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Joint Image Formation and Anisotropy Characterization
in Wide-Angle SAR

Kush R.Varshney, Mjdat Cetin, John W. Fisher Ill, and Alan S. Willsky
Stochastic Systems Group, Massachusetts Institute of Technology

2-D Spotlight-Mode SAR

Observation Gecy)metry

m A radar set mounted to the aircraft
transmits pulses of electromagnetic
energy containing many frequencies

r [ with speed of propagation c

towardsthegroundpatch,andreceives

SA the scattered return from N angles
3: along the flight path of the aircraft.
%: STl The scattered returns are scaled in
= amplitude and shifted in phase by the

scattering function

s(z, y) or s(z, y, 6) complex-valued scattering function

of the ground patch.

Phase History Measurements & Point Scattering

m synthetic aperture radar (SAR) measurements take the form:

) = // s(x,y)exp {—j? (:L'COS@—I—ySinﬁ)}da:'dy

12 4y2< 2
m but, "the manner of propagation at a given point is determined solely by

the properties of the medium and the structure of the field in an arbitrarily
small neighborhood of the point” (Keller, 1962); thus, with P discrete point
scattering centers, the phase history measurement model is:

i Arnf .
r(f,0) =) s(xp, yp) exp {—]— (x, cos 8 + yp81n9)}

p=1 €

Anisotropy

m inprinciple,wide-angle apertures permit the reconstruction of images with
high cross-range resolution but dependence of scattering on aspect angle,
anisotropy, becomes a significant issue, resulting in the observation model:

P
4
r(f,0) = Zs (Zp, Yp, ) exp {—j%f (2, cos —I—ypsiné’)}

p=1
m characterized anisotropy may be used as a feature for automatic target

recognition and for improved image formation

Sparse Signal Representation

Overcomplete Expansion of Signals

m with an N-dimensional signal r, and an overcomplete basis
®=|¢p, o, ®ar] . M > Nwewouldliketofindavectorofcoefficients
a such that r = ®a

m thereis an infinite subspace of solutions; we favor sparse solutions

m with additive noise:r = ®a + n

The Sparse Signal Representation Problem

M k
m the {x-norm of a is defined as ||a||, = (Z I(a)m|k>
m=1

the Yo-norm counts the number of non-zero entries in a
m then,the sparse signal representation problem is:

noiseless: min ||al|o additive noise: min ||a||o
s.t. r=®Pa s.t. ||r — Pall; <6

m thisis a combinatorial optimization problem

Greedy Methods and Relaxations

B matching pursuit: select best available basis vector greedily on every
iteration
m basis pursuit: ¢; relaxation solved by linear programming: min ||al|,

s.t. r=®Pa

m SPARSIFYING  REGULARIZATION:  min J (a) = [|r — dal?+ aallf, k<1
where « is a regularization parameter that trades off data fidelity and
sparsity

Overcomplete Basis Formulation
Objective

B in joint image formation and anisotropy characterization, our goal is

determining s(z,y, #) from the phase history measurements:
d 1w
FE= Z S (xp, Yp, 0) €xp < —jT (2, cos 0 + y, sin 6’)}
p=1 .

Overcomplete Formulation

m the proposed approach is to expand the scattering function for each
scattering center as the sum of an overcomplete set of basis vectors

= i f: p 1D (0) €Xp {—j? (2, cos B + y, sin 9)}

p=1m=1

Choice of Basis Vectors

m contiguous intervals in aspect angle of non-zero scattering behavior are
often observed among scatterers encountered in practice
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m we choose the set of basis vectors such that all widths and shifts in the

angular persistence of anisotropy are included

m the above diagram illustrates the overcomplete basis for N = 8 — dots
indicate non-zero entries and spaces represent zero-valued entries; any
pulse shape may be used for the basis vectors, e.g. rectangular, Hamming
window, triangle, raised triangle, windowed Gaussian

m for this choice of overcomplete basis, the number of basis vectors M and
the number of angle samples in the measurements N are related by:

