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Abstract We present a framework for incorporating prior information about high-probability
shapes in the process of contour extraction and object recognition in images. Here one studies shapes
as elements of an infinite-dimensional, non-linear, quotient space, and statistics of shapes are defined
and computed intrinsically using differential geometry of this shape space. Prior probability models
are constructed on the tangent bundle of shape space. Past work on boundary extraction has used
active curves driven by vector fields that were based on image gradients and roughness penalties.
The proposed method incorporates a priori knowledge of shapes in the form of gradient fields in
addition to the previously used image vector fields. Through experimental results, we demonstrate
the use of prior shape models in estimation of object boundaries, and their success in handling partial
obscuration and missing data. Furthermore, we describe the use of this framework in shape-based
object recognition or classification.

1 Introduction

Appearances of objects in images can be characterized to a certain extent by shapes of their bound-
aries. Therefore, the task of extracting object boundaries in images may prove important in problems
of detection, tracking, and recognition of objects. In some applications, this task has to be performed
solely on the basis of image data, while in others some prior information about the shape to be ex-
tracted is available to the algorithm. Boundary extraction has been studied in detail for many years
but mostly in the former situation. Focusing on the latter, we present a method for representing,
modeling, and incorporating prior information about shapes of interesting objects in the process of
shape extraction. Examples of these situations include battlefield image analysis where the interest
is restricted to certain military vehicles, or medical image analysis where one focuses on certain
anatomical parts with known shape variability. Stated differently, we are not seeking “general pur-
pose” segmentation algorithms; our inferences will correspond to curves that form boundaries of
known and interesting objects in images. From this perspective, our technique can be viewed as
a tool for shape-based inferences – classification and recognition of objects – in images. Besides
being application oriented, this perspective provides another advantage over the general-purpose
segmentation algorithms: a criterion for evaluating boundary estimation performance. Since esti-
mated boundaries are to be used for further inferences, performance in boundary estimation can be
measured directly in terms of eventual object classification or recognition performance.

? This paper was presented in part at the Asian Conference on Computer Vision, January 2006
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To highlight the novelty and contributions of this paper, we first discuss past and present tech-
niques in this area.

1.1 Current Methods for Curve Extraction

The seminal paper by Kass et al [17] initiated the area of curve extraction; it considered an energy
minimizing spline or a snake evolving over a landscape of the intensity image, guided by its edges
and corners. This model, in its original proposed form had many limitations such as its limited cap-
ture range and preference to local solutions. To remedy them, Cohen et al [5] improved the model
by including a balloon force which expands the curve till it rests on edges. The Gradient Vector
Flow (GVF) [36] and generalized GVF (GGVF) snakes [35] proposed by Xu and Prince have gained
popularity due to their ability to attract active contours toward object boundaries from large dis-
tances and move contours into object cavities. However, these snakes may fail to converge at weak
edges, especially at the locations where a strong and a weak edge are in close proximity. Li et al [21]
proposed an Edge Preserving Gradient Vector Flow (EPGVF) to overcome this drawback; EPGVF
prevents snakes from crossing over weak boundaries, while preserving the desired properties of GVF
and GGVF. Caselles et al [2] proposed geodesic active contours to detect boundaries in images by
searching for minimal-length curves in a space with a suitable Riemannian metric. Kichenassamy et
al. [18] formulated a geometric curve evolution approach based upon curvature flows in images. Both
of these approaches use Euclidean curve-shortening flows that evolve the contour according to its
curvature in the normal direction. A desirable property of these curvature flows, or Euclidean heat
flows, is the naturally occurring smoothing of the curve [11,12]. Additionally, curve evolution has
also been accomplished using level-set representations, where curves are level sets of an appropriate
function such as a signed-distance function [2,18]. While level-set representations allow for change
of topologies during curve evolution, an important strength of this approach, it is quite difficult
to explicitly characterize shapes in this representation. Staib, and Duncan [30] use (parametric) de-
formable contours based on the elliptic Fourier decomposition of boundaries for image segmentation.
In all these methods the prior term, if used at all, regulates only the smoothness of the extracted
curves; no specific shape information is incorporated in the extraction process.

1.2 Ideas in Shape Analysis

Shape is a characteristic that is invariant to rigid motion and uniform scaling. How can one represent,
model, and incorporate a-priori information about expected shapes? A major effort in shape anal-
ysis has been on a finite-dimensional or “landmark-based” approach, where shapes are represented
by a coarse, expert-driven sampling of objects [10,27]. This process however requires an expert in-
tervention as the automatic detection of landmarks is not straightforward. Additionally, since the
analysis depends heavily on chosen landmarks, this approach is limited in its scope. Grenander’s
formulation [13,23] considers shapes as points on infinite-dimensional manifolds, where the varia-
tions between the shapes are modeled by the action of diffeomorphism groups [13]. Although this
approach is relevant for modeling variations in full appearances of objects, i.e. both shapes and
textures, its computational complexity makes it expensive for problems limited to curves and their
shapes. In most formulations shape spaces are quotient spaces of nonlinear manifolds, and one needs
to apply tools derived from differential geometry to carry out intrinsic analysis on the underlying
shape spaces. However, to impose statistical models, certain approaches often embed shapes in larger
Euclidean spaces and analyze them as elements of vector spaces. For example, active shape model
(ASM) [6] uses principal component analysis (PCA) of shapes, represented via vectors of landmarks,
to model shape variability. Despite its simplicity and efficiency, this approach is extrinsic and limited
because it ignores the nonlinear geometry of the underlying shape space. A similar idea is to use
level sets (e.g. of signed-distance functions) to represent contours, and to compute PCA in the space
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of signed distance functions [20]. More recently, there has been a resurgence of ideas in studying
shapes of close, planar curves [19,24,22,26,37,3] that use differential geometry of the manifolds of
such curves to develop tools for shape analysis. An important ongoing discussion in this literature
is the choice of Riemannian metric for use in different applications. On the other hand, there has
been some progress in developing parametric statistical models intrinsically on these spaces [29,28].

