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MURI: INTGERATED FUSION AND SENSOR
MANAGEMENT FOR ATE

Innovative Front-End Processing
1c. Statistical shape theory

=Characterize objects in signals and images.

»Seek physics-based features for robust, information-based fusion.

*An important feature seems to be SHAPE. Human visual system
relies heavily on edges, contours, and analysis of their shapes.

*For 2D images, boundaries are curves, while for 3D objects
boundaries are surfaces.




TWO DISTINCT TARGET ATTRIBUTES
SHAPES & TEXTURE

Textures/ Color/ Intensity -/ *




SHAPE ANALYSIS FOR ATE

Shape provides a partial characterization of objects

Disclaimer: shape analysis is generally not useful in far-field targets when there are

very few pixels on targets. .



OVERVIEW OF SHAPE ANALYSIS
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PAST RESEARCH (2002-2006)

Shape Analysis of Closed Curves
Unit-Speed Curves: Bending Only
€ Represent a curve by its angle function

€ Use a bending metric to compute geodesics using a shooting
method (IEEE PAMI, 2004)

€ Compute statistics using TPCA method (IEEE PAMI, 2005)

Arbitrary-Speed Curves: Elastic Shapes
€ Represent a curve by its angle and speed functions

€ Use a bending metric to compute geodesics using a shooting
method (CVPR, 2004; 1JCV, 2007)

€ Compute statistics using TPCA method (ACCV, 2006)

Others: Michor-Mumford (2004, 05), Younes (1998), Yezzi-Mennucci (2005)
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REPRESENTATION OF A CURVE

If the curve is arc-length parameterized:

X, y coordinates angle function curvature function
15t derivative 2"d derivative

(velocity function)  (torsion, curvature)
7



GEODESICS ON SHAPE SPACES

Geodesics are computed using numerical technigues,
analytical solutions are not available

chord length Initial path

Intermediate path

Minimize |0,—6,|

Shooting Method Path Straightening
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Fully automatic, no user input needed




ELASTIC GEODESICS ON SHAPE SPACES




FIRST YEAR RESEARCH

Three main areas of research:

1. Improving past methods for shape analysis.

2. Use of shape priors in estimation of boundaries in images.

3. Classification of objects using sampled points.
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FIRST YEAR RESEARCH

Three main areas of research:

1. Improving past methods for shape analysis.

2. Use of shape priors in estimation of boundaries in images.

3. Classification of Objects using sampled points.
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METRICS FOR INFORMATION GEOMETRY

e Space of probability density functions:
F={f:[0,1] = Ry| [y f(s)ds =1}
» Fisher-Rao metric: for vy, ve € Ty (F)
(v1,v2) = | v1(x)v2(x) f(lx) dx

Square-root Representation: (Bhattacharya 1943, Rao 1945)
U = {1 :[0,1] — R| [ (x)%dz =1}
Fisher-Rao metric: for vi,ve € Ty (W)

(v1,v2) = [ vi(x)va(x) da

Srivastava et al., Riemannian Analysis of Probability Density Functions with Applications
in Computer Vision, CVPR 2007 13




SHAPE ANALYSIS: IMPROVING EFFICIENCY

Parametrized Curve: 3(s), Velocity Vector 5(s)

Old representation: (¢, 8) New representation: ¢(s)
Define ¢(s) = 1/|3(s)|e??®) e R?

Define ¢(s) = 5(s) c R"

Several computations simplify. In particular, the elastic metric
simplifies to become L? metric.

Joshi et al., An Efficient Representation for Computing Geodesics Between n-
Dimensional Elastic Curves, CVPR 2007 14




SQUARE-ROQOT ELASTIC (SRE) FRAMEWORK
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PROGRESS IN SHAPE ANALYSIS OF CURVES

Representation Domain Metric Geodesic Comp.
Angle or Curvature | [R? Bei‘i‘g‘g Shooting Method
(Log-Speed, Angle) | TR? Elastic Shooting Method

Square-Root Velocity R™ Elastic Path-Straightening
I[,2 Method
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EXTENSION TO
JOINT SHAPE & TEXTURE ANALYSIS

Shape Only: Geodesic between planar shapes

T v g _an Tep Vb VY ob
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JOINT SHAPE & TEXTURE ANALYSIS

Shape & Texture: Use texture as additional coordinates

3D geodesic

2D Projections




FIRST YEAR RESEARCH

Three main areas of research:

1. Improving past methods for shape analysis.

2. Use of shape priors in estimation of boundaries in images.

3. Classification of objects using sampled points.
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STATISTICAL SUMMARIES OF SHAPES
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IMPROVING CONTOUR EXTRACTION

Traditional algorithms for contour extraction use active contours

Contours are driven by PDEs, based on gradient of two energy

terms:
Eiotar = Eimage + Esmooth

Eimage relates the contour to the image

E .. o0tn, TOrces the contour to remain smooth

We add a third term which incorporates our prior knowledge
about possible shapes

Ep’rio'r favors a certain shape class, e.g tanks

21




PRIOR SHAPE MODELS FOR TARGETS
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Learning shape models for different sectors

