one where no leaf is much farther away flanraot

1, the graph is not a proper forest w.p. 1 and the fate> 0 5, any other leaf. The length of the longest direct pativden any pair of
w.p. 1. nodes isO(log d).



P, Definition 3 (Information Density)Given a pairwise joint
©€ distribution P; ; on X2 with marginalsP; and P;, the infor-
L1QF ., = Puu|? mation density35], [36] function, denoted by, ; : X* — R,
2l%ee’ T eClP o is defined as
* sii(xi, @) == log =222 297
ol o) i a) = 108 B Py (i)

fo s G e obiectd s in & loast blem. T Hence, for each node pair= (i, j), the information density,
78,5, Coneding e e ek b s saseprov, 10 can i be regarded as random variable whose expectaton s
setQ(P, o) is given [45). simply the mutual information between andz;, i.e, E[s.| =
I(P.).

Recall that we also assumed in Sectloh Il tHat is a
The joint distribution one and ¢/, namely P. .. belongs to SPanning tree, which implies that for all node pdifsj), P ;
the setP(Xx*). Intuitively, the crossover rate, ., should is nota product distributionj.e., P,; # F;P;, because if
depend on the “separation” of the mutual information valudswere, thenT» would be disconnected. We now define a
I(P,) andI(P./), and also on the uncertainty of the differencgondition for which our approximation holds.
between mutual information estimaté&P,) and I(P,/). We ~ Definition 4 ¢-Very Noisy Condition)We say thatP. .. €
will see that the approximate rate also depends on theseamufG(X*), the joint distribution on node paitsande’, satisfies
information quantities given by a simple expression whiah c the e-very noisy conditiorif
be regarded as the signal-to-noise ratio (SNR) for leatning | p, _p,, || := max |P.(2;,3;) — Po (21, ;)| <e. (43)

Roughly speaking, our strategy is to “convexify” the ob- (wi,m;)€X?

jective and the constraints ifi_(19). See Figs. 4 lahd 5. To @is condition is needed becauselif](43) holds, then by eonti
so, we recall that if? and ¢ are two discrete distributions nuity of the mutual information, there existsia> 0 such that
with the same support, and they are close entry-wise, the KLP.) ~; I(P./), which means that the mutual information

V(Ii,Ij) S X2. (42)

divergence can be approximated [13] as quantities are difficult to distinguish and the approxiroati
P(x) in (0) is accuratBi Note that proximity of the mutual
DQIIP)=- Z Q(x)log ———=, information values is not sufficient for the approximatian t
xexd Q) hold since we have seen from Theorein 2 tiiat: depends
P(x) — Q(x) not only on the mutual information quantities but on the renti
== Z Q(x) log [1 + (W)] , joint distribution P, ..
xeXd We now define theapproximate crossover raten disjoint
<L (Qx) - P(x))? (39) Node pairs: ande’ as
24 Q)

~ 1
Je. o= inf {—|Q P} Q€ Q(Pe_,e/)}, (44)
— 2@ Pl (40) aepien |2 |

2 where the (linearized) constraint set is
where ||y||2, denotes the weighted squared normafi.e., Q(P,.) = {Q €PN I(P) + (Vi I(P.),Q — Pour)
lyll2 :== >, y?/w;. The inequality in [(3P) holds because ol e Fetifel: o°
1_og(1+z) >z—z%/2forall z > —1. The_ inequglity _becomes = I(Po)+(Vp,I(P),Q — P.or) }, (45)
tight ase = || P — Q|| — 0. Moreover, it remains tight even _ _ _
if the subscript in (@0) is changed to a distributia@’ in the whereV p, I(P.) is the gradient vector of the mutual informa-
vicinity of @ [13]. That is, the difference betweéi) — P||¢ tion with respect to the joint distributio®.. We also define
and ||Q — PJ|o is negligible compared to either term wherthe approximate error exponent as

Q' ~ Q Using_thi_s fa_ct and the assumption tﬁatr_;mdQ are Kp := min min T o (46)
two discrete distributions that are close entry-wise, e'¢Ep ecPath(e’;€p)
1 ) We now provide the expression for the approximate crossover
D@IIP) = 5lQ— Pllp. (41) rate J.. and also state the conditions under which the

approximation is asymptotically accurdfe.
In fact, it is also known [13] that if P — Q|| < € for some  Theorem 8 (Euclidean approximation df .): The
e >0, we also haveD(P || Q) = D(Q || P). approximate crossover rate for the empirical mutual
In the following, to make our statements precise, we will usaformation quantities, defined if_{44), is given by
the notatiom; ~s o, to denote that two real numbess and 9 9
o are in thes neighborhood of each othére., [ — as| < Jow = (Else —sc])” _ (U(Pe) — I(F)) . (4D
5[ we will also need the following notion of information ' 2 Var(se: — se) 2 Var(ser — se)
density to state our approximation fdg .

13Here and in the following, we do not specify the exact valué blit we
simply note that ag — 0, the approximation in[{41) becomes tighter.

12In the following, we will also have continuity statements es given 14We say that a collection of approximatioq®(e) : € > 0} of a true
e > 0 anda; ~¢ a2, implies that there exists somde= d(¢) > 0 such that paramete® is asymptotically accurate if the approximations conveme as
B1 ~5 B2. We will be casual about specifying what this are. e — 0.
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where s, is the information density defined if_(42) and the
expectation and variance are both with respecPtq.. Fur-
thermore, the approximatioh (47) is asymptotically actajra
i.e, ase — 0 (in the definition ofe-very noisy condition), we
have that/, . — Je .

