
1

Estimation in Gaussian Graphical Models using

Tractable Subgraphs: A Walk-Sum Analysis
Venkat Chandrasekaran∗, Jason K. Johnson, Alan S. Willsky

May 1, 2007

Abstract

Graphical models provide a powerful formalism for statistical signal processing. Due to their so-

phisticated modeling capabilities, they have found applications in a variety of fields such as computer

vision, image processing, and distributed sensor networks. In this paper, we present a general class of

algorithms for estimation in Gaussian graphical models with arbitrary structure. These algorithms involve

a sequence of inference problems on tractable subgraphs over subsets of variables. This framework

includes parallel iterations such as Embedded Trees, serial iterations such as block Gauss-Seidel, and

hybrid versions of these iterations. We also discuss a method that uses local memory at each node to

overcome temporary communication failures that may arise in distributed sensor network applications. We

analyze these algorithms based on the recently developed walk-sum interpretation of Gaussian inference.

We describe the walks “computed” by the algorithms usingwalk-sum diagrams, and show that for

iterations based on a very large and flexible set of sequences of subgraphs, convergence is guaranteed

in walk-summable models. Consequently, we are free to choose spanning trees and subsets of variables

adaptively at each iteration. This leads to efficient methods for optimizing the next iteration step to

achieve maximum reduction in error. Simulation results demonstrate that these non-stationary algorithms

provide a significant speedup in convergence over traditional one-tree and two-tree iterations.

Index Terms

Graphical models, Gauss-Markov Random Fields, walk-sums, distributed estimation, walk-sum dia-

grams, subgraph preconditioners, maximum walk-sum tree, maximum walk-sum block.

∗Corresponding author: Venkat Chandrasekaran. The authors are with the Laboratory for Information and Decision Systems,

Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139

USA. Email: {venkatc, jasonj, willsky}@mit.edu. Fax: 617-258-8364. This work was supported by the Army Research Office

grant W911NF–05–1–0207 and the Air Force Office of Scientific Research grant FA9550–04–1–0351.

2

I. I NTRODUCTION

Graphical models offer a convenient representation for joint probability distributions and convey the

Markov structure in a large number of random variables compactly. A graphical model [1, 2] is a collection

of variables defined with respect to a graph; each vertex of the graph is associated with a random variable

and the edge structure specifies the conditional independence properties among the variables. Due to their

sophisticated modeling capabilities, graphical models (also known as Markov random fields or MRFs)

have found applications in a variety of signal processing tasks involving distributed sensor networks [3],

images [4, 5], and computer vision [6]. Our focus in this paper is on the important class of Gaussian

graphical models, also known as Gauss-Markov random fields (GMRFs), which have been widely used

to model natural phenomena in many large-scale estimation problems [7, 8].

In estimation problems in which the prior and observation models have normally distributed random

components, computing the Bayes least-squares estimate is equivalent to solving a linear system of

equations specified in terms of the information-form parameters of the conditional distribution. Due to its

cubic computational complexity in the number of variables, direct matrix inversion to solve the Gaussian

estimation problem is intractable in many applications in which the number of variables is very large

(e.g., in oceanography problems [8] the number of variables may be on the order of106). For tree-

structured MRFs (i.e., graphs with no cycles), Belief Propagation (BP) [9] provides an efficient linear

complexity algorithm to compute exact estimates. However, tree-structured Gaussian processes possess

limited modeling capabilities [10]. In order to model a richer class of statistical dependencies among

variables, one often requires loopy graphical models. As estimation on graphs with cycles is substantially

more complex, considerable effort has been and still is being put into developing methods that overcome

this computational barrier, including a variety of methods that employ the idea of performing inference

computations on tractable subgraphs [11, 12]. The recently proposed Embedded Trees (ET) iteration

[10, 13] is one such approach that solves a sequence of inference problems on trees or, more generally,

tractable subgraphs. If ET converges, it yields the correct conditional estimates, thus providing an effective

inference algorithm for graphs with essentially arbitrary structure.

For the case ofstationaryET iterations — in which the same tree or tractable subgraph is used at

each iteration — necessary and sufficient conditions for convergence are provided in [10, 13]. However,

experimental results in [13] provide compelling evidence that much faster convergence can often be

obtained by changing the embedded subgraph that is used from one iteration to the next. The work in

[13] provided very limited analysis for suchnon-stationaryiterations, thus leaving open the problem of

3

providing easily computable broadly applicable conditions that guarantee convergence.

In related work that builds on [10], Delouille et al. [14] describe a stationary block Gauss-Jacobi

iteration for solving the Gaussian estimation problem with the added constraint that messages between

variables connected by an edge in the graph may occasionally be “dropped”. The local blocks (subgraphs)

are assumed to be small in size. Such a framework provides a simple model for estimation in distributed

sensor networks where communication links between nodes may occasionally fail. The proposed solution

involves the use of memory at each node to remember past messages from neighboring nodes. The values

in this local memory are used if there is a breakdown in communication to prevent the iteration from

diverging. However, the analysis in [14] is also restricted to the case of stationary iterations, in that the

same partitioning of the graph into local subgraphs is used at every iteration.

Finally, we note that ET iterations fall under the class ofparallel update algorithms, in that every

variable must be updated in an iteration before one can proceed to the next iteration. However,serial

schemes involving updates over subsets of variables also offer tractable methods for solving large linear

systems [15, 16]. An important example in this class of algorithms is block Gauss-Seidel (GS) in which

each iteration involves updating a small subset of variables.

In this paper, we analyze non-stationary iterations based on an arbitrary sequence of embedded trees

or tractable subgraphs. We refer to these trees and subgraphs on which inference is performed at each

iteration aspreconditioners, following the terminology used in the linear algebra literature. We present

a general class of algorithms that includes the non-stationary ET and block GS iterations, and provide

a general and very easily tested condition that guarantees convergence for any of these algorithms. Our

framework allows for hybrid non-stationary algorithms that combine aspects of both block GS and ET.

We also consider the problem of failing links and describe a method that uses local memory at each node

to address this problem in general non-stationary parallel and serial iterations.

Our analysis is based on a recently introduced framework for interpreting and analyzing inference

in GMRFs based on sums over walks in graphs [17]. We describewalk-sum diagramsthat provide an

intuitive interpretation of the estimates computed by each of the algorithms after every iteration. A walk-

sum diagram is a graph that corresponds to the walks “accumulated” after each iteration. As developed in

[17] walk-summability is an easily tested condition which, as we will show, yields a simple necessary and

sufficient condition for the convergence of the algorithms. As there are broad classes of models (including

attractive, diagonally-dominant, and so-called pairwise-normalizable models) that are walk-summable, our

analysis shows that our algorithms provide a convergent, computationally attractive method for inference.

The walk-sum analysis and convergence results show that arbitrary non-stationary iterations of our

4

algorithms based on a very large and flexible set of sequences of subgraphs or subsets of variables

converge in walk-summable models. Consequently, we are free to use any sequence of trees in the ET

algorithm or any valid sequence of subsets of variables (one that updates each variable infinitely often) in

the block GS iteration, and still achieve convergence in walk-summable models. We exploit this flexibility

by choosing trees or subsets of variables adaptively to minimize the error at iterationn based on the

residual error at iterationn−1. To make these choices optimally, we formulate combinatorial optimization

problems that maximize certain re-weighted walk-sums. We describe efficient methods to solve relaxed

versions of these problems. For the case of choosing the “next best” tree, our method reduces to solving

a maximum-spanning tree problem. Simulation results indicate that our algorithms for choosing trees and

subsets of variables adaptively provide a significant speedup in convergence over traditional approaches

involving a single preconditioner or alternating between two preconditioners.

Our walk-sum analysis also shows that local memory at each node can be used to achieve convergence

for any of the above algorithms when communication failures occur in distributed sensor networks. Our

protocol differs from the description in [14], and as opposed to that work, allows for non-stationary

updates. Also, our walk-sum diagrams provide a simple, intuitive representation for the propagation of

information with each iteration.

One of the conditions for walk-summability in Section II-C shows that walk-summable models are

equivalent to models for which the information matrix is an H-matrix [16, 18]. Several methods for

finding good preconditioners for such matrices have been explored in the linear algebra literature, but

these have been restricted to either cycling through a fixed set of preconditioners [19] or to so-called

“multi-splitting” algorithms [20, 21]. These results do not address the problem of convergence of non-

stationary iterations using arbitrary (non-cyclic) sequences of subgraphs. The analysis of such algorithms

along with the development of methods to pick a good sequence of preconditioners are the main novel

contributions of this paper, and the recently developed concept of walk-sums is critical to our analysis.

In Section II, we provide the necessary background about GMRFs and the walk-sum view of inference.

Section III describes all the algorithms that we analyze in this paper, while Section IV contains the analysis

and walk-sum diagrams that provide interpretations of the algorithms in terms of walk-sum computations.

In Section V, we use the walk-sum interpretation of Section IV to show that these algorithms converge

in walk-summable models. Section VI presents techniques for choosing tree-based preconditioners and

subsets of variables adaptively for the ET and block GS iterations respectively, and demonstrates the

effectiveness of these methods through simulation. We conclude with a brief discussion in Section VII.

The appendix provides additional details and proofs.

5

II. GAUSSIAN GRAPHICAL MODELS AND WALK -SUMS

A. Gaussian graphical models and estimation

A graphG = (V, E) consists of a set of verticesV and associated edgesE ⊂
(
V
2

)
, where

(
V
2

)
is the

set of all unordered pairs of vertices. A subsetS ⊂ V is said toseparatesubsetsA,B ⊂ V if every path

in G between any vertex inA and any vertex inB passes through a vertex inS. A graphical model [1,

2] is a collection of random variables indexed by the vertices of a graph; each vertexs ∈ V corresponds

to a random variablexs, and where for anyA ⊂ V , xA = {xs|s ∈ A}. A distribution p(xV) is Markov

with respect toG if for any subsetsA,B ⊂ V that are separated by someS ⊂ V , the subset of variables

xA is conditionally independent ofxB given xS , i.e. p(xA, xB|xS) = p(xA|xS) p(xB|xS).

