Estimation in Gaussian Graphical Models using

Tractable Subgraphs: A Walk-Sum Analysis

Venkat ChandrasekaranJason K. Johnson, Alan S. Willsky

May 1, 2007

Abstract

Graphical models provide a powerful formalism for statistical signal processing. Due to their so-
phisticated modeling capabilities, they have found applications in a variety of fields such as computer
vision, image processing, and distributed sensor networks. In this paper, we present a general class of
algorithms for estimation in Gaussian graphical models with arbitrary structure. These algorithms involve
a sequence of inference problems on tractable subgraphs over subsets of variables. This framework
includes parallel iterations such as Embedded Trees, serial iterations such as block Gauss-Seidel, and
hybrid versions of these iterations. We also discuss a method that uses local memory at each node to
overcome temporary communication failures that may arise in distributed sensor network applications. We
analyze these algorithms based on the recently developed walk-sum interpretation of Gaussian inference.
We describe the walks “computed” by the algorithms usimglk-sum diagramsand show that for
iterations based on a very large and flexible set of sequences of subgraphs, convergence is guaranteed
in walk-summable models. Consequently, we are free to choose spanning trees and subsets of variables
adaptively at each iteration. This leads to efficient methods for optimizing the next iteration step to
achieve maximum reduction in error. Simulation results demonstrate that these non-stationary algorithms

provide a significant speedup in convergence over traditional one-tree and two-tree iterations.

Index Terms

Graphical models, Gauss-Markov Random Fields, walk-sums, distributed estimation, walk-sum dia-

grams, subgraph preconditioners, maximum walk-sum tree, maximum walk-sum block.

*Corresponding author: Venkat Chandrasekaran. The authors are with the Laboratory for Information and Decision Systems,
Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139
USA. Email: {venkatc, jasonj, willsky@mit.edu. Fax: 617-258-8364. This work was supported by the Army Research Office
grant W911NF-05-1-0207 and the Air Force Office of Scientific Research grant FA9550-04—-1-0351.

. INTRODUCTION

Graphical models offer a convenient representation for joint probability distributions and convey the
Markov structure in a large number of random variables compactly. A graphical model [1, 2] is a collection
of variables defined with respect to a graph; each vertex of the graph is associated with a random variable
and the edge structure specifies the conditional independence properties among the variables. Due to their
sophisticated modeling capabilities, graphical models (also known as Markov random fields or MRFs)
have found applications in a variety of signal processing tasks involving distributed sensor networks [3],
images [4,5], and computer vision [6]. Our focus in this paper is on the important class of Gaussian
graphical models, also known as Gauss-Markov random fields (GMRFs), which have been widely used
to model natural phenomena in many large-scale estimation problems [7, 8].

In estimation problems in which the prior and observation models have normally distributed random
components, computing the Bayes least-squares estimate is equivalent to solving a linear system of
equations specified in terms of the information-form parameters of the conditional distribution. Due to its
cubic computational complexity in the number of variables, direct matrix inversion to solve the Gaussian
estimation problem is intractable in many applications in which the number of variables is very large
(e.g., in oceanography problems [8] the number of variables may be on the ordéf)ofFor tree-
structured MRFs (i.e., graphs with no cycles), Belief Propagation (BP) [9] provides an efficient linear
complexity algorithm to compute exact estimates. However, tree-structured Gaussian processes possess
limited modeling capabilities [10]. In order to model a richer class of statistical dependencies among
variables, one often requires loopy graphical models. As estimation on graphs with cycles is substantially
more complex, considerable effort has been and still is being put into developing methods that overcome
this computational barrier, including a variety of methods that employ the idea of performing inference
computations on tractable subgraphs [11,12]. The recently proposed Embedded Trees (ET) iteration
[10,13] is one such approach that solves a sequence of inference problems on trees or, more generally,
tractable subgraphs. If ET converges, it yields the correct conditional estimates, thus providing an effective
inference algorithm for graphs with essentially arbitrary structure.

For the case oftationary ET iterations — in which the same tree or tractable subgraph is used at
each iteration — necessary and sufficient conditions for convergence are provided in [10, 13]. However,
experimental results in [13] provide compelling evidence that much faster convergence can often be
obtained by changing the embedded subgraph that is used from one iteration to the next. The work in

[13] provided very limited analysis for suaton-stationaryiterations, thus leaving open the problem of

providing easily computable broadly applicable conditions that guarantee convergence.