Data courtesy Dr. Richard Sims, US AMCOM, Huntsville. 22



IMPROVING CONTOUR EXTRACTION

Joshi and Srivastava, Bayesian Active Contours, 1JCV, in review 3




FIRST YEAR RESEARCH

Three main areas of research:

1. Improving past methods for shape analysis.

2. Use of shape priors in estimation of boundaries in images.

3. Classification of objects using sampled points.
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CLASSIFICATION OF OBJECTS FROM A SET
OF PRIMITIVES — POINTS, EDGES

Backhoe — sparse
reconstruction

Low-level processing results in points, edges, curvelets, junctions, etc

“Connecting the dots”

25



CLASSIFICATION OF ORDERED POINT SETS

Problem: Given an ordered set of points, classify them into
one of given shape classes

Classes: bone, bird, bottle, brick, camel,
cat, carriage, car, chopper, crown, ....

Courtesy: Kimia Database 26




CLASSIFICATION OF ORDERED POINT SETS

Problem:

Given an ordered set of points, classify them into
one of given shape classes

Classes: bone, bird, bottle, brick, camel,
cat, carriage, car, chopper, crown, ....

Knowledge Base: Past Observations (continuous curves)
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Courtesy: Kimia Database 57




MODELING VARIABILITY IN OBSERVATIONS

Three Sources of Variability

1. Variability in shapes within a class
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MODELING VARIABILITY IN OBSERVATIONS

Three Sources of Variability

2. Variability in sampling a curve
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MODELING VARIABILITY IN OBSERVATIONS

Three Sources of Variability

3. Observation Noise

Observation Model:
y =B8((U)) +w

Provides the likelihood function P(y|3,7) 30




BAYESIAN CLASSIFICATION

MAP Estimation of Shape Class

A

C = argmaxg, P(Cily)

shape
Posterior Probability

P(Cily) = 2 [ [ [ P(yla, 2,7}

pose

Class specific prior on sampling functions

31




A PRIOR MODEL ON SAMPLING FUNCTION

For a curve (3, let K be its curvature function

We prefer a sampling function that is inversely proportional
to exponential of K
P ds

v :10,1] — [0,1], ~(t) = Joe )]
jb P ds

—[~(s)|

For each training shape, we can compute a sampling function
32




HIGH POSTERIOR PROBABILITY SAMPLES

P(Cily) = B [ [ [ P(yla,=,7)P(qlC:) P(x|C;) P(7|C)dq dx dvy

Data High Probability Samples
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CLASSIFICATION PERFORMANCE

Preliminary Results: Kimia Database, 17 shape classes
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OTHER APPLICATIONS

Face recognition by analyzing shapes of facial surfaces.
(Collaboration with University of Lille; IEEE PAMI 2006, JMIV, in
review 2007)

Studying shapes of neuronal fiber tracts in Human brain to
separate schizophrenic and normal classes. (Collaboration with
Vanderbilt U. VUIIS; EMMCVPR 2007)

Joint shape and texture analysis for classification of trees in aerial
Images (Collaboration with INRIA, Sophia-Antipolis; EUSIPCO
2007)

Shape/sampling models for human activity classification.
(Collaboration with R. Chellappa’s group at UMD)

Discussions with Nothrop-Grumman on ATR of underwater targets
using airborne LIDAR imaging.

35




ANALYSIS OF 3D FACIAL SURFACES
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SECOND YEAR GOALS

1. One-Shot Learning of Shapes:

Prediction and analysis of shapes from new perspectives.

2. Graphical Models for Studying Configurations of Shapes:

3. Joint Shape-Texture Analysis for Full Appearance Models.

38




ONE-SHOT LEARNING OF SHAPES

Setup:

From training data we already know the variability
(distribution) of 2D shapes associated with a 3D object.

We obtain one image (shape) of a new object. What can
we say about shape variability of this new object?

Using a well-known (“One-shot learning”) approach, we can
transfer the old distribution to new point. (Already done for
pictures.

39




SUB-PROBLEM:

Known Object:

M60 i )

View 1

New Object:

View 1

SHAPE PREDICTION

S

View 2

77

View 2
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SUB-PROBLEM: SHAPE PREDICTION

Known Object:

e

View 1 View 2

New Object:

View 1 View 2
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PARALLEL TRANSPORT OF VARIATIONS
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CONFIGURATIONS OF SHAPES

Multitudes of interacting shapes




GRAPHICAL MODELS
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SUMMARY

Three main items of research:
1. Improved past methods for shape analysis.
2. Used of shape priors in estimation of boundaries in images.

3. Developed classification of objects using sampled points.

Focus areas for next year:
e One-Shot Learning of Shapes
e Graphical Models for Studying Configurations of Shapes:

e Joint Shape-Texture Analysis for Full Appearance Models.

Srivastava, Klassen and Joshi, Statistical Analysis of Shapes of Curves, Springer
Series In Statistics, In Preparation.

Comments, suggestions are most welcome! i