We consider GMRFs{xs|s ∈ V } parameterized by a mean vectorµ and a positive-definite covariance

matrix P (denoted byP � 0): xV ∼ N (µ, P) [1, 22]. For simplicity, eachxs is assumed to be a scalar

variable. An alternate natural parameterization for GMRFs is specified in terms of theinformation matrix

J = P−1 (also calledprecisionor concentrationmatrix) andpotential vectorh = P−1µ, and is denoted

by xV ∼ N−1(h, J). In particular, ifp(xV) is Markov with respect to graphG, then the specialization

of the Hammersley-Clifford theorem for Gaussian models [1, 22] directly relates the sparsity ofJ to the

sparsity ofG: Js,t 6= 0 if and only if the edge{s, t} ∈ E for every pair of verticess, t ∈ V . The partial

correlation coefficientρt,s is the correlation coefficient of variablesxt andxs conditioned on knowledge

of all the other variables [1]:

ρt,s ,
cov(xt;xs|x\t,s)√

var(xt|x\t,s)var(xs|x\t,s)
= − Jt,s√

Jt,tJs,s

. (1)

Hence,Jt,s = 0 implies thatxt andxs are conditionally independent given all the other variablesx\t,s.

Let x ∼ N−1(hprior, Jprior), and suppose that we are given noisy observationsy = Cx+ v of x, with

v ∼ N (0, S). The goal of the Gaussian estimation problem is to compute an estimatex̂ that minimizes

the expected squared-error betweenx̂ andx. The solution to this problem is the mean of the posterior

distribution x|y ∼ N−1(h, J), with J = Jprior + CTS−1C and h = hprior + CTS−1y [23]. Thus, the

posterior meanµ = J−1h can be computed as the solution to the following linear system:

(Jprior + CTS−1C)x̂ = hprior + CTS−1y ⇔ Jx̂ = h. (2)

We note thatJ is a symmetric positive-definite matrix. The conditions for all our convergence results

and analysis in this paper are specified in terms of the posterior graphical model parameterized byJ .

As described in the introduction, solving the linear system (2) is computationally expensive by direct

6

matrix inversion even for moderate-size problems. In this paper, we discuss tractable methods to solve

this linear system.

B. Walk-summable Gaussian graphical models

We assume that the information matrixJ of a Gaussian model defined onG = (V, E) has been

normalized to have unit diagonal entries. For example, ifD is a diagonal matrix containing the diagonal

entries ofJ , then the matrixD− 1
2JD− 1

2 contains re-scaled entries ofJ at off-diagonal locations and1’s

along the diagonal. Such a re-scaling does not affect the convergence results of the algorithms in this

paper1. However, re-scaled matrices are useful in order to provide simple characterizations of walk-sums.

Let R = I−J . The off-diagonal elements ofR are precisely the partial correlation coefficients from (1),

and have the same sparsity structure as that ofJ (and consequently the same structure asG). Let these

off-diagonal entries be the edge weights inG, i.e.Rt,s is the weight of the edge{t, s}. A walk in G is

defined to be a sequence of verticesw = {wi}`i=0 such that{wi, wi+1} ∈ E for eachi = 0, . . . , ` − 1.

Thus, there is no restriction on a walk crossing the same node or traversing the same edge multiple times.

The weight of the walkφ(w) is defined:

φ(w) ,
`−1∏
i=0

Rwi,wi+1 .

Note that the partial-correlation matrixR is essentially a matrix of edge weights. Interpreted differently,

one can also view each element ofR as the weight of the length-1 walk between two vertices. In general,(
R`

)
t,s

is then the walk-sumφ(s `→ t) over the (finite) set of all length-` walks froms to t [17], where

the walk-sumover a finite set is the sum of the weights of the walks in the set. Based on this point of

view, we can interpret estimation in Gaussian models from equation (2) in terms of walk-sums:

Pt,s =
(
(I −R)−1

)
t,s

=
∞∑

`=0

(
R`

)
t,s

=
∞∑

`=0

φ(s `→ t). (3)

Thus, the covariance between variablesxt andxs is the length-ordered sum over all walks froms to t.

This, however, is a very specific instance of an inference algorithm that converges if the spectral radius

condition%(R) < 1 is satisfied (so that the matrix geometric series converges). Other inference algorithms,

however, may compute walks indifferent orders. In order to analyze the convergence of general inference

algorithms that submit to a walk-sum interpretation, a stronger condition was developed in [17] as follows.

1Although our analysis of the algorithms in Section III is specified for normalized models, these algorithms and our analysis

can be easily extended to the un-normalized case. See Appendix A.

7

Given a countable set of walksW, thewalk-sumoverW is the unordered sum of the individual weights

of the walks contained inW:

φ(W) ,
∑
w∈W

φ(w).

In order for this sum to be well-defined, we consider the following class of Gaussian graphical models.

Definition 1: A Gaussian graphical model defined onG = (V, E) is said to bewalk-summableif the

absolute walk-sums over the set of all walks between every pair of vertices inG are well-defined. That

is, for every pairs, t ∈ V ,

φ̄(s→ t) ,
∑

w∈W(s→t)

|φ(w)| <∞.

Here, φ̄ denotes absolute walk-sums over a set of walks.W(s → t) corresponds to the set of all

walks2 beginning at vertexs and ending at the vertext in G. Section II-C lists some easily tested

equivalent and sufficient conditions for walk-summability. Based on the absolute convergence condition,

walk-summability implies that walk-sums over a countable set of walks can be computed inany order

and that the unordered walk-sumφ(s→ t) is well-defined [24, 25]. Therefore, in walk-summable models,

the covariances and means can be interpreted as follows:

Pt,s = φ(s→ t), (4)

µt =
∑
s∈V

Pt,shs =
∑
s∈V

hsφ(s→ t), (5)

where (3) is used in the first equation, and (4) in the second. In words, the covariance between variables

xs and xt is the walk-sum over the set of all walks froms to t, and the mean of variablext is the

walk-sum over all walks ending att with each walk being re-weighted by the potential value at the

starting node.

The goal in walk-sum analysis is to interpret an inference algorithm as the computation of walk-sums

in G. If the analysis shows that the walks being computed by an inference algorithm are the same as those

required for the computation of the means and covariances above, then the correctness of the algorithm

can be concluded directly for walk-summable models. This conclusion can be reached regardless of the

order in which the algorithm computes the walks due to the fact that walk-sums can be computed in

any order in walk-summable models. Thus, the walk-sum formalism allows for very strong yet intuitive

statements about the convergence of inference algorithms that submit to a walk-sum interpretation. Indeed,

2We denote walk-sets byW but generally drop this notation when referring to the walk-sum overW, i.e. the walk-sum of

the setW(∼) is denoted byφ(∼).

8

the overall template for analyzing our inference algorithms is simple. First, we show that the algorithms

submit to a walk-sum interpretation. Next, we show that the walk-sets computed by these algorithms are

nested, i.e.Wn ⊆ Wn+1, whereWn is the set of walks computed at iterationn. Finally, we show that

every walk required for the computation of the mean (5) is contained inWn for somen. A key ingredient

in our analysis is that in computing all the walks in (5), the algorithms mustnot overcountany walks.

Although each step in this procedure is non-trivial, combined together they allow us to conclude that the

algorithms converge in walk-summable models.

C. Properties of walk-summable models and Walk-sum algebra

Very importantly, there are easily testable necessary and sufficient conditions for walk-summability. Let

R̄ denote the matrix of the absolute values of the elements ofR. Then, walk-summability is equivalent

to either [17]

• %(R̄) < 1, or

• I − R̄ � 0.

From the second condition, one can draw a connection to H-matrices in the linear algebra literature [16,

18]. Specifically, walk-summable information matrices are symmetric, positive-definite H-matrices.

Walk-summability of a model is sufficient but not necessary for the validity of the model (positive-

definite information/covariance). Many classes of models are walk-summable [17]:

1) Diagonally-dominant models, i.e. for eachs ∈ V ,
∑

t6=s |Js,t| < Js,s.

2) Valid non-frustrated models, i.e. every cycle has an even number of negative edge weights and

I −R � 0. Special cases include valid attractive models and tree-structured models.

3) Pairwise normalizablemodels, i.e. there exists a diagonal matrixD � 0 and a collection of matrices

{Je � 0|(Je)s,t = 0 if (s, t) 6= e, e ∈ E} such thatJ = D +
∑

e∈E Je.

An example of a commonly encountered walk-summable model in statistical image processing is the

thin-membrane prior [26]. Further, linear systems involving sparse diagonally dominant matrices are also

a common feature in finite element approximations of elliptical partial differential equations [27].

We now describe some operations that can be performed on walk-sets, and the corresponding walk-sum

formulas. These relations are valid in walk-summable models [17]:

• Let {Un}∞n=1 be a countable collection of mutually disjoint walk-sets. From the sum-partition theorem

for absolutely summable series [25], we have thatφ(∪∞n=1Un) =
∑∞

n=1 φ(Un). Further, let{Un}∞n=1

be a countable collection of walk-sets whereUn ⊆ Un+1. We have thatφ(∪∞n=1Un) = limn→∞ φ(Un).

9

• Let u = u0u1 · · ·uend andv = vstartv1 · · · v`(v) be walks such thatuend = vstart. The concatenation

of the walks is defined to beu · v , u0u1 · · ·uendv1 · · · v`(v). Now consider a walk-setU with

all walks ending at vertexuend and a walk-setV with all walks starting atvstart = uend. The

concatenation of the walk-setsU ,V is defined:

U ⊗ V , {u · v | u ∈ U , v ∈ V}.

If every walk w ∈ U ⊗ V can be decomposed uniquely intou ∈ U and v ∈ V so thatw = u · v,

thenU ⊗V is said to beuniquely decomposableinto the setsU ,V. For such uniquely decomposable

walk-sets,φ(U ⊗ V) = φ(U)φ(V).