In related work that builds on [10], Delouille et al. [14] describe a stationary block Gauss-Jacobi
iteration for solving the Gaussian estimation problem with the added constraint that messages between
variables connected by an edge in the graph may occasionally be “dropped”. The local blocks (subgraphs)
are assumed to be small in size. Such a framework provides a simple model for estimation in distributed
sensor networks where communication links between nodes may occasionally fail. The proposed solution
involves the use of memory at each node to remember past messages from neighboring nodes. The values
in this local memory are used if there is a breakdown in communication to prevent the iteration from
diverging. However, the analysis in [14] is also restricted to the case of stationary iterations, in that the
same partitioning of the graph into local subgraphs is used at every iteration.

Finally, we note that ET iterations fall under the classpairallel update algorithms, in that every
variable must be updated in an iteration before one can proceed to the next iteration. Heegakr,
schemes involving updates over subsets of variables also offer tractable methods for solving large linear
systems [15, 16]. An important example in this class of algorithms is block Gauss-Seidel (GS) in which
each iteration involves updating a small subset of variables.

In this paper, we analyze non-stationary iterations based on an arbitrary sequence of embedded trees
or tractable subgraphs. We refer to these trees and subgraphs on which inference is performed at each
iteration aspreconditionersfollowing the terminology used in the linear algebra literature. We present
a general class of algorithms that includes the non-stationary ET and block GS iterations, and provide
a general and very easily tested condition that guarantees convergence for any of these algorithms. Our
framework allows for hybrid non-stationary algorithms that combine aspects of both block GS and ET.
We also consider the problem of failing links and describe a method that uses local memory at each node
to address this problem in general non-stationary parallel and serial iterations.

Our analysis is based on a recently introduced framework for interpreting and analyzing inference
in GMRFs based on sums over walks in graphs [17]. We desevidk-sum diagramshat provide an
intuitive interpretation of the estimates computed by each of the algorithms after every iteration. A walk-
sum diagram is a graph that corresponds to the walks “accumulated” after each iteration. As developed in
[17] walk-summability is an easily tested condition which, as we will show, yields a simple necessary and
sufficient condition for the convergence of the algorithms. As there are broad classes of models (including
attractive, diagonally-dominant, and so-called pairwise-normalizable models) that are walk-summable, our
analysis shows that our algorithms provide a convergent, computationally attractive method for inference.

The walk-sum analysis and convergence results show that arbitrary non-stationary iterations of our

algorithms based on a very large and flexible set of sequences of subgraphs or subsets of variables
converge in walk-summable models. Consequently, we are free to use any sequence of trees in the ET
algorithm or any valid sequence of subsets of variables (one that updates each variable infinitely often) in
the block GS iteration, and still achieve convergence in walk-summable models. We exploit this flexibility
by choosing trees or subsets of variables adaptively to minimize the error at itenabased on the
residual error at iteration— 1. To make these choices optimally, we formulate combinatorial optimization
problems that maximize certain re-weighted walk-sums. We describe efficient methods to solve relaxed
versions of these problems. For the case of choosing the “next best” tree, our method reduces to solving
a maximum-spanning tree problem. Simulation results indicate that our algorithms for choosing trees and
subsets of variables adaptively provide a significant speedup in convergence over traditional approaches
involving a single preconditioner or alternating between two preconditioners.

Our walk-sum analysis also shows that local memory at each node can be used to achieve convergence
for any of the above algorithms when communication failures occur in distributed sensor networks. Our
protocol differs from the description in [14], and as opposed to that work, allows for non-stationary
updates. Also, our walk-sum diagrams provide a simple, intuitive representation for the propagation of
information with each iteration.

One of the conditions for walk-summability in Section II-C shows that walk-summable models are
equivalent to models for which the information matrix is an H-matrix [16,18]. Several methods for
finding good preconditioners for such matrices have been explored in the linear algebra literature, but
these have been restricted to either cycling through a fixed set of preconditioners [19] or to so-called
“multi-splitting” algorithms [20, 21]. These results do not address the problem of convergence of non-
stationary iterations using arbitrary (non-cyclic) sequences of subgraphs. The analysis of such algorithms
along with the development of methods to pick a good sequence of preconditioners are the main novel
contributions of this paper, and the recently developed concept of walk-sums is critical to our analysis.