1.3 Bayesian Shape Extraction

Several papers have presented approaches for extracting object boundaries using priors on either
shapes or some shape related quantities. Grenander et al. [14,1] used shape models learned from
past observations to help improve shape estimation in future data. Cremers et al. [7,8] have used
priors in several formulations to perform segmentation and object extraction, with good results. A
very important consideration in shape analysis is invariance of shapes to similarity transformations.
In certain approaches, such as level-set methods or diffeomorphism based methods, it is difficult
to build representations that are fully invariant. Consequently, any use of shape priors involves
additional minimizations on similarity groups. To understand this issue, consider the problem of
comparing shapes of two closed curves, either directly or through their level sets. Let φ(β) denote
the signed-distance function of a closed, planar curve β. Then, possible extrinsic distances ([33,9])
between shapes of two closed curves β1 and β2 are:

d(β1, β2) = argmin
R∈SO(2),T∈R2,a∈R+

‖φ(β1)−φ(R ·aβ2 +T )‖2, or argmin
R∈SO(2),T∈R2,a∈R+

‖β1−(R ·aβ2 +T )‖2

where R denotes a rotation, T denotes a translation, and a denotes a scale. Such extrinsic shape
analysis tends to be expensive because of these additional optimizations. Moreover, the norms are
often computed on ambient Euclidean spaces and not on spaces of closed curves or spaces of signed-
distance functions. For example, in case of signed-distance functions, if ‖φ1−φ2‖ (or its version with
the Heaviside step function) is used to define a distance, it is difficult to show existence of a path on
the space of signed-distance functions that actually achieves this distance. This fact is important for
defining and computing statistics intrinsically on shape spaces [25]. A recent paper [8] has successfully
achieved several desired invariances for shape analysis using level set representations. Still, it is not
fully intrinsic for two reasons: the distances are computed on an ambient space of all functions (not
just signed distance functions) and not all similarity transformations are removed. One consequence
is that in the resulting probability models one will encounter, with high probability, functions that are
invalid for representing shapes. Another consequence is that shape statistics defined extrinsically will
not be unique; they will depend upon: (i) the ambient space and its metric, and (ii) the embedding.

1.4 Our Approach: Bayesian Active Contours

The main contribution of this paper is to apply fully intrinsic as well as fully invariant prior probabil-
ity models on well-defined shape spaces to the problem of boundary extraction. A priori knowledge
of shape assumes importance when the image quality is low, perhaps due to low contrast or excess
clutter, or when parts of the object have been obscured. Our goal is to use geometric, intrinsic
representations of shapes of continuous, closed, planar curves in imposing shape priors and using
these priors in a Bayesian framework for shape extraction. To represent and analyze shapes of closed
curves, we use the approach presented in [19,24], although any of the recent ideas [22,26,37] are also
applicable. The basic idea is to represent curves denoting object boundaries as parameterized func-
tions (not necessarily by arc-length), appropriately constrained, resulting in a nonlinear manifold C.
To remove desired similarity transformations, one forms a quotient space S = C/S, where S is the
space of similarity transformations, and shapes of closed curves are analyzed as elements of S. The
main tool in this analysis is the construction of geodesic paths on S between any two given shapes.
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Using geodesic constructions, one can develop a framework for statistical models by defining means,
covariances, and other statistics in tangent spaces of S [29,32]. Finally, the problem of boundary ex-
traction is posed as maximum a-posteriori (MAP) estimation, which in terms of energies is rewritten
as:

β̂ = argmin
β

(Eimage(β) + Esmooth(β) + Eprior(β)) , (1)

where the minimization is over all closed curves in the given image domain. Eprior is the novel term
representing prior energy associated with shape of curve β. To ensure intrinsic formulation, all the
terms will be independent of re-parameterizations of β. Furthermore, Esmooth will be independent
of translation and rotation, and Eprior will be independent of translation, rotation, and global scale
of β. The first two terms have been used previously in the literature for driving active contours.
Adding the third term results in Bayesian active contours.

The proposed framework has the following advantages:

1. In addition to image information and roughness constraints, it incorporates an a priori informa-
tion about shapes in boundary extraction. This additional information is presented in the form
of deformation vector fields on curves for efficient energy minimization.

2. This approach does not require expert-generated landmarks, diffeomorphic embedding, or level-
set function for shape analysis. Instead, it studies full curves of shapes. Since the computations
here are performed only on curves, this analysis is also computationally efficient.

3. The prior term is fully intrinsic to the shape space. Metrics, shape statistics, and probability
models are all defined and computed on a well-defined shape space or its tangent bundle.

4. Similarity transformations such as rotation, translation, and scaling are already removed and need
not be estimated at each step. However, this representation introduces a variability, associated
with re-parameterizations of curves, which is solved numerically.

One limitation of this approach, as presented here, is that it does not allow objects to split and
merge during the evolution. Shape models are defined and applied to each closed curve individually.
Secondly, this approach is restricted to 2D images and does not extend to analysis of surfaces in
volumetric data.

The remainder of this paper is organized as follows. Section 2 summarizes a framework for
representing and analyzing shapes of closed curves. Section 3 explains the main idea of this paper
– an intrinsic probability measure on the shape space S. It details two candidates for prior shape
models and points out basic differences between them. Section 4 outlines different energy terms
that form the posterior energy and the algorithm for finding MAP estimates of curves. Section 5
presents experimental results that demonstrate the main ideas in the paper. Section 6 shows an idea
for Bayesian inference that allows selection and testing of different prior shapes models on a given
image data followed with conclusion.