Finally, the following notational convention is employed in the rest of this paper. We use wild-card

symbols (∗ and •) to denote a union over all vertices inG. For example, given a collection of walk-

setsW(s), we interpretW(∗) as
⋃

s∈V W(s). Further, the walk-sum over the setW(∗) is defined

φ(W(∗)) ,
∑

s∈V φ(W(s)). In addition to edges being assigned weights, vertices can also be assigned

weights (for example, the potential vectorh). A re-weighted walk-sum of a walkw = w0 · · ·w` with

vertex weight vectorh is then defined to beφ(h;w) , hw0φ(w). Based on this notation, the mean of

variablext from (5) can be re-written as

µt = φ(h; ∗ → t). (6)

III. N ON-STATIONARY EMBEDDED SUBGRAPH ALGORITHMS

In this section, we describe a framework for the computation of the conditional mean estimates in

order to solve the Gaussian estimation problem of Section II-A. We present three algorithms that become

successively more complex in nature. We begin with the parallel ET algorithm originally presented in

[10, 13]. Next, we describe a serial update scheme that involves processing only a subset of the variables

at each iteration. Finally, we discuss a generalization to these non-stationary algorithms that is tolerant to

temporary communication failure by using local memory at each node to remember past messages from

neighboring nodes. A similar memory-based approach was used in [14] for the special case of stationary

iterations. The key theme underlying all these algorithms is that they are based on solving a sequence of

inference problems on tractable subgraphs involving all or a subset of the variables. Convergent iterations

that compute means can also be used to compute exact error variances [10]. Hence, we restrict ourselves

to analyzing iterations that compute the conditional mean.

10

A. Non-Stationary Parallel Updates: Embedded Trees Algorithm

Let S be some subgraph of the graphG. The stationary ET algorithm is derived by splitting the matrix

J = JS−KS , whereJS is known as thepreconditionerandKS is known as thecutting matrix. Each edge

in G is either an element ofS or E\S. Accordingly, every non-zero off-diagonal entry ofJ is either an

element ofJS or of −KS . The diagonal entries ofJ are part ofJS . Hence, the matrixKS is symmetric,

zero along the diagonal, and contains non-zero entries only in those locations that correspond to edges

not included in the subgraph generated by the splitting. Cutting matrices may have non-zero diagonal

entries in general, but we only consider zero-diagonal cutting matrices in this paper. The splitting ofJ

according toS transforms (2) toJS x̂ = KS x̂ + h, which suggests a recursive method for solving the

original linear system:

JS x̂
(n) = KS x̂

(n−1) + h. (7)

If J−1
S exists then a necessary and sufficient condition for the iterates{x̂(n)}∞n=0 to converge toJ−1h

for any initial guesŝx(0) is that%(J−1
S KS) < 1 [10]. ET iterations can be very effective if applyingJ−1

S

to a vector is efficient, e.g. ifS corresponds to a tree or, in general, any tractable subgraph.

A non-stationary ET iteration is obtained by lettingJ = JSn
−KSn

, where the matricesJSn
correspond

to some embedded tree or subgraphSn in G and can vary in an arbitrary manner withn. This leads to

the following ET iteration:

JSn
x̂(n) = KSn

x̂(n−1) + h. (8)

Our walk-sum analysis proves the convergence of non-stationary ET iterations based on any sequence of

subgraphs{Sn}∞n=1 in walk-summable models. Every step of the above algorithm is tractable if applying

J−1
Sn

to a vector can be performed efficiently. Indeed, an important degree of freedom in the above

algorithm is the choice ofSn at each stage so as to speed up convergence, while keeping the computation

at every iteration tractable. We discuss some approaches to addressing this issue in Section VI.

B. Non-Stationary Serial Updates of Subsets of Variables

We begin by describing the block GS iteration [15, 16]. For eachn = 1, 2, . . . , let Vn ⊆ V be some

subset ofV . The variablesxVn
= {xs : s ∈ Vn} are updated at iterationn. The remaining variables do

not change from iterationn−1 to n. Let J (n) = [J]Vn
be the|Vn|×|Vn|-dimensional principal sub-matrix

corresponding to the variablesVn. The block GS update at iterationn is as follows:

x̂
(n)
Vn

= J (n)−1
(
RVn,V c

n
x̂

(n−1)
V c

n
+ hVn

)
, (9)

x̂
(n)
V c

n
= x̂

(n−1)
V c

n
. (10)

11

Here,V c
n refers to the complement of the vertex setVn. In equation (9),RVn,V c

n
refers to the sub-matrix

of edge weights of edges from the verticesV c
n to Vn. Every step of the above algorithm is tractable as

long as applyingJ (n)−1
to a vector can be performed efficiently.

We now present a general serial iteration that incorporates an element of the ET algorithm of Section III-

A. This update scheme involves a single ET iteration within the induced subgraph of the update variables

Vn. We split the edgesE(Vn) in the induced subgraph ofVn into a tractable setEn and a set of cut edges

E(Vn)\En. Such a splitting leads to a tractable subgraphSn = (Vn, En) of the induced subgraph ofVn.

That is, the matrixJ (n) is split asJ (n) = JSn
−KSn

. This matrix splitting is defined analogous to the

splitting in Section III-A. The modified conditional mean update at iterationn is as follows:

x̂
(n)
Vn

= J−1
Sn

(
KSn

x̂
(n−1)
Vn

+RVn,V c
n
x̂

(n−1)
V c

n
+ hVn

)
, (11)

x̂
(n)
V c

n
= x̂

(n−1)
V c

n
. (12)

Every step of this algorithm is tractable as long as applyingJ−1
Sn

to a vector can be performed efficiently.

The preceding algorithm is a generalization of both the block GS update (9)−(10) and the non-stationary

ET algorithm (8), thus allowing for a unified analysis framework. Specifically, by lettingEn = E(Vn)

for all n above, we obtain the block GS algorithm. On the other hand, by lettingVn = V for all n, we

recover the ET algorithm. This hybrid approach also offers a tractable and flexible method for inference

in large-scale estimation problems, because it possesses all the benefits of the ET and block GS iterations.

We note that in general application there is one potential complication with both the serial and the

parallel iterations presented so far. Specifically, for an arbitrary graphical model with positive-definite

information matrixJ , the corresponding information sub-matrixJSn
for some choices of subgraphsSn

may not be valid, i.e. may have negative eigenvalues3. Importantly, this problemneverarises for walk-

summable models, and thus we are free to use any sequence of embedded subgraphs for our iterations

and be guaranteed that the computations make sense probabilistically.

Lemma 1: Let J be a walk-summable model, let̃V ⊆ V , and letJS be the|Ṽ | × |Ṽ |-dimensional

information matrix corresponding to the distribution over some subgraphS of the induced subgraph

E(Ṽ). Then,JS is walk-summable, andJS � 0.

Proof: For every pair of verticess, t ∈ Ṽ , it is clear that the walks betweens andt in S are a subset of

the walks between these vertices inG, i.e.W(s S−→ t) ⊆ W(s→ t). Hence,φ̄(s S−→ t) ≤ φ̄(s→ t) <∞,

3For example, consider a5-cycle with each edge having a partial correlation of−0.6. This model is valid (but not walk-

summable) with the correspondingJ having a minimum eigenvalue of0.0292. A spanning tree modelJS obtained by removing

one of the edges in the cycle, however, is invalid with a minimum eigenvalue of−0.0392.

12

becauseJ is walk-summable. Thus, the model specified byJS is walk-summable. This allows us to

conclude thatJS � 0 because walk-summability implies validity of a model.�

C. Distributed Interpretation of (11)−(12) and Communication Failure

We first re-interpret the equations (11)−(12) as local message-passing steps between nodes followed

by inference within the subgraphSn. At iterationn, let κn denote the set ofdirectededges inE(Vn)\En
and fromV c

n to Vn:

κn , {(s, t) | {s, t} ∈ E(Vn)\En or s ∈ V c
n , t ∈ Vn}. (13)

The edge setκn corresponds to the non-zero elements of the matricesKSn
andRVn,V c

n
in equation (11).

Edges inκn are used to communicate information about the values at iterationn − 1 to neighboring

nodes for processing at iterationn.

For eacht ∈ Vn, the messageM(s → t) = Rt,s x̂
(n−1)
s is sent at iterationn from s to t using the

links in κn. Let Mn(t) denote the summary of all the messages received at nodet at iterationn:

Mn(t) =
∑

{s|(s,t)∈κn}

M(s→ t) =
∑

{s|(s,t)∈κn}

Rt,s x̂
(n−1)
s . (14)

Thus, eacht ∈ Vn fusesall the information received about the previous iteration and combines this with

its local potential valueht to form a modified potential vector that is then used for inference within the

subgraphSn:

x̂
(n)
Vn

= J−1
Sn

(Mn(Vn) + hVn
), (15)

whereMn(Vn) denotes the entire vector of fused messagesMn(t) for t ∈ Vn. An interesting aspect

of these message-passing operations is that they arelocal and only nodes that are neighbors inG may

participate in any communication. If the subgraphSn is tree-structured, the inference step (15) can also

be performed efficiently in a distributed manner using only local BP messages [9].

We now present an algorithm that is tolerant to temporary link failure by using local memory at each

nodet to store the most recent messageM(s → t) received att from s. If the link (s, t) fails at some

future iteration the stored message can be used in place of the new expected message. In order for the

overall memory-based protocol to be consistent, we also introduce an additional post-inference message-

passing step at each iteration. To make the above points precise, we specify a memory protocol that

the network must follow; we assume that each node in the network has sufficient memory to store the

most-recent messages received from its neighbors. First,Sn must not contain any failed links; every link

13

{s, t} ∈ E(Vn) that fails at iterationn must be a part of the cut-set4: (s, t), (t, s) ∈ κn. Therefore, the

links En that are used for the inference step (15) must be active at iterationn. Second, in order for nodes

to synchronize after each iteration, they must perform a post-inference message-passing step.After the

inference step (15) at iterationn, the variables inVn must update their neighborsin the subgraphSn.

That is, for eacht ∈ Vn, a message must be received post-inference from everys such that{s, t} ∈ En:

M(s→ t) = Rt,s x̂
(n)
s . (16)

This operation is possible since the edge{s, t} is assumed to active. Apart from these two rules, all other

aspects of the algorithm presented previously remain the same. Note that every new message received

overwrites the existing stored message, and only the most recent message received is stored in memory.