Proof: (Sketch Egs. [44) and(45) together define a least
squares problem. Upon simiplification of the solution, we

obtain [47). See AppendixID for the details. [ |
We also have an additional result for the Euclidean approxi-
mation for the overall error exponefifp. Fig. 6. Reverse I-projection [29] o onto the set of tree distributions

d d i
Corollary 9 (Euclidean approximation ak'p): The DX, T) given by [28).

approximate error exponeri{p is asymptotically accurate

: ! o ] z1 | z2 | 3 Distribution P(x)
when either one of the following conditions is true. Ol o[ o0 ar2-91/2-—=xk)
(@ The jqint distributionP, . ., satisfies the-very noisy 8 (1) (1) a/ 2(;?532)2%_ ~)
condition for everye’ ¢ Ep. 0T 1 11 CB3—0r
(b) The joint distribution P, (.-) .-, where e* is defined T]0]0 (2/3 =&k
in 34) andr(e*) is the dominant replacement edge 11071 13+ 8k
; L . T 10| d2=-0(1/2—r)
associated to non-edge’, satisfies thee-very noisy T 11T @az+H12-—~x)
condition but all the other distributions on the non- TABLE |

neighbor nOde pairs’ ¢ EP U {6*} along Wlth their TABLE OF PROBABILITY VALUES FOREXAMPLE[Z.
dominant replacement edge&’) do notsatisfy thee-

very noisy condition.

Proof: Condition (a) follows directly from the continuity
of the min function in [@6). If condition (b) holds, thenable to distinguish between distributions that are “easy” t
e* ¢ Ep dominates all the crossover events [[0](46) becaul§@n and those that are “difficult” by computing the set of
the rateJ, .-y .- is the minimum. Consequently, the dominan®NR quantities{.J. ./} in (48).
approximate crossover raﬁé(e*),e* is asymptotically accurate
which implies thatK p is also asymptotically accurate. m VII. EXTENSIONS TONON-TREE DISTRIBUTIONS

Hence, the expressions for the crossover tate and the |y 4 the preceding sections, we dealt exclusively with the
error exponent(p are vastly simplified under thevery noisy - c4se where the true distributioR is Markov on a tree. In
condition on the joint distributions”, ... The approximate his section, we extend the preceding large-deviationysisl
f:rossover_rate]e_,e/ in (47) has a very Intuitive meaning. Itto deal with distributionsP that may not be tree-structured
is proportional to the square of the difference between thgt in which we estimate a tree distribution from the given se
mutual information quantities af. and P%.. This corresponds of samplesc”, using the Chow-Liu ML-estimation procedure.
exactly to our initial intuition — that iff(F.) and I(F./) aré  gince the Chow-Liu procedure outputs a tree, it is not péesib
well separated!(F.) > I(F.)) then the crossover rate hasg |earn the structure a? correctly. Hence, it will be necessary
to be large.J. s is also weighted by the precision (inversgq redefine the error event.

variance) of(s.: — s.). If this variance is large then we are \yhen P is not a tree distribution, we analyze the properties
uncertain about the estimagF.) — I(Fe), and Crossovers of the optimalreverse I-projectior{29] of P onto the set of

are more likely, thereby reducing the crossover tate . tree distributions, given by the optimization probfém
We now comment on our assumption &% ., satisfying
the e-very noisy condition, under which the approximation is II"(P):= _ min _ D(PQ). (48)

tight as seen in Theoref 8. Whéh .. is e-very noisy, then QEDXLTY

we havel(P.) =~s I(P.), which implies that the optimal IT*(P) is the KL-divergence ofP to the closest element in
solution of [I9) Q. ~s P... Whene is an edge and D(x?,77). See Fig[. As Chow and Wagner [9] noted Fif
¢’ is a non-neighbor node pair, this implies that it is veris not a tree, there may be several trees optimi[ElB\Ye
hard to distinguish the relative magnitudes of the empgicadenote the set of optimal projections B$(P), given by
I(P.) and I(P./). Hence, the particular problem of learning
the distributionP, .. from samples isvery noisy Under these

conditions, the apprommat!on '@4,7) IS accukrate_. We now illustrate thatP*(P) may have more than one
In summary, our approximation i (47) takes into accouRiement with the following example.

not only the absolute difference between the mutual inferma

tion quantities/(P.) and I(P.), but also the uncertainty in  15the minimum in the optimization problem IA48) is attaineztause the

learning them. The expression ih_47) is, in fact, the SNRL.-divergence is continuous and the set of tree distrimsi® (x4, 7?) is

for the estimation of the difference between empirical ratitu®mpact. _ " - o

inf fi titi Thi f the fundani This is a technical condition of theoretical interest irsteection. In fact,

Information quanutes. IS answers one o € Tunaa enFfacan be shown that the set of distributions such that themare than one

guestions we posed in the introduction, viz., that we are nawe optimizing [4B) has measure zeroA{x?).

PH(P):={Q e D(X",T%): D(P||Q) =1I"(P)}. (49)
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DX, Ty D(X, Tho) We defineTr,, = (V,&p,,) as the graph ofPes, which is
- “ the learned tree and redefine the nesor eventas
D(P|| PR)
An(P*(P)) = {5Pesl ¢ EP*(P)}- (54)
Note that this new error event essentially reduces to the
e-flat manifolds original error eventd,, = A,,({P}) in (B) if 7p-(py contains

only one member. So if the learned structure belongs to
Fig. 7. Each tree defines anflat submanifold [37], [38] of probabilty ¢, ., there is no error, otherwise an error is declared.
distributions. These are the two lines as shown in the figlirehe KL- Id like t | the d f th babilit
divergencesD(PHPéslt)) and D(PHPe(SQt)) are equal, therPe(slt) and Pé? We wou ke to ana_yze . e ec_ay O. e error probability
do not have the same structure but both are optimal with eesiethe Of A, (P*(P)) as defined in[(84)j.e., find the newerror
optimization problem in[{48). An example of such a distribotP is provided exponent
in Examplel2.

. 1 .