2 Elastic Shape Representations

In this section we summarize ideas from elastic shape analysis of planar closed curves; for details the
interested reader is referred to [24]. Let β be a parameterized curve of interest of length l, and define
a re-scaled version α = 2πβ/l. We will assume α : [0, 2π] → R2 to be a non-singular, parametric curve
in the sense that α̇(s) 6= 0, ∀s ∈ [0, 2π]. Define the velocity vector of the curve as α̇(s) = eφ(s)ejθ(s),
where φ : [0, 2π] → R and θ : [0, 2π] → R are smooth, and j =

√−1. φ is called the speed function of
α and measures the rate of stretching and compression, whereas θ is the angle made by α̇(s) with
the X-axis and measures bending. We will represent α via the pair ν ≡ (φ, θ), and denote by H the
collection of all such pairs. In order to make the shape representation invariant to rigid motions and
uniform scalings, we restrict shape representatives to pairs (φ, θ) satisfying the conditions

C = {(φ, θ) :
∫ 2π

0

eφ(t)dt = 2π,
1
2π

∫ 2π

0

θ(t)eφ(t)dt = π,

∫ 2π

0

eφ(t)ejθ(t)dt = 0} ⊂ H, (2)
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Fig. 1 Shown from left is the original shape, it’s φ and θ representation, an arbitrary time warp γ, φ and
θ functions after the transformation, and the re-parameterized shape.

where C is called the pre-shape space.
Note that the pair (φ, θ) represents the shape of β and, thus, ignores its placement, orientation,

and scale. These variables are called nuisance variables in the study of shapes, as they do not
contribute to the analysis of shapes. However, in extraction of boundaries from images, these nuisance
variables become important and also need to be estimated from data. We will use x to denote these
nuisance variables, x ∈ N ≡ (S1×R2×R+). The full contour β is determined both by its shape and
its nuisance variables β ≡ ((φ, θ), x) ∈ B ≡ C ×N , according to: β(t) = x2 + x3

∫ t

0
eφ(s)ej(θ(s)+x1)ds,

where x2 ∈ R2, x3 ∈ R+, and x1 ∈ S1 denote the translation, scale, and rotation components of x,
respectively. To emphasize dependence of β on shape ν and nuisance variables x, we will often use
the notation β = β(ν, x), where ν = (φ, θ).

Geodesics are important in defining and computing statistics of shapes. To specify a geodesic,
we use the following Riemannian metric: Given (φ, θ) ∈ C, let hi and fi, i = 1, 2 be tangent to C at
(φ, θ). For a, b > 0, define

〈(h1, f1), (h2, f2)〉(φ,θ) = a

∫ 2π

0

h1(s)h2(s) eφ(s) ds + b

∫ 2π

0

f1(s)f2(s) eφ(s) ds. (3)

The parameters a and b control the tension and rigidity in the metric. A higher ratio of a/b favors
bending, while a lower value favors stretching/compression. With this metric, geodesics are com-
pletely characterized by a starting point and a starting direction. Let Ψt(ν, g) denote a geodesic
starting from ν ∈ C in the direction g, and parameterized by time t, and let Tν(C) denote the vector
space of all elements tangent to C at ν. The value of a geodesic at t = 1 is also known as the
exponential map, i.e. expν : Tν(C) 7→ C, such that expν(g) = Ψ1(ν, g). Given two shapes ν1 and ν2 in
C, computing a geodesic between them involves finding an optimal direction g ∈ Tν1(C), such that
Ψ1(ν1, g) = ν2. Similar to ideas presented in [19], we use a shooting method to construct geodesic
paths in C. The shooting method solves for g such that a geodesic from ν1 in the direction g reaches
the target shape ν2 in unit time.

So far we have looked at geodesics in C but we need to remove some (shape) invariance present
in elements of C, as follows. Note that the following re-parameterizing actions do not change the
shape of a closed curve: (i) The change of origin on a shape in C is represented by the action of a
unit circle S1 on a shape (φ, θ), according to r · (φ(s), θ(s)) = (φ(s− r), θ(s− r)− r), for r ∈ S1. (ii)
Traversing a shape in C with different velocities, while maintaining orientation, constitutes variable-
speed re-parameterizations of the same shape. Such re-parameterizations define a group action D of
diffeomorphisms, γ ∈ D on C, given by (φ, θ)◦γ = (φ◦γ +log γ̇ , θ ◦γ), γ : [0, 2π] → [0, 2π], γ̇(s) >
0, ∀s ∈ [0, 2π]. Figure 1 shows an example of shape representation and illustrates the action of
the re-parametrization group. The space of all (shape preserving) re-parameterizations of a shape
in C is thus given by S1 × D. We define the elastic shape space as an equivalence class given by
S = C/(S1 × D), and construct geodesics in S by appropriately restricting geodesics in C. For
details, please refer to [24]. Shown in Figure 2 is an example of a geodesic path.
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Fig. 2 Example of a geodesic path between the end shapes using elastic representation.

(a) (b) (c) (d)

Fig. 3 From left, (a) A shape ν, (b) the prior mean shape µ, (c) a geodesic between them, and (d) the
vector field ∇βEprior (arrows) overlaid on the curve (ν, x), where Eprior = dg(ν, µ)2.

3 Construction of Prior Shape Models

The main contribution of this paper is the use of intrinsic prior probability models on S in extracting
boundaries in images. We will specify the prior using an energy Eprior that sometimes can be seen as
negative log of a prior density. For our purpose, two important items are: the form of Eprior and the
gradient of Eprior with respect to the curve β. The latter is needed because we will use a variational
approach to solve for the optimal curve. The gradient will be conveniently in the form of a vector
field on β, that will drive its evolution in time. It should be noted that Eprior being a shape prior
depends only on the shape of β and not on its nuisance variables.

On any nonlinear manifold there are two possible spaces for imposing probability measures: the
manifold itself and its tangent bundle. We will study both the cases, starting with the former.

3.1 Squared Distance as Prior Energy

A simple choice for prior energy is Eprior = d(ν, µ)2 where d denotes the geodesic distance con-
necting the shape ν ≡ (φ, θ) with the prior mean µ. Since the geodesic distance is invariant to all
similarity transformations, including the re-parametrization group, Eprior is also invariant to these
transformations. We proceed with this term with a word of caution. One would like to view the
negative exponent of this Eprior as being proportional to a probability density on S, with respect to
some underlying invariant measure. The difficulty comes from infinite-dimensionality of S that may
result in an unbounded normalization constant. Therefore, it is better to treat Eprior as an energy
term rather than being proportional − log(prior density). The choice of the underlying invariant
measure that results in an invariant estimation will be another difficult issue that we will avoid [16].