Thus, link failure affects only equation (14) in our iterative procedure. Suppose that a message to be

received att ∈ Vn from nodes is unavailable due to communication failure. The messageM(s → t)

from memory can be used instead in the fusion formula (14). Letrn(s → t) denote the iteration count

of the most recent information at nodet about variables at the information fusion step (14) at iteration

n. In general,rn(s → t) ≤ n − 1, with equality if t ∈ Vn and (s, t) ∈ κn is active. With this notation,

we can re-write the fusion equation (14):

Mn(t) =
∑

{s|(s,t)∈κn}

M(s→ t) =
∑

{s|(s,t)∈κn}

Rt,s x̂
rn(s→t)
s . (17)

IV. WALK -SUM INTERPRETATION ANDWALK -SUM DIAGRAMS

In this section, we analyze each iteration of the algorithms of Section III as the computation of

walk-sums inG. Our analysis is presented for the most general algorithm involving failing links, since

the parallel and serial non-stationary updates without failing links are special cases. For each of these

algorithms, we then present walk-sum diagrams that provide intuitive, graphical interpretations of the

walks being computed. Examples that we discuss include classic methods such as Gauss-Jacobi (GJ) and

GS, and iterations involving general subgraphs. Throughout this section, we assume that the initial guess

x̂(0) = 0, and we initializeM(s → t) = 0 and r1(s → t) = 0 for each directed edge(s, t) ∈ E . In

Section V, we prove the convergence of our algorithms for any initial guessx̂(0).

4One way to ensure this is to selectSn to explicitly avoid the failed links. See Section VI-B for more details.

14

A. Walk-sum interpretation

For every pair of verticess, t ∈ V , we define a recursive sequence of walk-sets. We then show that

these walk-sets are exactly the walks being computed by the iterative procedure in Section III-C:

Wn(s→ t) = Wrn(∗→•)(s→ ∗)⊗W(∗ κn(1)−→ •)⊗W(• Sn−→ t)
⋃
W(s Sn−→ t), s ∈ V, t ∈ Vn,(18)

Wn(s→ t) = Wn−1(s→ t), s ∈ V, t ∈ V c
n , (19)

with

W0(s→ t) = ∅, s, t ∈ V. (20)

The notation in these equations is defined in Section II-C.Wrn(∗→•)(s→ ∗) denotes the walks computed

up to iterationrn(∗ → •). W(∗ κn(1)−→ •) corresponds to a length-1 walk (called ahop) across a directed

edge inκn. Finally, W(• Sn−→ t) denotes walks withinSn that end att. Thus, the first RHS term

in (18) is the set of previously computed walks that hop across an edge inκn, and then propagate

within Sn. W(s Sn−→ t) is the set of walks that live entirely withinSn. To simplify notation, we define

φn(s→ t) , φ(Wn(s→ t)). We now relate the walk-setsWn(s→ t) to the estimatêx(n)
t at iterationn.

Proposition 1: At iteration n = 0, 1, . . . , with x̂(0) = 0, the estimate for nodet ∈ V is given by:

x̂
(n)
t =

∑
s∈V

hsφn(s→ t) = φn(h; ∗ → t), (21)

where the walk-sum is over the walk-sets defined by (18−20), andx̂(n)
t is computed using (15,17).

This proposition, proven in Appendix B, states that each of our algorithms has a precise walk-sum

interpretation. A consequence of this statement is that no walk is over-counted, i.e., each walk inWn

submits to a unique decomposition with respect to the construction process (18−20) (see proof for details),

and appears exactly once in the sum at each iteration. As discussed in Section V (Propositions 3 and 4), the

iterative process does even more; the walk-sets at successive iterations are nested and, under an appropriate

condition, are “complete” so that convergence is guaranteed for walk-summable models. Showing and

understanding all these properties are greatly facilitated by the introduction of a visual representation of

how each of our algorithms computes walks, and that is the subject of the next subsection.

B. Walk-sum diagrams

In the rest of this section, we present a graphical interpretation of our algorithms, and of the walk-sets

Wn (18−20) that are central to Proposition 1 (which in turn is the key to our convergence analysis in

Section V). This interpretation provides a clearer picture of memory usage and information flow at each

15

iteration. Specifically, for each algorithm we construct a sequence of graphsG(n) such that a particular set

of walks in these graphs correspondsexactlyto the setsWn (18−20) computed by the sequence of iterates

x̂(n). The graphsG(n) are calledwalk-sum diagrams. Recall thatSn corresponds to the subgraph used

at iterationn, generally using some of the values computed from a preceding iteration. The graphG(n)

captures all of these preceding computations leading up to and including the computations at iterationn.

As a result,G(n) has very specific structure for each algorithm. It consists of a number oflevels—

within each level we capture the subgraph used at the corresponding iteration, and the final leveln

corresponds to the results at the end of iterationn. Although some variables may not be updated at each

iteration, the values of those variables are preserved for use in subsequent iterations; thus, each level

of G(n) includes all the nodes inV . The update variables at any iteration (i.e., the nodes inSn) are

represented as solid circles, and the non-update ones as open circles. All edges in eachSn — edges of

G included in this subgraph — are included in that level of the diagram. As inG, these are undirected

edges, as our algorithms perform inference on this subgraph. However, this inference update uses some

values from preceding iterations (15,17); hence, we use directed edges (corresponding toκn) from nodes

at preceding levels. The directed nature of these edges is critical as they capture the one-directional

flow of computations from iteration to iteration, while the undirected edges within each level capture the

inference computation (15) at each iteration. At the end of iterationn, only the values at leveln are of

interest. Therefore, the set of walks (re-weighted byh) in G(n) that begin at any solid node at any level,

and end at any node at the last level are of importance, where walks can only move in the direction of

directed edges between levels, but in any direction along the undirected edges within each level.

Later in this section we provide a general procedure for constructing walk-sum diagrams for our most

general algorithms, but we begin by illustrating these diagrams and the points made in the preceding

paragraph using a simple3-node, fully connected graph (with variables denotedx1, x2, x3). We look at

two of the simplest iterative algorithms in the classes we have described, namely the classic GJ and GS

iterations [15, 16]. Figure 1 shows the walk-sum diagrams for these algorithms.

In the GJ algorithm each variable is updated at each iteration using the values from the preceding

iteration of every other variable (this corresponds to a stationary ET algorithm (7) with the subgraphSn

being the fully disconnected graph of all the nodesV). Thus each level on the left in Figure 1 is fully

disconnected, with solid nodes for all variables and directed edges from each node at the preceding level

to every other node at the next level. This provides a simple way of seeing both how walks are extended

from one level to the next and, more subtly, how walks captured at one iteration are also captured at

subsequent iterations. For example, the walk12 in G(2) is captured by the directed edge that begins at

16

Fig. 1. (Left) Gauss-Jacobi walk-sum diagramsG(n) for n = 1, 2, 3. (Right) Gauss-Seidel walk-sum diagramsG(n) for

n = 1, 2, 3, 4.

node1 at level1 and proceeds to node2 at level2 (the final level ofG(2)). However, this walk inG(3)

is captured by the walk that begins at node1 at level2 and proceeds to node2 at level3 in G(3).

The GS algorithm is a serial iteration that updates one variable at a time, cyclically, so that after|V |

iterations each variable is updated exactly once. On the right-hand side of Figure 1, only one node at

each level is solid, using values of the other nodes from the preceding level. For non-update variables

at any iteration, a weight-1 directed edge is included from the same node at the preceding level. For

example, sincex2 is updated at level2, we have open circles for nodes1 and3 at that level and weight-1

directed edges from their copies at level1. Weight-1 edges do not affect the weight of any walk. Hence,

at level 4 we still capture the walk12 from level 2 (from node1 at level 1 to node2 at level 2); the

walk is extended to node2 at levels3 and4 with weight-1 directed edges.

For general graphs, the walk-sum diagramG(n) of one of our algorithms is constructed as follows:

1) For n = 1, create a new copy of eacht ∈ V using solid circles for update variables and open

circles for non-update variables; label theset(1). Draw the subgraphS1 using the solid nodes and

undirected edges weighted by the partial correlation coefficient of each edge.G(1) is the same as

S1 with the exception thatG(1) also contains non-update variables denoted by open circles.

2) GivenG(n−1), create a new copy of eacht ∈ V using solid circles for update variables and open

circles otherwise; label theset(n). DrawSn using the update variables with undirected edges. Draw

a directededge from the variableurn(u→v) in G(n−1) (sincern(u→ v) ≤ n− 1) to v(n) for each

(u, v) ∈ κn. If there are no failed links,rn(u → v) = n − 1. Both these undirected and directed

edges are weighted by their respective partial correlation coefficients. Draw a directed edge to each

non-update variablet(n) from the correspondingt(n−1) with unit edge weight.

A level k in a walk-sum diagram refers to thek’th replica of the variables.

Rules for walks in G(n): Walks must respect the orientation of each edge, i.e., walks can cross an

undirected edge in either direction, but can only cross directed edges in one direction. In addition, walks

17

Fig. 2. (Left) Non-stationary ET: subgraphs and walk-sum diagram. (Right) Hybrid serial updates: subgraphs and walk-sum

diagram.

can only start at the update variablesVk for each levelk ≤ n. Interpreted in this manner, walks inG(n)

re-weighted byh and ending at one of the variablest(k) are exactly the walks computed in̂x(k)
t .

Proposition 2: Let G(n) be a walk-sum diagram constructed and interpreted according to the preceding

rules. For anyt ∈ V andk ≤ n,

x̂
(k)
t = φ(h; ∗ G(n)

−→ t(k)). (22)

Proof: Based on the preceding discussion, one can check the equivalence of the walks computed by

the walk-sum diagrams with the walk-sets (18−20). Proposition 1 then yields (22).�

The following sections describe walk-sum diagrams for the various algorithms presented in Section III.

C. Non-Stationary Parallel Updates

We describe walk-sum diagrams for the parallel ET algorithm of Section III-A. Here,Vn = V for all

n. Since there is no link failurern(∗ → •) = n− 1. Hence, the walk-sum formulas (18−19) reduce to

Wn(s→ t) =Wn−1(s→ ∗)⊗W(∗ κn(1)−→ •)⊗W(• Sn−→ t)
⋃
W(s Sn−→ t), s, t ∈ V. (23)

The stationary GJ iteration discussed previously falls in this class. The left-hand side of Figure 2 shows

the treesS1,S2,S3, and the corresponding first three levels of the walk-sum diagrams for a more general

non-stationary ET iteration. This example illustrates how walks are “collected” in walk-sum diagrams at

each iteration. First, walks can proceed along undirected edges within each level, and from one level to

the next along directed edges (capturing cut edges). Second, the walks relevant at each iteration must

end at that level. For example, the walk13231 is captured at iteration1 as it is present in the undirected

edges at level1. At iteration 2, however, we are interested in walks ending at level2. The walk13231

is still captured, but in a different manner — through the walk1323 at level1, followed by the hop31

along the directed edge from node3 at level1 to node1 at level2. At iteration3, this walk is captured

18

Fig. 3. Non-stationary updates with failing links: Subgraphs used along with failed edges at each iteration (left) and walk-sum

diagramG(4) (right).

first by the hop from node1 at level1 to node3 at level2, then by the hop32 at level2, followed by

the hop from node2 at level2 to node3 at level3, and finally by the hop31 at level3.