R R R
( 2 ) N

Graph-Structured Interpretation

m the overcomplete basis has an intuitive graph-structured interpretation,
given the name basis graph, illustrated below for N = 8 and rectangular
pulse shape, where nodes represent basis vectors and labels to the left
indicate anisotropy
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m thebasisvectorattherootisisotropic;top-to-bottom corresponds to coarse-
to-fine angular persistence and left-to-right corresponds to shifts of the
center angle of anisotropy

m there are P coexisting basis graphs, one per spatial location

11000000

Sparsifying Regularization

Regularization Cost Function Approach

m by using the overcomplete basis ® and the regularization cost function
J(a) = ||r — ®a|; + a ||a||Z, k <1, we treat all spatial locations jointly
within one system of equations — taking interactions among scatterers into
account

m we use data from the full aperture — we do not break things up into
subapertures

m theapproachis moreflexible than parametric methods,butstillincorporates
prior information about anisotropy through the choice of basis vectors

Quasi-Newton Method

m the cost function is made differentiable at 0 through the approximation
M k/2
T(@) = I — @al3 +a " (@2 +¢)”
=1

= with H(a) = 207® + akdiag { |((a)? + /> ()3 + "> | | the
gradient VJ.(a) = —2®"r 4 H(a)a, leading to the quasi-Newton iteration
a"™) = H™'(a™) 2®"r (Cetin and Karl, 2001)

Greedy Graph-Structured Algorithm

m  with ® having O(N?P) columns, the quasi-Newton method is expensive in
memory and computation

m the main idea of the graph-structured algorithm is to consider a subset
of basis vectors from a subgraph, called the guiding graph, at a time and
iteratively move the guiding graph around within the basis graph in search
of the true anisotropy

m thediagrambelow illustrates theiterations of a search where true anisotropy
is represented by the node with the X

Strategy: Guided Depth-First Search

m followonepathdownstartingfromtherootwiththe pathbasedonaheuristic;
if goal not found on first pass down, back-track, also based on a heuristic

m on each search iteration, r = ®¥a"® is solved using the quasi-Newton
method, where &% contains basis elements from P guiding graphs

Heuristics and Stopping Criteria

m true anisotropy finer than current guiding graph:
A bottom row coefficients non-zero
A slide guiding graph down
A qguide left or right: weighted average of bottom row coefficients
m true anisotropy coarser than current guiding graph:
A top row coefficient non-zero
A slide guiding graph up
m true anisotropy inside current guiding graph:
A true coefficients non-zero
A do not move guiding graph - stop
m theaboveheuristicand stopping criterionisforeach ofthe P guiding graphs
individually
m there are P simultaneous searches, but the searches are coupled because
spatial locations interact within one system of equations

Examples

Quasi-Newton Method — XPatch Data

m thereare P =4 spatial locations and N =50 angles over a 98° aperture

m first we obtain the least-squares solution as a baseline for comparison

m the M = 1275 coefficients of the solution are shown as a stem plot for each
spatial location with real part °© and imaginary part *; the corresponding
scattering functions are shown in blue overlaid on the truth in black
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m then we apply the quasi-Newton method with the ¢ 1-norm and o =1
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m the quasi-Newton solution is sparser in the coefficients and importantly
explains the underlying truth better

Graph-Structured Algorithm — Synthetic Data

m thereare P =7 spatial locations and N = 1541 angles over a 110° aperture

m the true anisotropy in black and the solution from the graph-structured
algorithm with raised triangle basis vectors in blue are nearly identical
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m shown above to the right, the paths of the guiding graphs for each spatial
location reach the region of the basis graph of true anisotropy fairly directly

Graph-Structured Algorithm — Backhoe Data

m thereare P =75 spatial locations and N = 1541 angles over a 110° aperture

B anisotropy is characterized for a selected set of 75 spatial locations

m thebottomleftimageshowsthecenterangleof
the characterized anisotropy for each scatterer
as a color - red is at one end of the range and
blueisattheotherend,with greeninthe middle
(magnitude and persistence are not indicated);
reds are apparentat one side of the front shovel
of the backhoe and blues at the other side

m solutions at two of the spatial locations
are shown in blue along with pixel values

= | from subaperture analysis as asterisks; our

formulation is able to recover solutions that

g have far greater detail
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