The gradient of Eprior with respect to ν is given by∇νEprior = g ∈ Tν(S), such that Ψ1(ν, g) = µ.
What we really need is ∇βEprior, the gradient of Eprior with respect to the curve β. This is a vector
field on the curve β, that can be more easily approximated numerically than analytically. Let ν and
x be the shape and nuisance variables of β, respectively; we can write β = β(ν, x). Define a vector
field:

∇βEprior(s) = (β(Ψε(ν, g), x)(s)− β(ν, x)(s)), for ε > 0 small . (4)

β(Ψε(ν, g), x) is the closed curve that results when the shape component of β(ν, x) is perturbed along
the tangent direction g by an amount ε. The size (norm) of this field is not important as we will
multiply this term with an arbitrary scalar later on. Figure 3 shows a sample shape ν, a prior mean
µ, and a prior vector field ∇βEprior induced on it.

While this Eprior provides a mechanism for introducing some prior information in the process of
boundary extraction, it does not permit any more additional structure. For instance, this form of
Eprior cannot incorporate any information about observed directions containing the most variation
in a shape class around µ. To allow for more structure, we will utilize the second idea of imposing
probability measures on tangent spaces of S.
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3.2 TPCA in Shape Space: Normal Energy

Since the tangent space at any point on the manifold is a vector space, it has been the preferred
domain for imposing probabilities [10,32,29,28]. It is also common to impose a multivariate normal
density on the tangent space with respect to the underlying Lebesgue measure. Although such a
probability density can be pushed onto the manifold using the exponential (or some other) map, it is
difficult to do so analytically due to the nonlinear nature of such mappings. Therefore, one restricts
to considering probability densities on tangent spaces rather than on S. In the implementation,
however, one can generate (random) samples in tangent spaces and map them freely to S using the
exponential map. We will take this approach to define a Eprior that allows more structure than the
squared-distance energy.

The broad idea is to estimate a mean shape µ for an object class, and to use the tangent
space Tµ(S), or rather a finite-dimensional subspace of Tµ(S) obtained using PCA, for imposing
probabilities. This approach has been termed tangent PCA (TPCA). The mean µ is taken to be
the Karcher mean [29,28]. Figure 4 shows an example of a Karcher mean of some observed shapes.
Algorithm 1 outlines the main computational steps for the TPCA approach.

Algorithm 1 TPCA in shape space S
1: For an ensemble of k training shapes {νi, i = 1, . . . , k}, compute their Karcher mean µ.

For each νi, compute a tangent vector gi ∈ Tµ(S) such that Ψ1(µ, gi) = νi.
2: Compute an orthonormal basis for the set {gi} with respect to the inner product given in Eqn. 3

using the Gram-Schmidt process. Let the new basis elements be {fi, i = 1, . . . , m} and define M ≡
span(f1, f2, . . . , fm) ⊂ Tµ(S) with m ≤ k.

3: Denote the projection of each tangent gi into M by yi ∈ Rm, where yij = 〈gi, fj〉µ for j = 1, 2, . . . , m.
4: Perform PCA of the observed set {yi, i = 1, . . . , k} by finding their principal subspace of size n ≤ m; n

is chosen by the user. Denote N ⊂ M ⊂ Tµ(S) as the principal subspace of observed tangent vectors.
We will use y 7→ UT y as the mapping from M into N , where U ∈ Rm×n is an orthogonal basis of N .

One can impose one of the several probability densities on N as a prior. For example, a Gaussian
model for individual principal coefficients, with mean zero and variances given by observed singular
values, is a simple choice. Another model that imposes a different mixture of Gaussians for each
principal component, independent of each other, has been found to perform better than a simple
Gaussian model and a nonparametric model [28]. For simplicity of presentation we take the first idea
and form a multivariate normal density on the subspace M of Tµ(S). Let g ∈ Tµ(S) be a tangent
vector such that expµ(g) = ν and let y be the projection of g into M . Now define a prior energy as

Ẽprior(y) =
1
2
yT (UK−1UT )y +

1
2δ2

‖y − UUT y‖2. (5)

K ∈ Rn×n is the sample covariance matrix associated with past observations on N and δ is a positive
number chosen to be less than the smallest singular value of K. The gradient ∇yẼprior = Ay,
where A = UK−1UT + 1

δ2 (Im − UUT ). Recall that y is simply an expression of g in the basis
{fj , j = 1, . . . , m}. Therefore, one can write Ẽprior and its gradient as a function of g by a simple
change of variables y 7→ (g ≡ ∑m

i=1 yjfj). For instance, Eprior(g) = Ẽprior({〈g, fj〉µ, j = 1, . . . , m}),
and its derivative ∇gEprior =

∑m
j=1(∇yẼprior)jfj .

This can be carried one step further, i.e. we can write the posterior energy in terms of the curve
β, or rather its shape ν, using the exponential map g 7→ ν = expµ(g). However, writing these terms
explicitly will introduce burdensome notation due to complicated change of variables under expµ.
Our interest is in writing the gradient of Eprior with respect to the shape of β, we will do so using
the numerical approximation:

∇βEprior(s) = (β(Ψ1(µ, g + ε∇gEprior), x)(s)− β(ν, x)(s)), for ε > 0 small , (6)
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Fig. 4 Left: Sample shapes from a cluster. Right: Mean shape and singular values of covariance in TµS.

keeping in mind that Ψ1(µ, g) = ν. As earlier ∇βEprior is a vector field on the curve β which can be
used to update β directly.