D. Non-Stationary Serial Updates

We describe similar walk-sum diagrams for the serial update scheme of Section III-B. Since there is

no link failure, rn(∗ → •) = n− 1. The recursive walk-set update (18) can be specialized as follows:

Wn(s→ t) =Wn−1(s→ ∗)⊗W(∗ κn(1)−→ •)⊗W(• Sn−→ t)
⋃
W(s Sn−→ t), s ∈ V, t ∈ Vn. (24)

While (23) is a specialization to iterations with parallel updates, (24) is relevant for serial updates. The

GS iteration discussed in Section IV-B falls in this class, as do more general serial updates described in

Section III-B in which we update a subset of variablesVn based on a subgraph of the induced graph of

Vn. The right-hand side of Figure 2 illustrates an example for our3-node model. We show the subgraphs

Sn used in the first four stages of the algorithm and the corresponding4-level walk-sum diagram. Note

that at iteration2 we update variablesx2 andx3 without taking into account the edge connecting them.

Indeed, the updates at the first four iterations of this example include block GS, a hybrid of ET and

block GS, parallel ET, and GS, respectively.

E. Failing links

We now discuss the general non-stationary update scheme of Section III-C involving failing links.

The recursive walk-set computation equations for this iteration are given by (18−20). Figure 3 shows

the subgraph and the edges inκn that fail at each iteration, and the corresponding4-level walk-sum

diagram. We elaborate on the computation and propagation of information at each iteration. At iteration

1, inference is performed using subgraphS1, followed by nodes1 and2 passing a message to each other

according to the post-inference message-passing rule (16). At iteration2 only x3 is updated. As no links

19

fail, node3 gets information from nodes1 and2 at level1. At iteration3, the link (2, 1) fails. But node

1 has information aboutx2 at level1 (due to the post-inference message passing step from iteration1).

This information is used from the local memory at node1 in (17), and is represented by the arrow from

node2 at level1 to node1 at level3. At iteration4, the links(1, 3) and(3, 1) fail. Similar reasoning as

in iteration3 applies to the arrows drawn across multiple levels from node1 to node3, and from node

3 to node1. Further, post-inference message-passing at this iteration only takes place between nodes1

and2 because the only edge inS4 is {1, 2}.

V. CONVERGENCEANALYSIS

We now show that all the algorithms of Section III converge in walk-summable models. As in

Section IV-A, we focus on the most general non-stationary algorithm with failing links of Section III-C.

We begin by showing that̂x(n) converges to the correct means whenx̂(0) = 0. Next, we use this result

to show that we can achieve convergence to the correct means for any initial guessx̂(0).

The proof thatφn(h; ∗ → t) →
(
J−1h

)
t

as n → ∞ relies on the fact thatWn(s → t) eventually

contains every element of the setW(s→ t) of all the walks inG from s to t, a condition we refer to as

completeness. Showing this begins with the following proposition proved in Appendix C.

Proposition 3: (Nesting) The walk-sets defined in equations (18−20) are nested, i.e. for every pair of

verticess, t ∈ V , Wn−1(s→ t) ⊆ Wn(s→ t) for eachn.

This statement is easily seen for a stationary ET algorithm because the walk-sum diagramG(n) from

levels2 to n is a replica ofG(n−1) (for example, the GJ diagram in Figure 1). However, the proposition is

less clear for non-stationary iterations. The discussion in Section IV-C illustrates this point; the paths that

a walk traverses change drastically depending on the level in the walk-sum diagram at which the walk

ends. Nonetheless, as shown in Appendix C, the structure of the estimation algorithms that we consider

ensures that whenever a walk is not explicitly captured in the same form it appeared in the preceding

iteration, it is recovered through a different path in the subsequent walk-sum diagram (no walks are lost).

Completeness relies on both nesting and the following additional condition.

Definition 2: Let (u, v) be any directed edge inG. For eachn, let κactive
n ⊆ κn denote the set of

directed active edges (links that do not fail) inκn at iterationn. The edge(u, v) is said to beupdated

infinitely often5 if for every N ≥ 0, there exists anm > N such that(u, v) ∈ Em ∪ κactive
m .

If there is no link failure, this definition reduces to including each vertex inV in the update setVn

infinitely often. For parallel non-stationary ET iterations (Section III-A), this property is satisfied forany

5If G contains a singleton node, then this node must be updated at least once.

20

sequence of subgraphs. Note that there are cases in which inference algorithms may not have to traverse

each edge infinitely often. For instance, suppose thatG can be decomposed into subgraphsG1 andG2 that

are connected by a single edge, withG2 having small size so that we can perform exact computations.

For example,G2 could be a leaf node (i.e., have degree one). We can eliminate the variables inG2,

propagate information “into”G1 along the single connecting edge, perform inference withinG1, and then

back-substitute. Hence, the single connecting edge is traversed only finitely often. In this case the hard

part of the overall inference procedure is on the reduced graph with leaves and small, dangling subgraphs

eliminated, and we focus on inference problems on such graphs. Thus, we assume that each vertex inG

has degree at least two and study algorithms that traverse each edge infinitely often.

Proposition 4: (Completeness) Let w = s · · · t be an arbitrary walk froms to t in G. If every edge in

G is updated infinitely often (in both directions), then there exists anN such thatw ∈ Wn(s → t) for

all n ≥ N , where the walk-setWn(s→ t) is defined in (18−20).

The proof of this proposition appears in Appendix D. We can now state and prove the following.

Theorem 1: If every edge inG is updated infinitely often (in both directions), thenφn(h; ∗ → t)→(
J−1h

)
t

asn→∞ in walk-summable models, withφn(s→ t) as defined in Section IV-A.

Proof: One can check thatWn(s → t) ⊆ W(s → t),∀n. This is because equations (18−20) only

use edges from the original graphG. We have from Proposition 4 that every walk froms to t in G is

eventually contained inWn(s → t). Thus,∪∞n=0Wn(s → t) = W(s → t). Given these arguments and

the nesting of the walk-setsWn(s→ t) from Proposition 3, we can appeal to the results in Section II-C

to conclude thatφn(h; ∗ → t)→
(
J−1h

)
t

asn→∞. �

Theorem 1 shows that̂x(n)
t →

(
J−1h

)
t

for x̂(0) = 0. The following result, proven in Appendix E,

shows that in walk-summable models convergence is achieved for any choice of initial condition6.

Theorem 2: If every edge is updated infinitely often, then̂x(n) computed according to (15,17) con-

verges to the correct means in walk-summable models for any initial guessx̂(0).

This result shows that walk-summability is asufficientcondition for all our algorithms — non-stationary

ET, serial updates, memory-based updates — to converge for a very large and flexible set of sequences

of tractable subgraphs or subsets of variables (ones that update each edge infinitely often) on which to

perform successive updates. The following result, proven in Appendix F, shows that walk-summability

is alsonecessaryfor this complete flexibility. Thus, while any of our algorithmsmayconverge for some

sequence of subsets of variables and tractable subgraphs, for a non-walk-summable model there is at

6Note that in this case the messages must be initialized asM(s → t) = Rt,s x̂
(0)
s for each directed edge(s, t) ∈ E .

21

least one sequence of updates for which the algorithms diverge.

Theorem 3: For any non-walk-summable model, there exists at least one sequence of iterative steps

that is ill-posed, or for whicĥx(n), computed according to (15,17), diverges.

VI. A DAPTIVE ITERATIONS AND EXPERIMENTAL RESULTS

In this section we address two topics. The first is taking advantage of the great flexibility in choosing

successive iterative steps by developing techniques that adaptively optimize the on-line choice of the

next tree or subset of variables to use in order to reduce the error as quickly as possible. The second is

providing experimental results that demonstrate the convergence behavior of these adaptive algorithms.

A. Choosing trees and subsets of variables adaptively

At iterationn, let theerror be e(n) = x̂− x̂(n) and theresidual errorbeh(n) = h− J x̂(n). Note that

it is tractable to compute the residual error at each iteration.

A.1 Trees. We describe an efficient algorithm to choose spanning trees adaptively to use as

preconditioners in the ET algorithm of Section III-A. We have the following relationship between the

error at iterationn and the residual error at iterationn− 1:

e(n) = (J−1 − J−1
Sn

) h(n−1).

Based on this relationship, we have the walk-sum interpretatione
(n)
s = φ(h(n−1); ∗ G\Sn−→ s), and conse-

quently the following bound on thè1 norm of e(n):

‖e(n)‖`1 =
∑
s∈V

∣∣∣∣φ(h(n−1); ∗ G\Sn−→ s)
∣∣∣∣

≤ φ̄(|h(n−1)|;G\Sn)

= φ̄(|h(n−1)|;G)− φ̄(|h(n−1)|;Sn), (25)

whereG\Sn denotes walks inG that must traverse edges not inSn, |h(n−1)| refers to the entry-wise

absolute value vector ofh(n−1), φ̄(|h(n−1)|;G) refers to the re-weighted absolute walk-sum over all walks

in G, and φ̄(|h(n−1)|;Sn) refers to the re-weighted absolute walk-sum over all walks inSn. The above

inequality becomes an equality for attractive models with a non-negative potential vectorh. Minimizing

the errore(n) reduces to choosingSn to maximizeφ̄(|h(n−1)|;Sn). Hence, if we maximize among all

trees, we have the followingmaximum walk-sum treeproblem:

arg maxSn a tree φ̄(|h(n−1)|;Sn). (26)

22

Rather than solving this combinatorially complex problem, we instead solve a problem that minimizes a

looser upper bound than (25). Specifically, consider any edge{u, v} ∈ E and all of the walksS(u, v) =

(uv, vu, uvu, vuv, uvuv, vuvu, . . .) that live solely on this single edge. It is not difficult to show that

wu,v , φ̄(|h(n−1)|;S(u, v)) = (|h(n−1)
u |+ |h(n−1)

v |)
∞∑

`=1

|Ru,v|` =
|Ru,v|

1− |Ru,v|
(|h(n−1)

u |+ |h(n−1)
v |). (27)

This weight provides a measure of the error-reduction capacity of edge{u, v} by itself at iterationn.

