

in Wide-Angle SAR

Kush R. Varshney, Müjdat Çetin, John W. Fisher III, and Alan S. Willsky Stochastic Systems Group, Massachusetts Institute of Technology

0	sparsnynig negalarization
Ке	aularization Cost Function Approach
k	by using the overcomplete basis Φ and the regularization cost function $J(\mathbf{a}) = \ \mathbf{r} - \Phi \mathbf{a}\ _2^2 + \alpha \ \mathbf{a}\ _k^k$, $k < 1$, we treat all spatial locations jointly within one system of equations — taking interactions among scatterers interactions among scatterers interactions.
■ \	we use data from the full aperture — we do not break things up into
s ■ t Ķ	bubapertures the approach is more flexible than parametric methods, but still incorporate prior information about anisotropy through the choice of basis vectors
• •	
Qı	asi-Newton Method
∎ t	the cost function is made differentiable at 0 through the approximation
و	$J_{\epsilon}(\mathbf{a}) = \ \mathbf{r} - \mathbf{\Phi}\mathbf{a}\ _{2}^{2} + \alpha \sum_{i=1}^{M} \left((a)_{i}^{2} + \epsilon \right)^{k/2}$
•	with $\mathbf{H}(\mathbf{a}) = 2\mathbf{\Phi}^{H}\mathbf{\Phi} + \alpha k \operatorname{diag}\left\{\left[\left((a)_{1}^{2} + \epsilon\right)^{k/2-1} \cdots \left((a)_{M}^{2} + \epsilon\right)^{k/2-1}\right]\right\}$, the
(gradient $\nabla J_{\epsilon}(\mathbf{a}) = -2\mathbf{\Phi}^{H}\mathbf{r} + \mathbf{H}(\mathbf{a})\mathbf{a}$, leading to the quasi-Newton iteratio
:	$\mathbf{a}^{(n+1)} = \mathbf{H}^{-1} \left(\mathbf{a}^{(n)} ight) 2 \mathbf{\Phi}^H \mathbf{r}$ (Çetin and Karl, 2001)
r t t	nemory and computation the main idea of the graph-structured algorithm is to consider a subsect of basis vectors from a subgraph, called the guiding graph, at a time an
t i	of the true anisotropy the diagram below illustrates the iterations of a search where true anisotrop s represented by the node with the X
 t i 	of the true anisotropy the diagram below illustrates the iterations of a search where true anisotrop s represented by the node with the X
 t i 	of the true anisotropy the diagram below illustrates the iterations of a search where true anisotrop s represented by the node with the X
 t i 	the diagram below illustrates the iterations of a search where true anisotrops s represented by the node with the X
 t i 	the diagram below illustrates the iterations of a search where true anisotrops s represented by the node with the X
 t i 	the diagram below illustrates the iterations of a search where true anisotrops s represented by the node with the X
• t	the diagram below illustrates the iterations of a search where true anisotrop s represented by the node with the X
 t t 	the diagram below illustrates the iterations of a search where true anisotrops s represented by the node with the X
•	the diagram below illustrates the iterations of a search where true anisotrops s represented by the node with the X
• • <i>Str</i>	the diagram below illustrates the iterations of a search where true anisotrops s represented by the node with the X
• • <i>Str</i> • • • • • • • • • • • • • • •	The diagram below illustrates the iterations of a search where true anisotrops is represented by the node with the X 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -
• • Str • • • •	The true anisotropy the diagram below illustrates the iterations of a search where true anisotrops is represented by the node with the X
• • • Str • • • •	The diagram below illustrates the iterations of a search where true anisotrops the diagram below illustrates the iterations of a search where true anisotrops represented by the node with the X

- bottom row coefficients non-zero ▲ slide guiding graph down
- ▲ guide left or right: weighted average of bottom row coefficients
- true anisotropy coarser than current guiding graph:
- top row coefficient non-zero
- slide guiding graph up
- true anisotropy inside current guiding graph:
- ▲ true coefficients non-zero
- ▲ do not move guiding graph stop
- the above heuristic and stopping criterion is for each of the P guiding graphs individually
- there are P simultaneous searches, but the searches are coupled because spatial locations interact within one system of equations

* * * * .

Cross-range (m)

* * * * * * * * * * * * * *