Example 2:Consider the parameterized discrete probabil- ) .
ity distribution P € P({0,1}*) shown in Tablel]l where 't turns out that the analysis of the new evedl (7" (P))
¢ e (0,1/3) andx € (0,1/2) are constants is very similar to the analysis performed in Sectloh V. We

Proposition 10 (Non-uniqueness of projectiorjor  suffi- redefine the notion of a dominant replacement edge and the

ciently smallx, the Chow-Liu MWST algorithm (using either COMPutation of the new rat&r-(p) then follows automati-

Kruskal’s [31] or Prim’s [32] procedure) will first includéé cally. _ , .
edge(1,2). Then, it will arbitrarily choose between the two Definition 5 (Dominant Replacement Edg;é‘)lx an edge
remaining edges2, 3) or (1, 3). set&y € Ep«(py. For the error eventd, (P*(P)) defined

Thus, the optimal tree structué* is not unique. See Fig] 7N (4), given a non-lneighb(?r node pair¢ £q, its dominant
for an information geometric interpretation. replacement edge(c’; £q) with respect tofo, is given by

Every_ tree dl_strlbuu_on inP*(P) ha§ the maximum sum (e EQ) = argmin Jour, (56)
mutual information weight. More precisely, we have cePath(e’:£0) ’
Equ{e’ e}EEp«
> I@Q)=, max > IQL), VQEP(P). AR
e€&q QED(AY, )eeeQ/ if there exists an edge € Path(e’;Eg) such that&y U

(50) {e'}\ {e} & Ep-(p). Otherwiser(e’;Eg) = 0. J. is the
Given [50), we note that when we use a MWST algorithrossover rate of mutual information quantities define@®) (
to find the optimal solution to the problem if_{48), tiesf r(¢/; &) exists, the corresponding crossover rate is
will be encountered during the greedy addition of edges, as

demonstrated in Examglé 2. Upon breaking the ties arligrari Irerieq) e = min Je,ers (57)
. L . N . ecPath(e’;EqQ)
we obtain some distributio) € P*(P). We now provide a £oU{e P} ¢m )

sequence of useful definitions that lead to definition of a new
error event for which we can perform large-deviation arialys otherwise.J; .- = +oc.
We denote the set of tree structlibsorresponding to the In (G6), we are basically fixing an edge s& € Ep-(p)
distributions inP*(P) as and excluding the trees with e Path(e’; ) replaced bye’
" . if it belongs to the set of optimal tree projectio%- p).
Tpepy = {ToeT": Qe P (P)}, (51)  we further remark that in[(36)r(¢') may not necessarily
and term it as the set afptimal tree projectionsA similar €xist. Indeed, this occurs if every tree withe Path(e’; £g)

definition applies to the edge sets of optimal tree projestio replaced bye’ belongs to the set of optimal tree projections.
This is, howevernot an error by the definition of the error

R . _ d *
Ep-py = {€q:To = (V&) € T%,Q € P*(P)}. (52) eventin [54) hence, we sé} .. = -+oc. In addition, we define
Since the distributiorP is unknown, our goal is to estimatethe dominant non-edgassociated to edge s&} € Ep-(p) as:
the optimal tree-projectiofest using the empirical distribution

P, where Psg; is given by e'(Eq) = ai"/g;?;n eepa?ﬁl(g/;eQ) Je,er- (58)
~ & G, e Epx
Pest:= argmin  D(P||Q). (53) Qu{e'N\{e}¢Ep=(p)
QeD(X4,T9) Also, thedominant structuren the set of optimal tree projec-

If there are many distribution§, we arbitrarily pick one of tions is defined as
them. We will see that by redefining the error event, we will

have still a LDP. Finding the reverse I-projectidhs can be Ep- = gaiggm*in (e (£0)i€0) " (Eq)» (59)
solved efficiently (in timeO(d?logd)) using the Chow-Liu e
algorithm [2] as described in Sectiénllll. where the crossover ratg /¢, is defined in [(B7) and the

dominant non-edge* (£, ) associated t&, is defined in[(5B).

In fact, each tree defines a so-caledlat submanifold37], [38] in the set ; ; it
of probability distributions ont'® and Pest lies in both submanifolds. The so- Equped with these definitions, we are now ready to state the

called m-geodesiconnectsP to any of its optimal projectiorPest € P*(P). generalization of Theore 5.
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Theorem 11 (Dominant Error Tree)ror the error event
A, (P*(P)) defined in[(5#), a dominant error tree (which may
not be unique) has edge set given by

Ep- U{e"(Ep- )} \{r(e"(Ep-); Ep- )}, (60)

where e*(Ep+) is the dominant non-edge associated to the
dominant structur€p- € Ep-(py and is defined by (58) and
(59). Furthermore, the error expondiik-(py, defined in[(5b)

is given as

Fig. 8. Graphical model used for our numerical experimeiiise true

KP*(P) = min min min Jeer (61) model is a symmetric star (cf. Sectibn TV-A) in which the maltinformation
EQ€Ep=(pye'¢Eq  ecPath(e;€q) i quantities satisfyI(P12) = I(P1,3) = I(Pi,4) and by construction,
Equie' N\ {e}¢Ep+(p) I(P,) < I(P132) for any non-edgee’. Besides, the mutual information

. . . quantities on the non-edges are equal, for examf{l€% 3) = I(P3,4).
Proof: The proof of this theorem follows directly by iden- hBa.s) = 1(Ps,e)

tifying the dominant error tree belonging to the Q’ét\Tp*(P).
By further applying the result in Propositibh 4 and Theofém 5 define it in Sectior VIII-C. We perform convergence

we obtain the result via the “worst-exponent-wins” [10, Ch.  analysis of the empirical rate and also numerically verify
1] prlnc_|ple by minimizing over all trees in the set of optima the rate of convergence to the true crossover rate.
projectionsép- (p) in @1). ® Inthe following, we will be performing numerical experinten