3.3 Comparison of the Two Prior Terms

We have proposed two prior energy terms on β – a squared-distance term on S and a multivariate
normal term on the tangent bundle TS – and a natural question is to compare their effectiveness
in incorporating shape priors. Intuitively, the normal term should provide better results as it addi-
tionally contains the directions of major variability in a particular shape class. This idea is further
demonstrated pictorially in Figure 5 where shape evolutions under the (negative) gradients of the
two energies are presented.

In this particular example, we use tank shapes and their mean µ shown in Figure 4. Using
the TPCA approach, we compute the dominant subspace N and a covariance matrix K from the
observations. Next, we plot shape evolutions under the gradient process with respect to both the
energy terms, starting at an arbitrary shape ν. Since the distance-squared term is simply the squared
length of a tangent vector, the gradient process will simply follow this straight line from ν towards
µ in the tangent space Tµ(S). The normal energy term however will form a curved path from
ν to µ favoring lower energy shapes (under the normal energy). Both these paths are shown in
Figure 5(a) and successive shapes along these paths are shown in Figure 5(b). Together these plots
demonstrate that gradient of normal energy will find low energy shapes more quickly and closer
to ν than the gradient of squared-distance term. One important consequence is that if the shape
to be discovered is not close to µ but still a low (normal) energy shape, then the squared-distance
term may not be useful. However, the normal energy term will get close to it by definition. (This
has been demonstrated later in Figure 15 using a synthetic image.) For additional insight in this
discussion, we also plot the evolution according to gradient of the Rayleigh coefficient of K, i.e.
the normal term with an additional constraint that the distance between µ and ν is constrained
to be unit length. As expected, the limiting shape is the shape along the dominant eigenvector of
K. As another perspective, we present variation of shapes along different tangent directions at µ.
We plot the shapes expµ(k

√
σivi), for the first three dominant eigen directions and three random

directions perpendicular to M , by varying k in Fig. 6(a). We can see that even a small variation
from µ along random directions results in a loss of structure. Level sets of squared-distance energy
are circles while that of normal energy are ellipses. Shown in Fig. 6(b) are shapes along these two
sets in a two-dimensional subspace spanned by the dominant direction v1 and a random direction
in M⊥. The shapes along the ellipse better represent the variability of the observed ensemble and,
thus, normal energy is a better candidate for the shape prior.

So far we have discussed prior models for the shape component in β, ν(β). Another interesting
question is, what prior model can be chosen for the nuisance variable x? In this paper, we assume
an uniform prior on rotations, translations, and scales, though in the future, more informative priors
can be pursued.
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(a)

Energy Expression Shape evolution

Squared Distance d(ν, µ)2

Normal Energy yT K−1y

Rayleigh’s Quotient yT K−1y
yT y

(b)

Fig. 5 (a) Cartoon diagram of shape evolution under the squared distance, normal energy, and Rayleigh
quotient. (b) Successive shapes along gradient paths of the three energies.

4 Posterior Energy for Boundary Extraction

Boundary extraction typically involves minimizing an energy functional on the space of closed curves.
The posterior energy functional usually involves the image gradient information and a smoothing
criterion, and this paper adds a term on shape prior, resulting in:

Etotal(β) = λ1 Eimage(β) + λ2Esmooth(β) + λ3Eprior(β) , (7)

where λ1, λ2, and λ3 are arbitrary positive constants. The term Eimage forces the curve β to pass
through areas of highest intensity changes, i.e. edges and ridges in the image, whereas Esmooth

maintains the smoothness of β. The prior term Eprior forces the shape of β to be of high probability
under the chosen prior shape model. The resulting β̂ is a combination of these three forces depending
upon the relative weights λi > 0. The optimal curve is given by,

β̂ = argmin
β∈B

Etotal(β) , (8)

where the minimization is performed over all closed curves in the given image domain. We will use
a gradient approach to solve for β̂.

In the next subsections, we describe the remaining terms, Eimage and Esmooth, and calculations
of their gradients with respect to β.

4.1 Image Energy

There exists a large literature on the problem of extracting curves from 2D images. Since our goal
is to illustrate the influence of a shape prior, any such method can be chosen as a starting point as
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Fig. 6 (a) Eigen variation (columnwise) along dominant vectors v1, v2, v3 and some random directions
vrand ∈ M⊥ ⊂ Tµ(S). (b) Shape variation about the mean µ (center) for the squared distance (circle), and
the normal (ellipse) energy.

long as it allows shape analysis of underlying curves. Here we select methods that represent contours
as parametric curves explicitly.

Most segmentation methods involving curves, depend on intensity or edge information to evolve
over the image. Kass et al. [17] suggest the use of various external forces like simple image intensity,
edge energy functional or termination functionals using the curvature of level lines in an image:
I(x, y), −|∇I(x, y)|2 or − |∇(Gσ(x, y) ∗ I(x, y))|2. Caselles et al. [2] also suggest the energy
function: 1

1+|∇I(x,y)|p , p = 1 or 2. These image-derived forces, separately or when combined together,
emphasize the detection of lines, edges, ridges or corners and serve as a stopping criterion for the curve
evolution. In order to reduce sensitivity to initialization, and to smooth these image-driven vector
fields, Xu et al. [36,35] present an energy directly in terms of vector fields v(x, y) = (u(x, y), v(x, y)):∫

g(|∇f |)|∇v|2 +h(|∇f |)(|v−∇f |2)dxdy, where f is one of the energy functions suggested by Kass
et al. The papers [36,35] describe a numerical approach to solving for v using an iterative approach.
However, both GVF and GGVF may fail to stop the snake at weak edges. Li et al [21] proposed an
edge preserving gradient vector flow (EPGVF) to overcome this drawback of GVF and GGVF, by
minimizing the energy:

Eext(v) =
∫

g(|∇f |)|∇v|2 + h(|∇f |)(µ|Jvp|2 + |v −∇f |2)dxdy. (9)

The term µ|Jvp|2 in Eqn. 9 has been added to ensure smoothing of vector fields in directions
tangential to dominant edges, while keeping them sharp along the normals. The EPGVF accentuates
weak boundaries, while retaining the desired properties of GVF and GGVF. One obtains the optimal
vector field, v∗ = argminv Eext(v) using a numerical iterative approach [21]. From now onwards we
will only consider this optimal vector field v∗, and to simply notation we will denote it by v. Using
this external force field, we can now define a dynamic energy Eimage(β(s)), that changes with every
step of the evolution of the curve. This energy Eimage is given by,

Eimage(β) =
∫ l

0

|v(β(s))|2(|β̇(s)|)ds (10)
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Proposition 1 The energy term Eimage is invariant to the action of D on C. In other words,
Eimage(β) does not change with the re-parameterizations of β.