This leads directly to choosing themaximum spanning tree[28] by solving

arg maxSn a tree

∑
{u,v}∈Sn

wu,v. (28)

For any treeSn the set of walks captured in the sum in (28) is a subset of all the walks inSn, so that

solving (28) provides a lower bound on (26) and thus a looser upper bound than (25). For sparse graphical

models with|E| = O(|V |), each iteration using this technique requiresO(|V | log |V |) computations [28].

A.2 Subsets of variables.We present an algorithm to choose the next best subset ofk variables for

the block GS algorithm of Section III-B. The error at iterationn can be written as follows:

e
(n)
Vn

= x̂Vn
− x̂(n)

Vn
= J (n)−1

RVn,V c
n
[J−1 h(n−1)]V c

n
,

e
(n)
V c

n
= x̂V c

n
− x̂(n)

V c
n

= e
(n−1)
V c

n
= [J−1 h(n−1)]V c

n
.

As with (25), we have the following upper bound that is tight for attractive models with non-negativeh:

‖e(n)‖`1 = ‖e(n)
Vn
‖`1 + ‖e(n)

V c
n
‖`1

≤
[
φ̄(|h(n−1)|; ∗ G−→ Vn)− φ̄(|h(n−1)|;Vn

E(Vn)−→ Vn)
]

+ φ̄(|h(n−1)|; ∗ G−→ V c
n)

= φ̄(|h(n−1)|;G) − φ̄(|h(n−1)|;Vn
E(Vn)−→ Vn), (29)

whereE(Vn) refers to the edges in the induced subgraph ofVn. Minimizing this upper bound reduces to

solving the followingmaximum walk-sum blockproblem:

arg max|Vn|≤k φ̄(|h(n−1)|;Vn
E(Vn)−→ Vn). (30)

As with the maximum walk-sum tree problem, finding the optimal such block directly is combinatorially

complex. Therefore, we consider the following relaxed maximum walk-sum block problem based on

single-edge walks:

arg max|Vn|≤k φ̄(|h(n−1)|;Vn
1e−→ Vn), (31)

23

where
1e−→ denotes the restriction that walks can traverse at most one edge. The walks in (31) are a

subset of the walks in (30). Thus, solving (31) provides a lower bound on (30), hence minimizing a

looser upper bound on the error than (29).

Solving (31) is also combinatorially complex; therefore, we use a greedy method for an approximate

solution:

1) SetVn = ∅. Assuming that the goal is to solve the problem fork = 1, compute node weights

wu = |h(n−1)
u |,

based on the walks captured by (31) if nodeu were to be included inVn.

2) Find the maximum weight nodeu∗ from V \Vn, and setVn ← Vn ∪ u∗.

3) If |Vn| = k, stop. Otherwise, update each neighborv ∈ V \Vn of u∗ and go to step2:

wv ← wv +
(
|h(n−1)

u∗ |+ |h(n−1)
v |

) |Ru∗,v|
1− |Ru∗,v|

.

This update captures the extra walks in (31) ifv were to be added toVn.

Step3 is the greedy aspect of the algorithm as it updates weights by computing the extra walks that

would be captured in (31) if nodev were added toVn, with the assumption that the nodes already inVn

remain unchanged. Note that only the weights of the neighbors ofu∗ are updated in step3; thus, there is

a bias towards choosing a connected block. In choosing successive blocks in this way, we collect walks

adaptively without explicit regard for the objective of updating each node infinitely often. However, our

method is biased towards choosing variables that have not been updated for a few iterations as the residual

error of such variables becomes larger relative to the other variables. Indeed, empirical evidence confirms

this behavior with all the simulations leading to convergent iterations. For sparse graphical models with

|E| = O(|V |) andk bounded, each iteration using this technique requiresO(log |V |) computations using

an efficient sort data structure.

A.3 Experimental Illustration. We test the preceding two adaptive algorithms on randomly generated

15 x 15 nearest-neighbor grid models with7 %(R̄) = 0.99, and with x̂(0) = 0. The blocks used in block

GS were of sizek = 5. We compare these adaptive methods to standard non-adaptive one-tree and two-

tree ET iterations [13]. Figure 4 shows the performance of these algorithms. The plot shows the relative

decrease in the normalized residual error‖h(n)‖`2
‖h(0)‖`2

versus the number of iterations. The table shows the

average number of iterations required for these algorithms to reduce the normalized residual error below

7The grid edge weights are chosen uniformly at random from[−1, 1]. The matrixR is then scaled so that%(R̄) = 0.99. The

potential vectorh is chosen to be the all-ones vector.

24

Fig. 4. (Left) Convergence results for a randomly generated15 x 15 nearest-neighbor grid-structured model. (Right) Average

number of iterations required for the normalized residual to reduce by a factor of10−10 over 100 randomly generated models.

10−10. The average was computed based on the performance on100 randomly generated models. All

these models are poorly conditioned because they are barely walk-summable. The number of iterations

for block GS is sub-sampled by a factor of|V |k = 45 to provide a fair comparison of the algorithms. The

one-tree ET method uses a spanning tree obtained by removing all the vertical edges except the middle

column. The two-tree method alternates between this tree and its rotation (obtained by removing all the

horizontal edges except the middle row).

Both the adaptive ET and block GS algorithms provide far faster convergence compared to the one-tree

and two-tree iterations, thus providing a computationally attractive method for estimation in the broad

class of walk-summable models.

B. Dealing with Communication Failure: Experimental Illustration

To illustrate our adaptive methods in the context of communication failure, we consider a simple model

for a distributed sensor network in which links (edges) fail independently with failure probabilityα, and

each failed link remains inactive for a certain number of iterations given by a geometric random variable

with mean 1
β . At each iteration, we find the best spanning tree (or forest) among the active links using

the approach described in Section VI-A.1. The maximum spanning tree problem can be solved in a

distributed manner using the algorithms presented in [29, 30]. Figure 5 shows the convergence of our

memory-based algorithm from Section III-C on the same randomly generated15 x 15 grid model used

to generate the plot in Figure 4 (again, witĥx(0) = 0). The different curves are obtained by varyingα

andβ. As expected, the first plot shows that our algorithm is slower to converge as the failure probability

α increases, while the second plot shows that convergence is faster asβ is increased (which decreases

the average inactive time). These results show that our adaptive algorithms provide a scalable, flexible,

and convergent method for the estimation problem in a distributed setting with communication failure.

25

Fig. 5. Convergence of memory-based algorithm on same randomly generated15 x 15 used in Figure 4: Varyingα with

β = 0.3 (left) and varyingβ with α = 0.3 (right).

VII. C ONCLUSION

In this paper, we have described and analyzed a rich set of algorithms for estimation in Gaussian

graphical models with arbitrary structure. These algorithms are iterative in nature and involve a sequence

of inference problems on tractable subgraphs over subsets of variables. Our framework includes parallel

iterations such as ET, in which inference is performed on a tractable subgraph of the whole graph at

each iteration, and serial iterations such as block GS, in which the induced subgraph of a small subset of

variables is directly inverted at each iteration. We also describe hybrid versions of these algorithms that

involve inference on a subgraph of a subset of variables. We also discuss a method that uses local memory

at each node to overcome temporary communication failures that may arise in distributed sensor networks.

Our memory-based framework applies to the non-stationary ET, block GS, and hybrid algorithms.

We analyze these algorithms based on the recently introduced walk-sum interpretation of Gaussian

inference. A salient feature in our analysis is the development of walk-sum diagrams. These graphs

correspond exactly to the walks computed after each iteration, and provide an intuitive graphical com-

parison between the various algorithms. This walk-sum analysis allows us to conclude that for the broad

class of walk-summable models, our algorithms converge for a very large and flexible set of sequences

of subgraphs and subsets of variables used. We also describe how this flexibility can be exploited by

formulating efficient algorithms that choose spanning trees and subsets of variables adaptively at each

iteration. These algorithms are then used in the ET and block GS algorithms respectively to demonstrate

that significantly faster convergence can be obtained using these methods over traditional one-tree and

two-tree ET iterations.

Our adaptive algorithms are greedy in that they consider the effect of edges individually (by considering

walk-sums concentrated on single edges). A strength of our analysis for the case of finding the “next

best” tree is that we do obtain an upper bound on the resulting error, and hence on the possible gap

26

between our greedy procedure and the truly optimal one. Obtaining tighter error bounds, or conditions

on graphical models under which our choice of tree yields near-optimal solutions is an open problem.

Another interesting question is the development of general versions of the maximum walk-sum tree and

maximum walk-sum block algorithms that might choose theK next best trees or blocks jointly. For

applications involving communication failure, extending our adaptive algorithms in a principled manner

to explicitly avoid failed links while optimizing the rate of convergence is an important problem. Finally,

the fundamental principle of solving a sequence of tractable inference problems on subgraphs has been

exploited for non-Gaussian inference problems (e.g. [12]), and extending our methods to this more general

setting is of clear interest.

ACKNOWLEDGEMENTS

The authors would like to thank Dr. Erik Sudderth for helpful discussions and comments on early

drafts of this work.