This theorem now allows us to analyze the more general er
event A, (P*(P)), which includesA4,, in (B) as a special
case if the set of optimal tree projectiofig- py in (BI) is

f8F the undirected graphical model with four nodes as shawn i
Fig.[8. We parameterize the distribution with= 4 variables
with a single parametey > 0 and letX = {0,1}, i.e, all the

a singleton. variables are binary. For the parameters, wef3¢t, = 0) =
1/3 and
VIII. N UMERICAL EXPERIMENTS .
In this section, we perform a series of numerical experi- Py (x; = 0]z =0) = 3 +5, 1=2,3,4,
ments with the following three objectives: 1
1) In Section[VII-A, we study the accuracy of the Eu- Bip(zi = 0lzr = 1) = 5~ =234 (62)

chde_an approximations _(Theordfh 8). We_ do this by aRg;, i parameterization, we see that~fis small, the
alyzing under which regimes the approximate Crossovgfy | informationI(P; ;) for i = 2,3,4 is also small. In
.ratem/ in @) is close to the true crossover rafg. fact if v =0, 21 is indeTaendent ofvijfo’r 1 =2,3,4 and as
n 19). . a result,I(P, ;) = 0. Conversely, ify is large, the mutual
2) Since the Lop and error exponent analygs are asyMRtormation I(P1;) increases as the dependence of the outer
fotic theories, in _SeCt'OMB we use S'mUIat'onS_t%odes with the central node increases. Thus, we can vary the
study the behavior of the actual crossover rate, gV@lle of the mutual information along the edges by varying
a finite number of samples. In partlcular, we study By symmetry, there is only one crossover rate and hence this
how fast the crossover rate, obtained from S'mulat'oné’r’ossover rate is also the error exponent for the error edent
converges to the true crossover rate. To do so,

0 SO, Wif (8). This is exactly the same as the symmetric star graph
generate a number of samples from the true d|str|but|%r§ described in Sectidi TAA
and use the Chow-Liu algorithm to learn trees structures. '

Then we compare the result to the true structure and _ o
finally compute the error probability. A. Accuracy of Euclidean Approximations

3) In Sectiod VIII-G, we address the issue of the learner not We first study the accuracy of the Euclidean approximations
having access to the true distribution, but nonethelessed to derive the result in Theoréh 8. We denotetthe
wanting to compute an estimate of the crossover rarate as the crossover rate resulting from the non-convex
The learner only has the sample’s or equivalently, the optimization problem[(19) and thapproximate rateas the
empirical distributionP. However, in all the preceding crossover rate computed using the approximatio_inh (47).
analysis, to compute the true crossover tate andthe  We vary v from 0 to 0.2 and plot both the true and
overall error exponenk p, we used the true distribution approximate rates against the difference between the utua
P and solved the constrained optimization problermformations(P.) — I(P./) in Fig.[d, wheree denotes any
in (I9). Alternatively we computed the approximatioredge ande’ denotes any non-edge in the model. The non-
in (&17), which is also a function of the true distribu-convex optimization problem was performed using the Matlab
tion. However, in practice, it is also useful to computéunctionf m ncon in the optimization toolbox. We used sev-
an online estimate of the crossover rate by using thkeal different feasible starting points and chose the betatnal
empirical distribution in place of the true distribution inobjective value to avoid problems with local minima. We first
the constrained optimization problem [n]19). This is aote from Fig[® that both rates increase 4%.) — I(P./)
estimate of the rate that the learner can compute givercreases. This is in line with our intuition becauseAf .
the samples. We call this tlempirical rateand formally is such thatl(P,) — I(P./) is large, the crossover rate is
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Fig. 9. Comparison of True and Approximate Rates.
o.2B—B888-8-8-8-8-+%
) 5 Simulated Rate
also large. We also observe thatlifP.) — I(P./) is small, & 0.018| —— True Rate
the true and approximate rates are very close. This is in 2 ' —H&— Approx Rate
line with the assumptions for Theordm 8. Recall thaPif. < 0.016
satisfies the-very noisy condition (for some smal), then the T PE—IEH NN
mutual information quantitie$(P.) andI(P.) are close and 0.014
consequently the true and approximate crossover rate¢sare a
close. When the difference between the mutual informations 0'0120 200 400 600
increases, the true and approximate rate separate from each n
other. Fig. 10. Comparison of True, Approximate and Simulated Ratih v =

0.01 (top) and~y = 0.2 (bottom). Here the number of runs/ = 107 for
. . = 0.01 and M = 5 x 108 for v = 0.2. The probability of error is
B. Comparison of True Crossover Rate to the Rate Obta'né%puted dividing the total number of errors by the total hemof runs.

from Simulations

In this section, we compare the true crossover rateih (19) to . N
the rate we obtain when we learn tree structures using Chd@ge in order to estimate the error probability correctly b
Liu with i.i.d. samples drawn fronP, which we define as does not have to be too large for the simulated rate to coaverg
the simulated rate We fixed~y > 0 in §2) then for each tO the true rate. On the other hand, wheis small ¢ = 0.01),
n, we estimated the probability of error using the Chow-Lithere are only subtle differences in the graphical modeisch

algorithm as described in Sectibnl Ill. We state the procedut® need a larger number of samplesor the simulated rate
precisely in the following steps. to converge to its true value, bt does not have to be large

1) Fixn € N and sample: i.i.d. observations™ from P since the error probabilities not small. The above obsemat

2) Compute the empirical distributiaR and the set of em- are in line with our intuition.
pirical mutual information quantitiesl (P.) : e € (})}.
3) Learn the Chow-Liu tre€,, using a MWST algorithm C. Comparison of True Crossover Rate to Rate obtained from
with {I(P.) : e € (})} as the edge weights. the Empirical Distribution
4) If &, is not equal tofp, then we declare an error. In this subsection, we compare the true rate toetmgpirical
5) Repeat steps 1 — 4 a total df € N times and (ate which is defined as
estimate the probability of errdP(A,,) = #errors/M R R
and the error exponent(1/n)logP(A,), which is the  Je := inf {D(Q || Peer) : 1(Qer) = I(Qe)}- (63)
simulated rate. QEP(¥Y)
If the probability of errof?(A,, ) is very small, then the numberThe empirical rate/e .. = Je,e (Fe,.') is a function of the
of runs M to estimateP(A4,,) has to be fairly large. This empirical distributionP, ... This rate is computable by a
is often the case in error exponent analysis as the samiglarner, who does not have access to the true distribution
size needs to be substantial to estimate very small erihie learner only has access to a finite number of samples
probabilities. x" = {x1,...,%X,}. Given x", the learner can compute
In Fig.[10, we plot the true rate, the approximate rate atldle empirical probabilityP. .. and perform the optimization
the simulated rate whep= 0.01 (andM = 107) andy = 0.2 in (€3). This is an estimate of the true crossover rate. Anaatu
(and M = 5 x 10%). Note that, in the former case, the truejuestion to ask is the following: Does the empirical rdte
rate is higher than the approximate rate and in the latte¥, casonverge to the true crossover ralg., asn — oo? The next
the reverse is true. Whenis large ¢ = 0.2), there are large theorem answers this question in the affirmative.
differences in the true tree models. Thus, we expect that theTheorem 12 (Crossover Rate Consistencifie empirical
error probabilities to be very small and henté has to be crossover ratd. . in (63) converges almost surely to the true
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x10°° , , true tree to identify the dominant tree in the set of erroseou