Proof Replacing β by β̃ = β(γ), for any γ ∈ D, we obtain:

Eimage(β̃) =
∫ l

0

|v(β(γ(s)))|2(|β̇(γ(s))|)γ̇(s)ds

which, by a change of variable t = γ(s), becomes same as Eimage(β).

Although one can derive the gradient of Eimage with respect to β under arbitrary parametrization of
β, we simplify the gradient by assuming arc-length parametrization of β, i.e. |β̇(s)| = 1. The resulting
gradient is ∇βEimage(s) = Jβ(v)(β(s))v(β(s)), where Jβ(v) is the Jacobian of v with respect to β,

given by

[
∂vx

∂x
∂vx

∂y
∂vy

∂x
∂vy

∂y

]
. Figure 7 shows some examples of the EPGVF, and vector fields induced on

curves. The top row shows some images with some arbitrary closed curves. The middle row shows
EPGVF for the full images, and the bottom row shows ∇βEimage as the vector field restricted to
the curve β.

Fig. 7 Top row shows arbitrarily initialized curves. Middle row shows the image gradient field v. Bottom
row shows the induced vector field (∇βEimage) on the curves.

4.2 Smoothing Energy

A desirable property of the curve evolution is that smoothness of the curve be preserved or even
enhanced during extraction. All parametric and free-form active contour models [17,36] enforce
smoothness by including a regularization term that penalizes the first and second order derivatives
of the curve. While such an approach usually depends on the parametrization, we follow a more
intrinsic approach following [2,18]. We consider an arc-length parameterized curve β. Define the
smoothing energy functional as:

Esmooth(β) =
∫ l

0

〈β̇(s), β̇(s)〉1/2ds .
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Fig. 8 Evolution of β under ∇βEsmooth. All curves are scaled to the same length for display.

It is easy to see that Esmooth is invariant to any re-parametrization of β. As shown in many articles,
e.g. [18], the gradient of Esmooth with respect to β is given by − d

ds ( β̇(s)

|β̇(s)| ). This term results from
calculus of variations and the fact that other term drops out because the variation can be assumed
to be zero at the boundary points. (In other words, since a translation of β does not change Esmooth,
the variation is taken in such a way that a point on β remains fixed.)

One can derive the gradient more explicitly by choosing a proper metric on spaces of vector
fields on curves. We, however, seek simplification by assuming arc-length parametrization resulting
in ‖β̇(s)‖ = 1 and

∇βEsmooth(β) = −β̈(s) = −κ(s) n(s), (11)

where, κ is the curvature along β and n(s) is the inward normal unit vector to β at s. It has been
shown [11,12] that these curve-shortening or Euclidean heat flows automatically lead to smoothing
of the curve. Furthermore they cause the curve to shrink and become convex, and if this process
is continued, the curve then turns into a circle and ultimately collapses to a point. As an example,
Figure 8 shows the evolution of a curve under ∇βEsmooth. All the curves have been scaled for a
better display.

From the three different energy terms, we can write the total gradient vector field as,

∇Etotal(β) = λ1Jβ(v)(β(s))v(β(s))− λ2κ(s)n(s) + λ3∇βEprior(s), (12)

and contour estimation is obtained as a solution of the differential equation:

dX(t)
dt

= −∇Etotal(X(t)), X(0) ∈ B , (13)

with β̂ = limt→∞X(t). It is difficult to establish asymptotic properties of X(t) analytically and we
resort to experimental results to analyze this method.

5 Experimental Results

In this section we describe experimental results on estimating boundaries of objects using real and
simulated image data. Bayesian shape extraction is most effective in situations where the image
quality is low, or when the image consists of partially obscured or occluded objects and, in addition
to that, we have a prior knowledge about the shape of object contained in the region. This is
often times the case in medical image analysis using ultrasound images, echocardiographs or low-
resolution PET scans, where signal to noise ratio is rather small and object to background contrast
is not sufficient for image-based object extraction. Similar low-contrast images appear in surveillance
applications using infrared cameras. Using past observations of those objects: anatomical parts or
human subjects, one can develop a shape prior and use it in order to compensate for missing data.
In this section we present some examples.

Even though Etotal(β) is invariant to re-parametrization of β, the gradient term simplifies if the
arc-length parametrization is assumed. Therefore, we need to re-sample β uniformly after every iter-
ation to ensure arc-length parametrization. This also helps in stabilizing computations by ensuring



Intrinsic Bayesian Active Contours for Extraction of Object Boundaries in Images 13

that samples along β do not coalesce. If the shape of β is given by the pair (φ, θ) ∈ C, one can
re-sample it into an arc-length parameterized curve using

(φ, θ) ◦ γ, where γ(t) =
∫ t

0

e−φ(γ(s))ds . (14)

The warping function γ can be computed numerically, and applied to (φ, θ) to obtain an arc-length
parameterized version of β.

1. Example 1: (Visible Spectrum Images): In this case we use images of a tank, shown in
Figure 9, to demonstrate Bayesian active curves under a shape prior. The right panel shows the
prior mean shape µ used in this experiment and the prior energy used here was the squared
distance term. The goal is to find a MAP estimate of the object shape present in I. Shown in
Figure 9 are the evolutions of X(t), with (λ3 > 0) and without the prior term (λ3 = 0). In the
absence of prior, the algorithm is misled by a partial obscuration of the object in I. In contrast,
the Bayesian solution seems a better estimate of the tank outline as compared to when the final
result only depends on the image data.