APPENDIX

A. Dealing with un-normalized models

Consider an information matrixJ = D−M (whereD is the diagonal part ofJ) that is not normalized,

i.e. D 6= I. The weight of a walkw = {wi}`i=0 can be re-defined as follows:

ψ(w) =
∏`−1

i=0 Mwi,wi+1∏`
i=0Dwi,wi

=
∏`−1

i=0

√
Dwi,wi

Rwi,wi+1

√
Dwi+1,wi+1∏`

i=0Dwi,wi

=
φ(w)√

Dw0,w0Dw`,w`

,

whereψ(w) is the weight ofw with respect to the un-normalized model, andφ(w) is the weight ofw

in the corresponding normalized model. We can then define walk-summability in terms of the absolute

convergence of the un-normalized walk-sum̄ψ(s→ t) over all walks froms to t (for each pair of vertices

s, t ∈ V). A necessary and sufficient condition for this un-normalized notion of walk-summability is

%
(
D− 1

2 M D− 1
2

)
< 1, which is equivalent to the original condition%(R̄) < 1 in the corresponding

normalized model. Un-normalized versions of the algorithms in Section III can be constructed by replacing

every occurrence of the partial correlation matrixR by the un-normalized off-diagonal matrixM . The rest

of our analysis and convergence results remain unchanged because we deal with abstract walk-sets. (Note

that in the proof of Proposition 1, every occurrence ofR must be changed toM .) Alternatively, given

an un-normalized model, one can first normalize the model (Jnorm ← D− 1
2 Junnorm D− 1

2), then apply

the algorithms of Section III, and finally “de-normalize” the resulting estimate (x̂
(n)
unnorm ← D

1
2 x̂

(n)
norm).

Such a procedure would provide the same estimate as the direct application of the un-normalized versions

of the algorithms in Section III as outlined above.

27

B. Proof of Proposition 1

Remarks: Before proceeding with the proof of the proposition, we make some observations about the

walk-setsWn(s → t) that will prove useful for the other proofs as well. Fort ∈ Vn, notice that since

the set of edges contained inEn (in subgraphSn) and κn are disjoint, the walk-setsW(s Sn−→ t) and

Wrn(∗→•)(s→ ∗)⊗W(∗ κn(1)−→ •)⊗W(• Sn−→ t) are disjoint. Therefore, from Section II-C,

φn(s→ t) = φ(s Sn−→ t) + φ

(
Wrn(∗→•)(s→ ∗)⊗W(∗ κn(1)−→ •)⊗W(• Sn−→ t)

)

= φ(s Sn−→ t) + φ

 ⋃
u,v∈V

Wrn(u→v)(s→ u)⊗W(u
κn(1)−→ v)⊗W(v Sn−→ t)

 . (32)

Every walk w ∈ Wrn(u→v)(s → u) ⊗ W(u
κn(1)−→ v) ⊗ W(v Sn−→ t) can bedecomposed uniquelyas

w = wa ·wb ·wc, wherewa ∈ Wrn(u→v)(s→ u), wb ∈ W(u
κn(1)−→ v), andwc ∈ W(v Sn−→ t). The unique

decomposition property is a consequence ofEn andκn being disjoint, and the walk inκn being restricted

to a length-1 hop. This property also implies thatWrn(u→v)(s→ u)⊗W(u
κn(1)−→ v)⊗W(v Sn−→ t) and

Wrn(u′→v′)(s→ u′)⊗W(u′
κn(1)−→ v′)⊗W(v′ Sn−→ t) are disjoint if(u, v) 6= (u′, v′). Based on these two

observations, we have from Section II-C that

φ

 ⋃
u,v∈V

Wrn(u→v)(s→ u)⊗W(u
κn(1)−→ v)⊗W(v Sn−→ t)

=

∑
u,v∈V

φ

(
Wrn(u→v)(s→ u)⊗W(u

κn(1)−→ v)⊗W(v Sn−→ t)
)

=
∑

u,v∈V

φrn(u→v)(s→ u) φ(u
κn(1)−→ v) φ(v Sn−→ t). (33)

Proof of proposition: We provide an inductive proof. From (20),φ0(s→ t) = 0. Thus,

φ0(h; ∗ → t) =
∑
s∈V

hs φ0(s→ t) = 0 = x̂
(0)
t ,

which is consistent with the proposition because we assume that our initial guess is0 at each node.

Assume that̂x(n′)
t = φn′(h; ∗ → t), for 0 ≤ n′ ≤ n− 1, as the inductive hypothesis. Fort ∈ V c

n ,

x̂
(n)
t = x̂

(n−1)
t = φn−1(h; ∗ → t) = φn(h; ∗ → t),

where the first equality is from (12), the second from the inductive hypothesis, and the third from (19).

Hence, we can focus on nodes inVn. For t ∈ Vn, (32−33) can be re-written as:

φn(s→ t) = φ(s Sn−→ t) +
∑

(u,v)∈κn

φrn(u→v)(s→ u) φ(u
κn(1)−→ v) φ(v Sn−→ t), (34)

28

becauseφ(u
κn(1)−→ v) = 0 if (u, v) /∈ κn. From (32−34) we have that:

φn(h; ∗ → t) =
∑
s∈V

hs

φ(s Sn−→ t) +
∑

(u,v)∈κn

φrn(u→v)(s→ u) φ(u
κn(1)−→ v) φ(v Sn−→ t)

=

∑
s∈V

hs

(J−1
Sn

)t,s +
∑

(u,v)∈κn

φrn(u→v)(s→ u) Rv,u (J−1
Sn

)t,v

 ,

where we have used the walk-sum interpretation ofJ−1
Sn

andκn. Simplifying further, we have that

φn(h; ∗ → t) =
(
J−1
Sn

hVn

)
t
+

∑
(u,v)∈κn

φrn(u→v)(h; ∗ → u) Rv,u (J−1
Sn

)t,v

=
(
J−1
Sn

hVn

)
t
+

∑
(u,v)∈κn

x̂rn(u→v)
u Rv,u (J−1

Sn
)t,v. (35)

The last equality is from the inductive hypothesis because0 ≤ rn(u→ v) ≤ n− 1. Next, we have that

φn(h; ∗ → t) =
(
J−1
Sn

hVn

)
t
+

∑
v∈Vn

(J−1
Sn

)t,v

∑
{u|(u,v)∈κn}

Rv,u x̂
rn(u→v)
u

=
(
J−1
Sn

hVn

)
t
+

∑
v∈Vn

(J−1
Sn

)t,v Mn(v)

= x̂
(n)
t ,

where the second equality is from (17), and the third from (15).�

C. Proof of Proposition 3

We prove the following lemma that will be useful later for the proof of the proposition.

Lemma 2: Let w = wstart · · · p · q · · ·wend be an arbitrary walk inWn(wstart → wend), and let

w̃ = wstart · · · p be a leadingsub-walk ofw. There exists akn ≤ n with w̃ ∈ Wkn
(wstart → p) so that

at least one of the following conditions is true:kn = n and the edge(p, q) ∈ En, or kn ≤ rn(p→ q).

Proof: The base case is vacuously true becauseW0(wstart → wend) = ∅. For the inductive hypothesis,

assume that the statement is true for0 ≤ n′ ≤ n − 1. This can be used to prove the statement if

wend ∈ V c
n . Assume thatw ∈ Wn(wstart → wend) with wend ∈ Vn. From the remarks in Appendix B,

eitherw ∈ W(wstart
Sn−→ wend), or w ∈ Wrn(u→v)(wstart → u) ⊗W(u

κn(1)−→ v) ⊗W(v Sn−→ wend) for

some unique pair of verticesu, v ∈ V with rn(u → v) ≤ n − 1. If w ∈ W(wstart
Sn−→ wend), then

kn = n and (p, q) ∈ En.

If w ∈ Wrn(u→v)(wstart → u)⊗W(u
κn(1)−→ v)⊗W(v Sn−→ wend), then from the remarks in Appendix

B, w can be uniquely decomposed asw = wa · wb · wc with wa ∈ Wrn(u→v)(wstart → u), wb = uv ∈

W(u
κn(1)−→ v), andwc ∈ W(v Sn−→ wend). Suppose the trailing partp · · ·wend is a sub-walk ofwc, or is

29

equal towc. We can uniquely decomposẽw aswa · wb · (v · · · p) ∈ Wrn(u→v)(wstart → u)⊗W(u
κn(1)−→

v)⊗W(v Sn−→ p). This shows thatkn = n. Also, (p, q) ∈ En becausewc ∈ W(v Sn−→ wend).

Supposep · · ·wend is not a sub-walk ofwc; then eitherw̃ = wa or w̃ must be a leading sub-walk of

wa. If w̃ = wa, then(p, q) = (u, v) andkn = rn(p→ q). If w̃ is a leading sub-walk ofwa, we can use

the inductive hypothesis (becausern(u → v) ≤ n − 1) to obtain akn = krn(u→v) ≤ rn(u → v) < n.

If kn = krn(u→v) = rn(u → v), then (p, q) ∈ Ern(u→v) and one can check thatrn(p → q) ≥ kn

(because a post-inference message is passed on edge(p, q) at iterationrn(u → v) = kn). Otherwise,

kn = krn(u→v) ≤ rrn(u→v)(p→ q) ≤ rn(p→ q). �

Proof of proposition: We provide an inductive proof. Let any two verticess, t ∈ V be given. The

base caseW0(s → t) ⊆ W1(s → t) clearly follows from the fact thatW0(s → t) = ∅ from (18). For

the inductive hypothesis, assume thatWn′−1(s → t) ⊆ Wn′(s → t) for 0 ≤ n′ ≤ n − 1. If t ∈ V c
n , the

proposition follows becauseWn(s→ t) =Wn−1(s→ t) from (19). So we can restrict ourselves to the

case thatt ∈ Vn. Let somew ∈ Wn−1(s→ t) be given.

First, we check ifw ∈ W(s Sn−→ t). If this is the case, then we are done. If not,w can be uniquely

decomposed asw = wa ·wb ·wc, wherewb ∈ W(p
κn(1)−→ q), andwc ∈ W(q Sn−→ t) for somep, q ∈ V . We

must show thatwa ∈ Wrn(p→q)(s→ p). Butwa is a leading sub-walk ofw. We have from Lemma 2 that,

with respect to the walk-setWn−1(s→ t), there exists akn−1 ≤ n−1 such thatwa ∈ Wkn−1(s→ p). If

kn−1 = n− 1, then(p, q) ∈ En−1 andrn(p→ q) = n− 1 (due to post-inference message (16)). Hence,

wa ∈ Wkn−1(s → p) = Wrn(p→q)(s → p). If kn−1 < n− 1, thenkn−1 ≤ rn−1(p → q) from Lemma 2.