4 Empirical Rate trees. We also drew insights from the approximate crossover
9.5 ‘ —— True Rate ] rate, which can be interpreted as the SNR for learning. These
5 o —H— ApproxRate || two main results in Theoreni$ 5 afid 8 provide the intuition as
a to how errors occur for learning discrete tree distribuiora
B 8PN NN the Chow-Liu algorithm.
:f 8 | In a future paper, we develop counterparts to the results
T here for the Gaussian case. Many of the results carry through
75 1 but thanks to the special structure that Gaussian disivibsit
P - = e = soat = = e = s = = o = v possess, we are also able to identify which structures aierea
10" 10° 10° 10’ to learn and which are harder to learn given a fixed set of
n correlation coefficients. We are also interested to study th
0.022 optimality of the error exponent associated with the ML Chow
Liu algorithm, i.e,, whether the rate established is the best
o.od—E8-888-88-8-H among all consistent estimators of the edge set.
g Empirical Rate
%0-018 i;ﬁjpiia;eate ACKNOWLEDGMENTS
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0.01%4 = o " APPENDIXA
n PROOF OFTHEOREMI[Z

Fig. 11. Comparison of True, Approximate and Empirical Ratéth v = Proof: We divide the proof of thi_S theorem into three
0.01 (top) and~ = 0.2 (bottom). Heren is the number of observations usedsteps. Steps 1 and 2 prove the expressionih (19). Step 3grove
to estimate the empirical distribution. the existence of the optimizer.

Step 1 First, we note from Sanov’s Theorem [26, Ch. 11]

. . that the empirical joint distribution on edgesande’ satisfies
crossover ratel, .- in (19),i.e, P J 9

1 ~
) 1 (64) nhﬁngo - logP(P. . € B) = QGIgi(I}(4){D(Q || Peer) : Q € B}
(65)

Proof: (Sketch The proof of this theorem follows from for any set3 c P(x*) that equals the closure of its interior,
the continuity of.J. .- in the empirical distribution”, . and i.e, B = cl(int(B)). We now have a LDP for the sequence
the continuous mapping theorem by Mann and Wald [39]. Seé probability measuredi_]e/, the empirical distribution on
Appendix[F for the details. B (c,e’). Assuming thak ande’ do not share a common node,
We conclude that the learning of the rate from samples i3 .. € P(X*) is a probability distribution over four variables
consistent. Now we perform simulations to determine hofthe variables in the node paiesande’). We now define the
many samples are required for the empirical rate to converfgectionh : P(X*) — R as
to the true rate.

We sety = 0.01 andy = 0.2 in (62). We then drew. i.i.d. h(Q) = I(Qe) — I(Qe)- (66)
samples fromP” and computed the empirical distributi¢t ...  Sjnce, = S Qs continuous inQ and the mutual infor-
Next, we solved the optimization problem in_{63) using th?nationI(Qe) is“also continuous i))., we conclude thak is
fm ncon function in Matlab, using different initializations jngeed continuous, since it is the composition of contirsiou
and compared the empirical rate to the true rate. We repeafgflctions. By applying the contraction principle [10] toeth
this for several values of. and the results are displayed insequence of probability measutBs.. and the continuous map
Fig. [11. We see that foy = 0.01, approximatelyn = 8 X, e optain a corresponding LDP for the new sequence of

~ ~

10% samples are required for the empirical distribution to b&'obability measure&(ﬁe o) = I(P,) — I(P,), where the
close enough to the true distribution so that the empiriad r 516 is given by: "

converges to the true rate.

P ( lim Jyo = Joo

n—oo

Jee/: inf D Pe.e/ th ZO,
o = gtk (D@ P : Q) 2 0}

IX. CONCLUSION = inf {D(Q|Pee) : 1(Qe) 2 1(Qc)}.  (67)
In this paper, we presented a solution to the problem QEP(XY)

of finding the error exponent for tree structure learning bye now claim that the limit in[{18) exists. From Sanov’s

extensively using tools from large-deviations theory corell  theorem [26, Ch. 11], it suffices to show that the constragnt s

with facts about tree graphs. We quantified the error expondh:= {I(Q./) > I(Q.)} in (€4) is a regular closed saitge.,

for learning the structure and exploited the structure @f tht satisfies’5 = cl(int(B)). This is true because there are no
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* 3k
e,e/ e,e’
Fig. 12. lllustration of Step 2 of the proof of Theoréd 2. Fig. 13. lllustration for Case 1 of the proof of Theor€in 5.

isolated points in5 and thus the inter_ior is nonempty. Hencegontinuous and{0} is closed (in the usual topology of the
there exists a sequence of distributiof@,,}7°_; C int(B) real line), A is closed [33, Theorem 4.8]. Hence thatis

such thatlim,, oo D(Qm|[Peer) = D(Q¥[|Peer), Which compact. We also need to use the fact thais compact in
proves the existence of the limBtep 2We now show that the the proof of Theorerii 12. u
optimal solution@; .., if it exists (as will be shown in Step

