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2-D Spotlight-Mode SAR Examples

Sparse Signal Representation

Overcomplete Basis Formulation Sparsifying Regularization
Observation Geometry

 

Phase History Measurements & Point Scattering
synthetic aperture radar (SAR) measurements take the form:

 
r(f, θ) =

∫∫
x2+y2≤L2

s (x, y) exp

{
−j

4πf

c
(x cos θ + y sin θ)

}
dx dy

but, ”the manner of propagation at a given point is determined solely by 
the properties of the medium and the structure of the fi eld in an arbitrarily 
small neighborhood of the point” (Keller, 1962); thus, with P  discrete point 
scattering centers, the phase history measurement model is:

 
r(f, θ) =

P∑
p=1

s (xp, yp) exp

{
−j

4πf

c
(xp cos θ + yp sin θ)

}

Anisotropy
in principle, wide-angle apertures permit the reconstruction of images with 
high cross-range resolution but dependence of scattering on aspect angle, 
anisotropy, becomes a signifi cant issue, resulting in the observation model:

 
r(f, θ) =

P∑
p=1

s (xp, yp, θ) exp

{
−j

4πf

c
(xp cos θ + yp sin θ)

}
characterized anisotropy may be used as a feature for automatic target 
recognition and for improved image formation
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Overcomplete Expansion of Signals
with an N -dimensional signal r , and an overcomplete basis 
Φ =

[
φ1 φ2 · · · φM

]
,  M > N, we would like to fi nd a vector of coeffi cients 

a such that r = Φa

there is an infi nite subspace of solutions; we favor sparse solutions
with additive noise: r = Φa + n

The Sparse Signal Representation Problem

the �k -norm of a is defi ned as ‖a‖k =

(
M∑

m=1

|(a)m|k
) 1

k

the �0-norm counts the number of non-zero entries in a
then, the sparse signal representation problem is:

 noiseless: min ‖a‖0

s.t. r = Φa

  additive noise: min ‖a‖0

s.t. ‖r −Φa‖2 ≤ δ

this is a combinatorial optimization problem

Greedy Methods and Relaxations
matching pursuit: select best available basis vector greedily on every 
iteration
basis pursuit: �1 relaxation solved by linear programming: min ‖a‖1

s.t. r = Φa

SPARSIFYING REGULARIZATION: min
a

J (a) = ‖r − Φa‖2
2 + α ‖a‖k

k , k < 1

where α  is a regularization parameter that trades off data fi delity and 
sparsity
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Objective
in joint image formation and anisotropy characterization, our goal is 
determining s(x, y, θ)  from the  phase history measurements:

 
r(f, θ) =

P∑
p=1

s (xp, yp, θ) exp

{
−j

4πf

c
(xp cos θ + yp sin θ)

}

Overcomplete Formulation
the proposed approach is to expand the scattering function for each 
scattering center as the sum of an overcomplete set of basis vectors

 
r(f, θ) =

P∑
p=1

M∑
m=1

ap,mbm (θ) exp

{
−j

4πf

c
(xp cos θ + yp sin θ)

}

Choice of Basis Vectors
contiguous intervals in aspect angle of non-zero scattering behavior are 
often observed among scatterers encountered in practice

 
we choose the set of basis vectors such that all widths and shifts in the 
angular persistence of anisotropy are included
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the above diagram illustrates the overcomplete basis for N  = 8 — dots 
indicate non-zero entries and spaces represent zero-valued entries; any 
pulse shape may be used for the basis vectors, e.g. rectangular, Hamming 
window, triangle, raised triangle, windowed Gaussian
for this choice of overcomplete basis, the number of basis vectors M  and 
the number of angle samples in the measurements N  are related by:

 
M =

(
N + 1

2

)
=

1

2
N2 +

1

2
N

Graph-Structured Interpretation
the overcomplete basis has an intuitive graph-structured interpretation, 
given the name basis graph, illustrated below for N  = 8 and rectangular 
pulse shape, where nodes represent basis vectors and labels to the left 
indicate anisotropy

the basis vector at the root is isotropic; top-to-bottom corresponds to coarse-
to-fi ne angular persistence and left-to-right corresponds to shifts of the 
center angle of anisotropy
there are P  coexisting basis graphs, one per spatial location 
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Regularization Cost Function Approach
by using the overcomplete basis Φ and the regularization cost function  
J (a) = ‖r − Φa‖2