But kn−1 ≤ rn−1(p→ q) ≤ rn(p→ q) ≤ n− 1 and we can apply the inductive hypothesis to show the

relationWkn−1(s→ p) ⊆ Wrn(p→q)(s→ p). Thus,wa ∈ Wkn−1(s→ p) ⊆ Wrn(p→q)(s→ p). �

D. Proof of Proposition 4

Let w = s · · ·u · t. We provide an inductive proof with respect to the length ofw. If every edge

is updated infinitely often, it is clear that every node is updated infinitely often. Therefore, the leading

length-0 part (s) is computed whens is first updated at some iterationk. By the nesting of the walk-sets

Wn from proposition 3, we have that(s) ∈ Wk′(s → s) for all k′ ≥ k. Now assume (as the inductive

hypothesis) that the leading sub-walks · · ·u including all but the last stepu · t of w is contained in

WN (s → u) for someN (≥ k). Given the infinitely-often update property, there exists anm > N

such that the edge(u, t) ∈ Em ∪ κactive
m . If (u, t) ∈ κactive

m , thenw ∈ Wm−1(s → u) ⊗ W(u
κm(1)−→

t)⊗W(t Sm−→ t) ∈ Wm(s→ t). This can be concluded from (18) and becauses · · ·u ∈ Wm−1(s→ u)

by the nesting argument (m − 1 ≥ N) of Proposition 3. Again applying the nesting argument, we can

30

prove the proposition because we now have thatw ∈ Wn(s → t) for all n ≥ m. We can use a similar

argument to conclude thatw ∈ Wn(s→ t) for all n ≥ m, if (u, t) ∈ Em. �

E. Proof of Theorem 2

From Theorem 1 and Proposition 1, we can conclude thatx̂(n) converges toJ−1h element-wise

as n → ∞ for x̂(0) = 0. Assume that̂x(0) 6= 0. Consider a shifted linear systemJŷ = h̃, where

h̃ = h − Jx̂(0). If we solve this system using the same sequence of operations (subgraphs and failed

links) that were used to obtain the iteratesx̂(n), and with ŷ(0) = 0, then ŷ(n) converges to the correct

solutionJ−1h− x̂(0) of the systemJŷ = h̃. We will show thatŷ(n) = x̂(n)− x̂(0), which would allow us

to conclude that̂x(n) → J−1h element-wise asn→∞ for any x̂(0). We prove this final step inductively.

The base case is clear becauseŷ(0) = 0. Assume as the inductive hypothesis thatŷ(n′) = x̂(n′)− x̂(0) for

0 ≤ n′ ≤ n−1. From this, one can check thatŷ(n)
V c

n
= x̂

(n)
V c

n
− x̂(0)

V c
n

. For t ∈ Vn, we have from (15,17) that:

ŷ
(n)
t = (J−1

Sn
· h̃Vn

)t +

 ∑
(u,v)∈κn

(J−1
Sn

)t,v ·Rv,u · ŷrn(u→v)
u

= (J−1

Sn
· hVn

)t +

 ∑
(u,v)∈κn

(J−1
Sn

)t,v ·Rv,u · x̂rn(u→v)
u

−

(
J−1
Sn
· (Jx̂(0))Vn

)
t
−

 ∑
(u,v)∈κn

(J−1
Sn

)t,v ·Rv,u · x̂(0)
u

= x̂

(n)
t −

(
J−1
Sn
· (JVn,V c

n
· x̂(0)

V c
n

+ JVn,Vn
· x̂(0)

Vn
+KSn

· x̂(0)
Vn

+RVn,V c
n
· x̂(0)

V c
n
)
)

t

= x̂
(n)
t − x̂(0)

t .

The second equality follows from the inductive hypothesis, and the last two from simple algebra.�

F. Proof of Theorem 3

Before proving the converse, we have the following lemma that is proved in [31].

Lemma 3: SupposeJ is a symmetric positive-definite matrix, andJ = JS − KS is some splitting

with KS symmetric andJS non-singular. Then,%(J−1
S KS) < 1 if and only if J + 2KS � 0.

Proof of converse: Assume thatJ = I−R is valid but non-walk-summable. Therefore,R must contain

some negative partial correlation coefficients (since all valid attractive models, i.e. those containing only

non-negative partial correlation coefficients, are walk-summable; see Section II-C). LetR = R+ + R−

with R+ containing the positive coefficients andR− containing the negative coefficients (including the

31

negative sign). Consider a stationary ET iteration (7) based on the cutting the negative edges so that

JS = I − R+ andKS = R−. If JS is singular, then the iteration is ill-posed. Otherwise, the iteration

converges if and only if%(J−1
S KS) < 1 [15, 16]. From Lemma 3, we need to check the validity of

J + 2KS :

J + 2KS = I −R+ 2R− = I − R̄.

But I − R̄ � 0 if and only if the model is walk-summable (from Section II-C). Thus, this stationary

iteration, if well-posed, does not converge in non-walk-summable models.�

REFERENCES

[1] S. L. Lauritzen,Graphical Models. Oxford, U.K.: Oxford University Press, 1996.

[2] M. I. Jordan, “Graphical Models,”Statistical Science (Special Issue on Bayesian Statistics), vol. 19, pp. 140–155, 2004.

[3] C. Crick and A. Pfeffer, “Loopy Belief Propagation as a basis for communication in sensor networks,” in19th Conference

on Uncertainty in Artificial Intelligence, 2003.

[4] S. Geman and D. Geman, “Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images,”IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 5, pp. 721–741, June 1984.

[5] J. Woods, “Markov Image Modeling,”IEEE Transactions on Automatic Control, vol. 23, pp. 846–850, October 1978.

[6] R. Szeliski, “Bayesian modeling of uncertainty in low-level vision,”Journal of Computer Vision, vol. 5, no. 3, pp. 271–301,

December 1990.

[7] P. Rusmevichientong and B. Van Roy, “An Analysis of Turbo Decoding with Gaussian densities,” inNeural Information

Processing Systems. Advances in MIT press, 2000.

[8] P. W. Fieguth, W. C. Karl, A. S. Willsky, and C. Wunsch, “Multiresolution optimal interpolation and statistical analysis

of TOPEX/POSEIDON satellite altimetry,”IEEE Transactions on Geoscience and Remote Sensing, vol. 33, pp. 280–292,

March 1995.

[9] J. Pearl,Probabilistic Reasoning in Intelligent Systems. San Mateo, CA: Morgan Kauffman, 1988.

[10] E. B. Sudderth, M. J. Wainwright, and A. S. Willsky, “Embedded Trees: Estimation of Gaussian processes on graphs with

cycles,” IEEE Transactions on Signal Processing, vol. 52, no. 11, pp. 3136–3150, November 2004.

[11] L. K. Saul and M. I. Jordan, “Exploiting Tractable Substructures in Intractable Networks,” inNeural Information Processing

Systems, 1995.

[12] M. J. Wainwright, T. S. Jaakkola, and A. S. Willsky, “Tree-based reparameterization framework for analysis of sum-product

and related algorithms,”IEEE Transactions on Information Theory, vol. 49, pp. 1120–1146, May 2003.

[13] E. B. Sudderth, “Embedded Trees: Estimation of Gaussian Processes on Graphs with Cycles,” Master’s thesis, Massachusetts

Institute of Technology, 2002.

[14] V. Delouille, R. Neelamani, and R. Baraniuk, “Robust Distributed Estimation using the Embedded Subgraphs Algorithm,”

IEEE Transactions on Signal Processing, vol. 54, pp. 2998–3010, August 2006.

[15] G. H. Golub and C. H. Van Loan,Matrix Computations. Baltimore, Maryland: The Johns Hopkins University Press,

1990.

[16] R. S. Varga,Matrix Iterative Analysis. New York: Springer-Verlag, 2000.

32

[17] D. M. Malioutov, J. K. Johnson, and A. S. Willsky, “Walk-Sums and Belief Propagation in Gaussian Graphical Models,”

Journal of Machine Learning Research, vol. 7, pp. 2031–2064, October 2006.

[18] R. A. Horn and C. R. Johnson,Topics in Matrix Analysis. Cambridge, U.K.: Cambridge University Press, 1994.

[19] R. Bru, F. Pedroche, and D. B. Szyld, “Overlapping Additive and Multiplicative Schwarz iterations for H-matrices,”Linear

Algebra and its Applications, vol. 393, pp. 91–105, 2004.

[20] A. Frommer and D. B. Szyld, “H-Splittings and Two-stage iterative methods,”Numerische Mathematik, vol. 63, pp. 345–

356, 1992.

[21] T. Gu, X. Liu, and X. Chi, “Relaxed Parallel Two-Stage Multisplitting Methods II: Asynchronous Version,”International

Journal of Computer Mathematics, vol. 80, no. 10, pp. 1277–1287, October 2003.

[22] T. Speed and H. Kiiveri, “Gaussian Markov probability distributions over finite graphs,”Annals of Statistics, vol. 14, no. 1,

pp. 138–150, March 1986.

[23] L. Scharf,Statistical Signal Processing. Upper Saddle River, NJ: Prentice-Hall, 2002.

[24] W. Rudin,Principles of Mathematical Analysis. New York: Mc-Graw Hill, 1976.

[25] R. Godement,Analysis I. Springer-Verlag, 2004.

[26] P. Fieguth, W. Karl, and A. Willsky, “Efficient multiresolution counterparts to variational methods for surface reconstruc-

tion,” Computer Vision and Image Understanding, vol. 70, no. 2, pp. 157–176, May 1998.

[27] W. G. Strang and G. J. Fix,An Analysis of the Finite Element method. Wellesley Cambridge Press, 1973.

[28] W. J. Cook, W. H. Cunningham, W. R. Pulleyblank, and A. Schrijver,Combinatorial Optimization. New York: Wiley-

Interscience, 1998.

[29] R. G. Gallager, P. A. Humblet, and P. M. Spira, “A distributed algorithm for minimum-weight spanning trees,”ACM

Transactions on Programming Languages and Systems, vol. 5, no. 1, pp. 66–77, January 1983.

[30] B. Awerbuch, “Optimal distributed algorithms for minimum weight spanning tree, counting, leader election, and related

problems,” inAnnual ACM Symposium on Theory of Computing, 1987.

[31] L. Adams, “m-Step Preconditioned Conjugate Gradient methods,”SIAM Journal on Scientific and Statistical Computing,

vol. 6, pp. 452–463, April 1985.