3), must satisfyI(Q}) = I(Q% ). Suppose, to the contrary,

that Q* ., with objective valueD(Q? ||P... ) is such that APPENDIXB

Q) > I1(Qr). Thenh(Q%.) > 0, whereh, as shown PROOF OFTHEOREM[S

above, is continuous. Thus, there exist§ a 0 such that the

s-neighborhood Proof: We first claim that€},, the edge set correspond-

ing to the dominant error tree, differs frody» by exactly
Ns(Q: o) ={R:|R—-Q} .l <5}, one edg@ To prove this claim, assume, to the contrary,
o ' . that &5 differs from £p by two edges. Let,, = & =
sgtls_fles_lz(N(;(Q;e,)_) C (0,00) [33, Ch. 2]. Consider the new €p \ ler e} U {€,, ¢4}, wheree), e, ¢ Ep are the two
distribution (See Fid._12) edges that have replaced,e; € Ep respectively. Since
" . 5 . 5\ .. 5 T = (V,&) is a tree, these edges cannot be arbitrary and
e = Qoo+ 5(Peer = Qeer) = (1 - 5) cer t5lee specifically,{ey, e2} € {Path(e!; Ep) UPath(el; Ep)} for the
) _ tree constraint to be satisfied. Recall that the rate of tleatev
Note thatQ;"., belongs toN;(Q¢ /) and hence is a feasi- it the output of the ML algorithm i€ is given by Y (T")
ble solution of [(6F). We now prove thab(Q;"..[|Fer) < in @7). Then consider the probability of the joint eventtfwi

D(Q} /|| Pe.er), which contradicts the optimality af; ... respect to the probability measuPe= P™).
D(Q**,||P.er) Case 1. e; € Path(el;Ep) for i = 1,2 ande; ¢
’ ' 5 5 Path(e); Ep) for i, j = 1,2 andi # j. See Fig[1IB. Note that
=D ((1 - 5) cer T §P€’e' Pe,e,) , the true mutual information quantities satidfy.,) > I1(F.,).

We prove this claim by contradiction that suppa¥e”,;) >
5D(pe o||Peer),  (68) I(P.,) then,Ep does not have maximum weight because if

é
<|(1—=| D@ ||Peer)+ = i
( 2) (Qc.erl[Peer) 2 the non-edge’, replaces the true edgs, the resulting trétd

_(1_ § DQ* 1P (69) would have higher weight, contradicting the optimality bét
B 2 el el true edge sefp, which is the MWST with the true mutual
< D(QF ||Pur), (70) information quantities as edge weights. More preciselycare

compute the exponent wheR is the output of the MWST
where [68) is due to the convexity of the KL-divergence in thgigorithm:

first variable [26, Ch. 2],[(89) is becaug&( P, /|| Pee) = 0
and [70) is because> 0. Thus, we conclude that the optimal 1 N N
solution must satisfyl (Q*) = I(Q* ) and the crossover rate ~ T(7") = lim —logP () {I(Pe) = I(P,)} ]

can be stated a5 (119). e i=1,2
Step 3 Now, we prove the existence of the minimizgf .., . 1 ~ =
which will allow us to replace théuf in (I8) with min. First, 2 max lim —-—log P ({I (Fe) 2 1 (PeJ}) ,
we note thatD(Q || P.,./) is continuous in both variables and = max {Je, o1 s Jeye, - (72)
hence continuous and the first varialgle It remains to show o e
that the constraint set Now J, . = Y(T;) whereT; := (V,Ep \ {e;} U{e;}). From

Prop.[4, the error exponent associated to the dominant error
= 4y . 1) = . ! .
A={QeP(X"): I(Qe) = 1(Qe)} (71) tree,i.e., Kp = mingyp, T(T') and from [72), the dominant
is compact, since it is clearly nonempty (the uniform distri error tree cannot b&” and should differ fron’» by one and
tion belongs toA). Then we can conclude, by Weierstrausgnly one edge.
extreme value theorem [33, Theorem 4.16], that the minimize
Q@* € A exists. By the Heine-Borel theorem [33, Theorem 8This is somewhat analogous to the fact that the second-ba&s Mdiffers
2.41). it suffces o show tha is bounded and closed ‘e WS S mes 0 L L

. . . $ ath(e;; Ep
Clearly A is bounded s|nC.§3(X4.) IS a bounded _Set- N_OW’ a cycle so if any edge is removed, the resulting structures amé have any
A = h~1({0}) where h is defined in [[EB). Sinceh is cycles and is connected, hence it is a tree. SeelFig. 2.
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lllustration for Case 2 of the proof of Theorgin 5.

Fig. 14.

Case 2: e; € Path(e);Ep)
Now, we havel(P,,) > (Pe )

fori,7=1,2 and

T = lim — L logP l( N (B = 1(136].)})
n— o0 n i

i=1,2

j#i
U( N @) = 12 (73)

1=1,2
Hence, we have
Y(T') > min {max Je;er s maxJ, e,} . (74)
i=1,2 i =1,2, 50

Again, T’ cannot be the dominant error tree.

Similar results can be shown for the case whene
Path(el;Ep) for ¢ = 1,2, eo € Path(e};Ep) ande; ¢
Path(es; Ep) and the case whem; € Path(el;Ep) for
i=1,2, e; € Path(e);Ep) andes ¢ Path(e); Ep).

We now use the “worst-exponent-wins principle” [10, Ch.
1], to conclude that the rate that dominates is the minimum

Jr(ery,er Over all possiblee’ ¢ Ep, namely J,. (- .~ with e
defined in [[3%). More precisely,

P(A,) =P
’¢SP
(U U
e’'¢Ep ecPath(e’;Ep)
<> > P({¢ replaces in T;.}), (75)

e’¢Ep ecPath(e’;Ep)

{¢’ replaces in TML}>,

= Z Z ({I(ﬁe’) 2 I(ﬁe)})a (76)
e/ ¢Ep ecPath(e’;Ep)

= Z Z exp(—nde,er), (77)
e’¢Ep ecPath(e’;Ep)

= — i i Jeer | 78

P ( " IR e ien T ) (78)

where [75) is from the union bound,_{76) andl(77) are frofy) If (D) is true then/ (P
the definitions of the crossover event and rate respectfaaly

for 4,5 = 1,2. See Fig[I4.