λ3 = 0

λ3 > 0

λ3 = 0

λ3 > 0

Fig. 9 Evolution of β under ∇Etotal(β) with λ3 = 0 and λ3 > 0. The last panel shows the prior mean µ.

2. Example 2: (Ultrasound Images): This experiment involves a set of cardiac images taken
using an ultrasound equipment. Each set consists of a sequence of images beginning with the
ED (End-Diastole) frame and ending with the ES (End-Systole) frame. An important goal in
echocardiographic image analysis is to develop tools for extracting cardiac boundaries in approx-
imately 10-15 image frames that are typically acquired between ED and ES. Different aspects
of past efforts [34,4] include both the construction of geometric figures to model the shape of
the heart as well as validation of extracted contours. Given a manual tracing of the boundaries
for the ED and ES frames, we extract epicardial and endocardial boundaries in the intermedi-
ate frames. We first compute a geodesic interpolation of the curves between the first and the
last frame, and use these intermediate curves as initial conditions for boundary extraction using
minimization of Etotal. Figure 10 shows extraction results for the cardial boundary for a specific
frame in two different image sequences. In this experiment, we have used the squared distance
energy as Eprior.

3. Example 3: (Natural and Synthetic Images): Next we present boundary extraction results
for a few images from the ETH-80 dataset, as well as some natural partially obscured images.
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λ3 = 0

λ3 > 0

λ3 = 0

λ3 > 0

Fig. 10 Evolution of β under ∇Etotal(β) with λ3 = 0 and λ3 > 0. The last panel shows the prior mean µ.

Each row in Figure 11 shows curve evolutions with and without the Eprior term; the upper row
is for λ3 = 0 and the lower row is for λ3 > 0.

4. Experiment 4: (Results for varying λ3): At each step of the evolution, the curve is influenced
by the relative weights of the terms λ1, λ2, and λ3. The appropriate values for these weights are
mostly application dependent. For noisy images lacking in reliable edge information, it is desirable
that the final segmentation be largely governed by the prior term, thereby emphasizing λ3. Figure
12 shows the changes in the final extracted curve by varying λ3 while keeping λ1 and λ2 fixed,
for both types of Eprior – the squared-distance energy and the normal energy. It is noticed that,
an increasing contribution by the prior vector field reduces the effect of object boundary edges
on the final segmentation, eventually for large λ3 the most probable shape is simply µ.

5. Experiment 5: (Locally Random Search): So far the estimated boundary has been ob-
tained by implementing a gradient flow that typically yields locally optimal solutions. Moreover,
depending upon the initial condition, the method may converge rather slowly to the desired
answer. Algorithm 2 presents a stochastic method that uses localized random search for curve
extraction. Figure 13 shows curve evolutions for arbitrarily initializations with and without the
effect of the random vector field. Figure 14 shows the evolution of the energy Etotal for both
cases. It is observed that the random algorithm requires lesser iterations to converge although
we have not established such a result analytically. In this particular experiment, we set λ3 = 0
as the prior term is not important for this issue.

6. Experiment 6: (Squared-distance versus normal energy): Bayesian shape extraction is
expected to benefit from the use of advanced statistical models, but different choices of Eprior can
lead to different results. Fig. 5(b) illustrates the difference in evolution when the squared distance
and the normal energy are used. We compare the effect of these two terms in an image-based
experiment involving only primitive shapes such as circles and ellipses. The top panel of Fig.
15 shows some sample shapes and their Karcher mean µ. A multivariate normal distribution is
imposed on the tangent space at the mean shape using Algorithm 1. As expected, the variation
in this class (Fig. 15) is mostly along a single, dominant eigenvector. Next we use the gradient
of Etotal, with Eprior being one of the two types, to extract the boundary in a binary image.
The actual boundary in this image is a noisy version of an ellipse, a shape that occurs often in
the observed set. From the estimated boundaries in Fig. 15, it is observed, as expected, that the
estimated curve for the normal term is better than that for the squared-distance prior.
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Fig. 11 Odd rows: Evolution of β under ∇Etotal(β) with λ3 = 0. Even rows: Evolution of β under all three
terms including Eprior.
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Fig. 12 Final extracted curves under varying effects of Gaussian, and the squared distance prior energy.

Algorithm 2 Localized Random Search using vector fields
Initialize curve β on the image I. Let the shape of β be ν.
while not converged do

Calculate vimage(β), and vsmooth(β)
Generate vrand(β) as follows:
a: Let a tangent vector g =

P
an cos nx +

P
bn sin nx

where an, bn ∼ N(0, σ), n = 0, 1, ..., N
b: Let the randomly perturbed shape be ν∗ = expν(0̄, g)
c: Calculate β∗ = (ν∗, x), where x ∈ (S1 × R2 × R+) is the pose.
d: Now compute the random vector field as vrand(β) = λ4(β − β∗)
Obtain βnew from β, and ∇Etotal(β) = λ1vimage + λ2vsmooth + λ3vprior + λ4vrand

if Etotal(βnew) > Etotal(β) then
β = βnew

end if
end while

6 Statistical Decision Theory

There are some important questions that arise immediately for this framework: (i) In case we do not
have any a priori expectation on the class of shapes, which prior model can be used for Bayesian
active contour framework? (ii) How to evaluate performance of such an active contour approach?
(iii) How to choose λs for weighting different energy terms appropriately?

We suggest the use of statistical decision theory to address these and similar questions, as de-
scribed next.

