亚
 Joint Image Formation and Anisotropy Characterization in Wide-Angle SAR

Kush R. Varshney, Müjdat Çetin, John W. Fisher III, and Alan S. Willsky Stochastic Systems Group, Massachusetts Institute of Technology
high cross-range resolution but dependence of scattering on aspect and high cross-range resolution but dependence ef scattering on aspect angle,
anisotropy, becomes a significant issue, resulting in the observation model $r(f, \theta)=\sum_{p=1}^{p} s\left(x_{p}, y_{p}, \theta\right) \exp \left\{-j \frac{4 \pi f}{c}\left(x_{p} \cos \theta+y_{p} \sin \theta\right)\right\}$
recognition and for improved image formation

Sparse Signal Representation

Overcomplete Expansion of Signals
$\left.\begin{array}{l}\text { - with an } \quad N \text {-dimensional signal r, and an overcomplete basis } \\ \Phi=\left[\begin{array}{lll}\phi_{1} & \phi_{2} & \cdots\end{array} \phi_{M}\right.\end{array}\right], M>N$,wewould liketofindavectorof coefficients a such that $\mathrm{r}=\Phi \mathrm{a}$ \qquad

- with additive noise: $\mathbf{r}=\Phi \mathbf{\Phi}+$
The Sparse Signal Representation Problem
- the ℓ_{k}-norm of a is defined as $\|\mathbf{a}\|_{k}=\left(\sum_{m=1}^{M}\left|(a)_{m}\right|^{k}\right)^{\frac{k}{k}}$
- the ℓ_{0}-norm counts the number of non-zero entries in
iseless min additive noise: min
- this is a combinatorial optimization problem
Greedy Methods and Relaxations
- matching where α is a regularization parameter that trades off data fidelity and sparsity

Overcomplete Basis Formulation

Objective

- in joint image formation and anisotropy characterization, our goal
determining $s(x, y, \theta)$ from the phase history neas

$$
r(f, \theta)=\sum_{p=1}^{p} s\left(x_{0}, y_{p}, \theta\right) \exp \left\{-j \frac{4 \pi f}{c}\left(x_{0} \cos \theta+y_{y} \sin \theta\right)\right\}
$$

Overcomplete Formulation

- the proposed approach is to expand the scattering function for each scattering center as the sum of an overcomplete set of basis vectors
$r(f, \theta)=\sum_{p=1}^{p} \sum_{m=1}^{M} a_{m} m_{m}(\theta) \exp \left\{-j \frac{4 \pi f}{c}\left(x_{p} \cos \theta+y_{p} \sin \theta\right)\right\}$

Choice of Basis Vectors
contiguous intervals in aspect angle of non-zero scattering behavior are often observed among scatterers encountered in practic

we choose the set of basis vectors such that
angular persistence of anisotropy are included

Sparsifying Regularization

Regularization Cost Function Approach

- by using the overcomplete basis Φ and the regularization cost function
$J(\mathrm{a})=\|\mathrm{r}-\Phi \mathrm{a}\|_{2}^{+}+\alpha\|\mathrm{a}\|_{k}^{k}, k<1$, we treat all spatial locations jointly (thin one system of equations-taking interactions among scatterers intion account
- we use data mipproach is more flexible than parametric methods, but still incorporates -....................

Quasi-Newton Method
The cost function is made diferentiable at 0 through the approximation $J_{\epsilon}(\mathbf{a})=\|\mathbf{r}-\Phi \mathbf{a}\|_{2}^{2}+\alpha \sum_{i=1}^{M}\left((a)_{i}^{2}+\epsilon\right)^{k}$

- with $\mathbf{H}(\mathbf{a})=2 \boldsymbol{\Phi}^{H} \boldsymbol{\Phi}+\alpha k \operatorname{diag}\left\{\left[\left((a)_{1}^{2}+\epsilon\right)^{k / 2-1} \cdots \quad\left((a)_{M}^{2}+\epsilon\right)^{k / 2-1}\right]\right\}$, the gradient $\nabla J_{\epsilon}(\mathbf{a})=-2 \Phi^{H_{\mathbf{r}}}+\mathbf{H}(\mathbf{a})$ a, leading to the quasi-Newton iteration $\mathbf{a}^{(n+1)}=\mathbf{H}^{-1}\left(\mathbf{a}^{(n)}\right) 2 \Phi^{H r}$ (Çetin and Karl, 2001)

Greedy Graph-Structured Algorithm
is expensive
ory and computatio
of basis vectors from a subhberructured algorithm is to consider a subset eratively move the guiding graph a around within the basis graph in search
of the true anisotropy
is represented by the node with the X
the above diagram illustrates the overcomplete basis for $N=8$-dots
indicate non-zero entries and spaces represent zero-valued entries; pulse shape may be used for the basis vectors, e.g. rectangular. Hamming window, triangle, raised triangle, windowed Gaussian

- for this choice of overcomplete basis, the number of basis vectors M
$M=\binom{N+1}{2}=\frac{1}{2} N^{2}+\frac{1}{2} N$

Graph-Structured Interpretation

- the overcomplete basis has an intuitive graph-structured interpretation given the name basis graph, iliustrated below for $N=8$ and rectangular
pulse shape, where nodes represent basis vectors and labels to the left indicate anisotropy

the basis vectorat the root is isotropic;top-to-bottom corresponds to coarse center angle of anisotropy
there are P coexisting basis graphs, one per spatial location

Examples

Quasi-Newton Method - XPatch Data

- there are $P=4$ spatial locations and $N=50$ angles over a 98° aperture
- the $M=1275$ coefficients of the solution are shown as a stem plot for each patial location with real part 0 and imaginary part $x^{\text {, }}$, , correspond
scattering functions are shown in blue overlaid on the truth in black

- then we apply th

the quasi-Newton solution is sparser in the coefficients and importan explains the underlying truth better

Graph-Structured Algorithm - Synthetic Data - there are $P=7$ spatial locations and $N=1541$ angles over a 110° aperture algorithm with raised triangle basis vectors in blue are nearly identical

shown above to the right, the paths of the guiding graphs for each spatia location reach the region of the basis graph of true anisotropy fairly directly

Graph-Structured Algorithm - Backhoe Data - there are $P=75$ spatial locations and $N=1541$ angles over a 110° a

- the bottom leftimage shows the centerangle the characterized anisotropy for each scatterer as a color - red is at one end of the range and blue isat the other end, with green inthe midal
(magnitude and persistence ar not indicated) reds are apparent at one side of the front shovel -of the backhoe and blues at the other side solutions at two of the spatial locations
are shown in blue along with pixel values from subaperture analysis as asterisks: our formulation is able to recover solutions that formula
have far
an
it
it