U {¢’ replaces any € Path(e/; £p) in TML}>,
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that if e* ¢ Ep replaces(e*), then the error4,, occurs. Thus,
{e* replaces (e*)} C A, and

P(A,) > P({e* replaces(c*) in Ty }) = exp(—nJy(ee o+)-

Hence,P(A,) = exp(—nJy(c+),e-), Which proves our main
result in [33). [ |

APPENDIXC
PROOF OFTHEOREMI[G

Statement (a)s statement (b) was proven in full after the
theorem was stated. Here we provide the proof that£hc).
Recall that statement (c) says th&t is not a proper forest.
We first begin with a preliminary lemma.

Lemma 13:Supposer, y, z are three random variables tak-
ing on values on a finite set. Assume thatP(z,y,z) > 0
everywhere. Themw —y — z andx — z — y are Markov chains
if and only if z is jointly independent of), z.

Proof: (=) Thatz —y — z is a Markov chain implies that

P(zly, x) = P(zly),
or alternatively
Py, z
Play.2) = Plaa) ) (80
Similarly from the fact that: — z — y is a Markov chain, we
have Ply.2)
, 2
P(z,y,2) = P, 2) P?Z) . (81)

Equating [(8D) and[(81), and use the positivity to cancel
P(y, z), we arrive at

P(aly) = P(z]2).

It follows that P(x|y) does not depend o, so there is some
constantC'(z) such thatP(z|y) = C(z) for all y € X. This
immediately implies thatC(z) = P(z) so thatP(x|y) =
P(zx). A similar argument gives thaP(z|z) = P(z). Fur-
thermore, ifx — y — z is a Markov chain, so i — y — z,

therefore
P(zly, z) = P(zly) = P(z).

The above equation says thais jointly independent of both

y andz.

(«=) Conversely, ifz is jointly independent of botly and z,

thenxz —y — z andx — z — y are Markov chains. [ ]
Proof: We now prove (b)<= (c) using Lemm&3 and

the assumption thalP(x) > 0 for all x € x.

) # I(P.) forall e € Path(e; Ep)

and for alle’ ¢ £p. Assume, to the contrary, thdtp is a

(82)

described in Cases 1 and 2 above) 4dnd (78) is an apphcatﬂmper forestj.e,, it contains at least 2 connected components

of the “worst-exponent-wins” principle [10, Ch. 1].
We conclude from[(78) that
P(A,) < exp(—npes).er ), (79)

from the definition of the dominant replacement edde’)

(each connected component may only have one node), say
g = (V;,&) for i = 1,2. Without loss of generality, let

T be in componeng; and 22,23 belong to components,.

Then sinceV; NV, = § andV; UV, = V, we have thats;
jointly independent ofr, and x3. By Lemmal1B, we have
the following Markov chainss; — o — z3 andxz; — x3 — 2.

and the dominant non-edge*, defined in [(3R) and[{34) This implies from the Data Processing Inequality [26, Tiesor
respectively. The lower bound follows trivially from thecta 2.8.1] that/(P; 2) > I(P;,3) and at the same timg(P; ») <
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I(Py 3) which means thaf(P; 2) = I(P1,3). This contradicts Step 3 The optimization problem now reduces to minimiz-
(b) since by taking’ = (1, 2), the mutual informations along ing (84) subject to the constraints in {88). This is a staddar

the pathPath(e’; £p) are no longer distinct. least-squares problem. By using the Projection Theorem in
(<) Now assume that (c) is truee., Tp is not a proper forest. Hilbert spaces, we get the solution

Suppose, to the contrary, (b) is not tries., there exists a I(P,) — I(P.)

¢ ¢ Ep such thatl(P.) = I(Pu.), wherer(e') is the € =K_ L (LeoK_ LLL)™! o0

replacement edge associated with the non-edgéVithout

loss of generality, let’ = (1,2) andr(¢’) = (3,4), then The inverse ofL. . K_ ! LT  exists because we assuniggd
sinceT’p is not a proper forest, we have the following Markovs not a proper forest and henég; # P,P; for all (i,j) €
chainz, —z3 — x4 — x2. Now note thatl (P 2) = I(Ps,4). In (‘2’) This is a sufficient condition for the matri. .- to have
fact, because there is no loss of mutual informatiéR, 4) = full row rank and thusL. . K_ L L7 is invertible. Finally,
I(Ps,) and hence by the Data Processing Inequality we als@ substitutee* in (@0) into [84) to obtain

havezs — 1 — 4 — z2. By using Lemmd_1I3, we have, 1

jointly independent ofr, and x3, hence we have a proper Je.e' =3 {(Le,e/K;i/Lze/)_l} (I(P.) — I(Pw))?, (91)

11
forest, which is a contradiction. . ,
where[M]y; is the (1,1) element of the matrixI. Define

to be the weighting function given by

APPENDIXD
PROOF OFTHEOREMI[8 Y(Pyor) i= [(Leye/K;;/LeTe/)*l} : (92)
’ ’ ’ 11

Proof: The proof proceeds in several steps. See Fibs.
and[® for intuition behind this proof.
Step 1 Let @ be such that

It4now suffices to show that)(P. ) is indeed the inverse
variance ofs, — s... We now simplify the expression for the
weighting functiomy (P, /) recalling howL, .- andK. . are
Q(xi, xj, g, 11) = Poor (i, T, Tpy 1) + €0 j 1ot (83) defined. The product of the matrices in](92) is

Thus, ther; ; 1.,'s are the deviations ap from P, ... Toensure L, K LT , = [ El(ser — se)?]  Elser — se] } . (93)
that ( is a valid distribution we requir®_¢; ; x; = 0. The e Elser — se] 1

objective in [4%) can now be alternatively expressed as  where all expectations are with respect to the distribuiiop .
Note that the determinant df(93) B(s. — s¢)?] — E[(ser —

2
%ETKMIE =3 > e Gkl . (84) s¢)]? = Var(se — se). Hence, the (1,1) element of the inverse
wowg e, OF (5, 25, 21, 21) of @3) is simply
wheree € RI*I" is the vectorized version of the deviations U(Pe,er) = Var(se —se) 7"
. h o ) o
i jko ANAKe o is a|X[* x |X|* diagonal matrix containing Now, if ¢ and e share a node, this proof proceeds in exactly
the entrl.esl/Pe_,e/ (23,2, 2k, 2;) along its diagonal. e same way. In particular, the crucial st&pl(86) will also
Step 2 We now perform a first-order Taylor expansion ofgmain the same since the Taylor expansion does not change.