6.1 Bayesian Model Selection

What prior can be used in estimation of contours from a given image? In many situations, the
presence of contextual information may help reduce possible hypotheses to a small number, but not
necessarily to a single prior shape model. Consider for example an image taken from a battlefield
containing military targets. In addition to the possibility that one of the several target types – tank,
truck, jeep, hummer, etc – may be present in that image, the shape model for even a single target
will differ depending upon its pose. Rather than fixing an a priori shape model, a Bayesian approach
suggests evaluating all possible models under the maximum-a-posteriori (MAP) framework. In other
words, Bayesian approach suggests searching over all possible shape models and selects the model
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(a) λ4 = 0
iterations 1 10 50 100 200 300 400 500 520

(b) λ4 = 0.5
iterations 1 10 20 40 50 60 70 90 100

(c) λ4 = 0
iterations 1 10 20 30 40 50 80 100 120

(d) λ4 = 0.5
iterations 1 5 10 15 20 25 30 40 60

Fig. 13 Odd rows: Evolution in absence of random vector field. Even rows: Evolution under a random
vector field. In this experiment λ3 = 0 for all cases.
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Fig. 14 Plots of λ1Eimage + λ2Esmooth for evolutions given in Figure 13. The overlaid stem plot indicates
a ’1’ for the iteration that accepted the random vector field.

that best explains the image data. This also results in Bayesian object recognition as the selection
of a shape class being equivalent to object recognition.

Let Q denote a discrete, finite set of shape models associated with a possible object present in
an image. Different models can come from shapes of different objects, or shapes of different poses
of the same object, or both. For each class q ∈ Q, assume that we have a prior shape model Pq on
S and a prior probability P (q) of that class. In case of Gaussian prior models, this implies that we
have a different mean µq, principal space Nq ⊂ Tµq (S), and a covariance Kq for each class. A MAP
estimate of the target class, given an image I, is given by: q̂ = argmaxq∈Q P (q|I), where

P (q|I) =
P (q)

∫
B P (I|β)P (β|q)dβ∑

q

(
P (q)

∫
P (I|β)P (β|q)dβ

) =
P (q)

∫
B e−Eq

total(β)dβ∑
q

(
P (q)

∫
B e−Eq

total(β)
) ,

where Eq
total = λ1Eimage + λ2Esmooth + λ3E

q
prior. Object class is selected by integrating out all

possible contours with respect to the class-dependent shape models. Since it is difficult to perform
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Fig. 15 Top panel: Sample shapes consisting of ellipses and circles, their mean shape, and their eigen-
variation. Bottom panel: Curve evolution under two different Eprior: squared-distance and normal energy.

this integration analytically, we look for some computational approximations. One idea is to use
importance sampling, i.e. sample from the prior and use the likelihood term as weights. Another
possibility is to use Laplace’s approximation of the nuisance integral using asymptotics [15]. A coarse
approximation is to evaluate the integrands at β̂, the MAP estimates. That is, choose:

q̂ = argmax
q∈Q

(
P (q)e−Eq

total(β̂
q)

)
, (15)

where β̂q is the MAP curve estimate for the model q. This process is akin to inferring from multiple
hypotheses using generalized likelihood ratio tests [31], and is often termed as Bayesian model
selection.

This is demonstrated in the following experiment that uses real data to generate prior shape
models for tanks. Figure 16(a) shows a schematic of a battle tank rotated at a 3° resolution around
its central axis at a fixed elevation. The sample infrared images corresponding to different views
of the tank are shown in Figure 16(c). Figure 16(b) shows the automatically extracted shapes and
their sample means grouped together in 9 quadrants for one hemisphere. For simplicity, we reflect
the mean shapes of quadrants in one hemisphere to obtain the model mean shapes in the other
hemisphere. In this experiment, the shape model comprises of the mean shape µq corresponding to
each quadrant {qi ∈ Q}, i = 1, ..9, 1r, .., 9r. Further, we assume an uniform prior for P (q) over all
classes. For each of these quadrants, the MAP curve estimate, β̂q = argminβ∈B Eq

total(β), is obtained.
Based on these extracted curves, we use Eqn. 15 to maximize the probability of selecting the best
model q̂. Figure 17 shows the extracted curves β̂q overlaid on a partially obscured test image I.
Figure 18 plots the discrete posterior energy in Eqn. 7 against each of the tested prior models,
q1, ..q9r. It is observed that q5 correctly results in the smallest Etotal amongst all models, followed
by q6, and q4. This method holds promise in situations, where a large number of candidate prior
models need to be evaluated.
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Fig. 16 (a) Experimental setup for image captures of different views. (b) Shapes for each quadrant qi, and
their mean shapes. (c) Examples of infrared images of a tank at different poses.
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Fig. 17 Extracted curves β̂q from I for respective prior models q1, q2, ...q9r displayed below each image.
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total plotted against prior models qi ∈ Q.

6.2 Performance Evaluation Metrics

How should one evaluate the performance of this or any other boundary extraction algorithm?
In a general segmentation framework this question is quite difficult to address. However, in our
narrow framework where extracted curves correspond to boundaries of objects, and shapes of objects
relate to their classes, one can use the resulting classification performance for analyzing extraction
algorithm.
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Let β̂ be the result of our MAP estimation in an image I, and one uses this curve to classify
the object in that image. This can be done as suggested above using a Bayesian decision or using
a more general classifier, e.g. SVM, nearest neighbor, etc. Denote the classification performance on
a test dataset to be F . We claim that F can also be used to quantify performance of the original
curve extraction algorithm.

In our framework, the estimate β̂ and therefore F will actually be a function of λ1, λ2, and λ3.
This suggests a technique for selecting these parameters which have been selected quite arbitrarily
thus far. One can maximize F over these parameters on a validation set to select their values. If one
seeks a fully Bayesian framework, then it would be better to use some non-informative priors on λs
themselves, e.g. a gamma density with large shape and scale parameters. We have left this study for
future work.

7 Conclusion

This paper presents an intrinsic approach for constructing prior shape models for object extraction.
Extraction is based on curve evolution under the influence of image, smoothing and prior vector
fields. The strength of this work is the incorporation of object priors using a geometric shape model
for improved segmentation. The prior shape information drastically improves the object extraction
under various image obscurations. This is evident from various results on synthetic data as well as
successful segmentation of cardiac boundaries in real data including video and ultrasound images.
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