2 + α ‖a‖k
k , k < 1, we treat all spatial locations jointly 

within one system of equations — taking interactions among scatterers into 
account
we use data from the full aperture — we do not break things up into 
subapertures
the approach is more fl exible than parametric methods, but still incorporates 
prior information about anisotropy through the choice of basis vectors

Quasi-Newton Method
the cost function is made differentiable at 0 through the approximation 

Jε(a) = ‖r −Φa‖2
2 + α

M∑
i=1

(
(a)2

i + ε
)k/2

with H(a) = 2ΦHΦ + αkdiag
{[

((a)2
1 + ε)

k/2−1 · · · ((a)2
M + ε)

k/2−1
]}

, the 

 gradient  ∇Jε(a) = −2ΦHr + H(a)a, leading to the quasi-Newton iteration 

 a(n+1) = H−1
(
a(n)

)
2ΦHr  (Çetin and Karl, 2001)

Greedy Graph-Structured Algorithm
with Φ having O(N2P )  columns, the quasi-Newton method is expensive in 
memory and computation
the main idea of the graph-structured algorithm is to consider a subset 
of basis vectors from a subgraph, called the guiding graph, at a time and 
iteratively move the guiding graph around within the basis graph in search 
of the true anisotropy
the diagram below illustrates the iterations of a search where true anisotropy 
is represented by the node with the X

Strategy: Guided Depth-First Search
follow one path down starting from the root with the path based on a heuristic; 
if goal not found on fi rst pass down, back-track, also based on a heuristic
on each search iteration, r = Φ(i)a(i)  is solved using the quasi-Newton 
method, where Φ(i)  contains basis elements from P  guiding graphs 

Heuristics and Stopping Criteria
true anisotropy fi ner than current guiding graph:

bottom row coeffi cients non-zero
slide guiding graph down
guide left or right: weighted average of bottom row coeffi cients

true anisotropy coarser than current guiding graph:
top row coeffi cient non-zero
slide guiding graph up

true anisotropy inside current guiding graph:
true coeffi cients non-zero
do not move guiding graph – stop

the above heuristic and stopping criterion is for each of the P  guiding graphs 
individually
there are P  simultaneous searches, but the searches are coupled because 
spatial locations interact within one system of equations
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A radar set mounted to the aircraft 
transmits pulses of electromagnetic 
energy containing many frequencies 
f  with speed of propagation c  
towards the ground patch, and receives 
the scattered return from N angles 
along the fl ight path of the aircraft.  
The scattered returns are scaled in 
amplitude and shifted in phase by the 
complex-valued scattering function 
of the ground patch.  

■

Quasi-Newton Method — XPatch Data
there are P  = 4 spatial locations and N  = 50 angles over a 98º aperture
fi rst we obtain the least-squares solution as a baseline for comparison
the M  = 1275 coeffi cients of the solution are shown as a stem plot for each 
spatial location with real part º and imaginary part x; the corresponding 
scattering functions are shown in blue overlaid on the truth in black 
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then we apply the quasi-Newton method with the �0.1-norm and α  = 1 
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the quasi-Newton solution is sparser in the coeffi cients and importantly 
explains the underlying truth better

Graph-Structured Algorithm — Synthetic Data
there are P  = 7 spatial locations and N  = 1541 angles over a 110º aperture
the true anisotropy in black and the solution from the graph-structured 
algorithm with raised triangle basis vectors in blue are nearly identical
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shown above to the right, the paths of the guiding graphs for each spatial 
location reach the region of the basis graph of true anisotropy fairly directly

Graph-Structured Algorithm — Backhoe Data
there are P  = 75 spatial locations and N  = 1541 angles over a 110º aperture
anisotropy is characterized for a selected set of 75 spatial locations
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the bottom left image shows the center angle of 
the characterized anisotropy for each scatterer 
as a color – red is at one end of the range and 
blue is at the other end, with green in the middle 
(magnitude and persistence are not indicated); 
reds are apparent at one side of the front shovel 
of the backhoe and blues at the other side
solutions at two of the spatial locations 
are shown in blue along with pixel values 
from subaperture analysis as asterisks; our 
formulation is able to recover solutions that 
have far greater detail  
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