I(Qe) in the neighborhood of (F). This concludes the first part of the proof.

Step 4 Recall that we use the notatien =;s a to denote

_ T
[(Qc) = I(Fe) + € Vel(Qe) that |a; — as| < 6. Now, assuming thaP. ., satisfies the-

_Follel. @)

=I(P.) + €'s. + of||€]]), (86) very noisy condition, then the following continuity statents
hold:
where s, is the length|X|*-vector that contains the infor-
mation density values of edge Note that because of the 361 > 0 s.t. I(P.) ~5, I(Per), (94)
assumption thaP is not a proper forestP; ; # P; P; for all 362 > 0S.L]|QF o — Peer|loo < 02, (95)
(i,7), hence the linear term does not vanisiThe constraints '* 1 )
can now be rewritten as 303 > 0 8.8 D(QF o/ || Pe.er ) =55 EHQe,e’_P&B’”P&eM (96)
1 = 0, €' (se —se) = I(P.)—I(P.). (87) 304 > 0st.I(P.) =5, SZ(Q:_’e/ —P. o), (97)

or in matrix notation as: 30>08t Jeer 5 Jeer (98)

sT — T I(P.) — I(P.) where [9#) follows from the continuity of mutual informatio

{ “qr } €= [ 0 ] ; (88) (@5) follows becauseP. . is d,-close to the constraint set

{Q : I(Qs > I(Q.)} and henceds-close to the optimal

where1 is the lengthkY|* vector consisting of all ones. Forsglution Q: .., (@8) follows from the approximation of the

convenience, we defink,. .- to be the matrix in[(88)i.e., KL-divergence,[[97) follows from the Taylor expansion oéth
T _ T . mutual information. Finally,[(38) follows from continuitgf
Lee = { T } € RZXIXI, (89) the objective in[[36) and the constraints1(97). EGI (98)say

that J. .. depends continuously on(in the definition of the

20|ndeed if P. were a product distribution, the linear term [Tk86) vanshe€ VEry NoISy condition)j.e, Je e — Jeer ase — 0. This
andI(Q.) is approximately a quadratic ia (as shown in [13]). completes the proof. [ |
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APPENDIXE By the compactness &, for the sequencéx(y,,)}52, C K,

PROOF OFPROPOSITIONIO there exists a subsequenge(y,, )}, C K whose limit is
Proof: The following facts aboutP in Table[] can be ** = limi—oc(y;,) andz™ € K [33, Theorem 3.6(a)]. By
readily verified: the continuity of f
1) P i_s positive everywherd,e., P(x) > 0 fqr all x € 3, lim f(z(y),yh,) = F@(y),y), (103)
2) P is Markov on the complete graph with= 3 nodes, oo , , i}
henceP is not a tree distribution. i f(@yn,)syn,) = (@), (104)

3) The mutual information between andzxs as a function

of  is given by since every subsequence of a convergent sequgyjgecon-

verges to the same limjt. Now (I02) can be written as
I(Py2) =log2+ (1 — 2k)log(l — 2k) + 2k log(2k).
@), yn,) — f(@(yn,),Yn,) > €>0, VkeN. (105)
ThusI(P;2) — log2 =0.693 asx — 0.

4) For anyé x € (0,1/3) x (0,1/2), I(Py.3) = I(P1.3) We now take the limit ag — oo of (I0F). Next, we usd (103)
and this pair of mutual information quantities can b&nd [10#) to conclude that
made a_rb_|trar|ly small ag — 0. fx(y),y) — fl@*,y)>e= f(z(y),y) > f(z*,y) +¢,(106)
Thus, for sufficient smalk, I(Py2) > I(Pa3) = I(P1,3). We ) ) o .
conclude that the Chow-Liu MWST algorithm will first pick Which contradicts the optimality of(y) in (100). ThusB — 0
the edge(1,2) and then arbitrarily choose between the tw@ndlimy —, g(y') = g(y), which demonstrates the continuity

remaining edges;2, 3) or (1, 3). m ofgonY. _ . u
Lemma 15 (The continuous mapping theorem [3Q]&t
APPENDIX F (Q, B(©2),v) be a probability space, whefeis a set,3(Q2) is
PROOF OFTHEOREM[TZ the Borelo-field overQ2 andv is a measure. Let the sequence

of random variabled X,,}52; on Q converge almost surely
gbeX, e, X, % X. Letg : Q — R be a continuous
fiihction. Theng(X,,) %% ¢(X).

Proof: Now, using Lemmasg_14 and 115, we complete
the proof of Theoren[_12. First we note frorh {63) that
Jeer = Jeo(Pe,er), i€, Je e is @ function of the empirical
distribution on node pairs and ¢’. Next, we note that

We first state and prove two preliminary lemmas. Th
orem[I2 will then be an immediate consequence of th
lemmas.

Lemma 14:Let X andY be two metric spaces and lEtC
X be acompactsetiX.Letf: X xY — R be a continuous
real-valued function. Then the functign Y — R, defined as

g(y) :== min f(z,y), Yy€eY, (99) D(Q||P../) is a continuous function i@, P,../). If P
_ ) ek is fixed, the expressiof (b3) is a minimizationla(Q||13€78/),
Is confinuous o, over the compact kA = {Q € P(X*) : I(Qu) = 1(Q.)},
Proof: Set the minimizer in[(99) to be hence Lemmd_14 applies (with the identificatiofis= D
2(y) = argmin f(z,y). (100) and A = K) which implies that.J. . is continuous in the
e eAmpiricaI distribution?, .. Since the empirical distribution

The optimizerz(y) € K exists sincef(z,y) is continuous e converges almost surely . .- by strong typicality [26,
on K for eachy € Y and K is compact. This follows from Sec. 11.2],J. /(P /) also converges almost surely i ./,

Weierstrauss’ extreme value theorem [33, Theorem 4.16]. g LemmalIb. [ ]
want to show that fotim, ., g(y') = g(y). In other words,
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