In Section Il, we provide the necessary background about GMRFs and the walk-sum view of inference.
Section Il describes all the algorithms that we analyze in this paper, while Section IV contains the analysis
and walk-sum diagrams that provide interpretations of the algorithms in terms of walk-sum computations.
In Section V, we use the walk-sum interpretation of Section IV to show that these algorithms converge
in walk-summable models. Section VI presents techniques for choosing tree-based preconditioners and
subsets of variables adaptively for the ET and block GS iterations respectively, and demonstrates the
effectiveness of these methods through simulation. We conclude with a brief discussion in Section VII.

The appendix provides additional details and proofs.

Il. GAUSSIAN GRAPHICAL MODELS AND WALK -SUMS
A. Gaussian graphical models and estimation

A graphG = (V,€) consists of a set of verticéi§ and associated edgésc (%), where (%) is the
set of all unordered pairs of vertices. A subSet V is said toseparatesubsetsA, B C V' if every path
in G between any vertex il and any vertex inB passes through a vertex # A graphical model [1,
2] is a collection of random variables indexed by the vertices of a graph; each yert&x corresponds
to a random variable, and where for anyd C V, x4 = {zs|s € A}. A distribution p(zy) is Markov
with respect tag if for any subsetsA, B C V' that are separated by sorfeC V, the subset of variables
x4 is conditionally independent afp given zg, i.e.p(xa,xp|lzs) = p(xalrs) p(zp|rs).

We consider GMRFgz,|s € V} parameterized by a mean vecjorand a positive-definite covariance
matrix P (denoted byP = 0): xy ~ N (u, P) [1,22]. For simplicity, each:, is assumed to be a scalar
variable. An alternate natural parameterization for GMRFs is specified in terms inffdineation matrix
J = P! (also calledprecisionor concentrationmatrix) andpotential vectorh, = P~!y, and is denoted
by zy ~ N ~L(h,J). In particular, ifp(xy) is Markov with respect to grap8i, then the specialization
of the Hammersley-Clifford theorem for Gaussian models [1, 22] directly relates the sparsitiodhe
sparsity ofG: J,+ # 0 if and only if the edge{s, ¢} € £ for every pair of vertices, t € V. The partial
correlation coefficienp, s is the correlation coefficient of variables andx, conditioned on knowledge
of all the other variables [1]:

A COV(ajt; xs‘x\t,s) Jt,s
prs 2 i 1)
Jvartedoy varte ey, Vs

Hence,J; s = 0 implies thatz; andz are conditionally independent given all the other variablgs.

Letx ~ N ‘1(hprior, Jprior), @and suppose that we are given noisy observatioasCz + v of z, with
v ~ N(0,S). The goal of the Gaussian estimation problem is to compute an estihtag minimizes
the expected squared-error betweeand x. The solution to this problem is the mean of the posterior
distribution z|y ~ N ~(h, J), with J = Jyier + CTS™IC and h = hpior + CTS™'y [23]. Thus, the

posterior mean, = J~'h can be computed as the solution to the following linear system:
(Jprior + CTSTIC)VT = hpir + CTS™y & JZ=h.)

We note that/ is a symmetric positive-definite matrix. The conditions for all our convergence results
and analysis in this paper are specified in terms of the posterior graphical model parameterized by

As described in the introduction, solving the linear system (2) is computationally expensive by direct

matrix inversion even for moderate-size problems. In this paper, we discuss tractable methods to solve

this linear system.

B. Walk-summable Gaussian graphical models

We assume that the information matrik of a Gaussian model defined @h = (V,£) has been
normalized to have unit diagonal entries. For exampld) i a diagonal matrix containing the diagonal
entries ofJ, then the matrixD~:.JD > contains re-scaled entries dfat off-diagonal locations antis
along the diagonal. Such a re-scaling does not affect the convergence results of the algorithms in this
papet. However, re-scaled matrices are useful in order to provide simple characterizations of walk-sums.
Let R = I — J. The off-diagonal elements @t are precisely the partial correlation coefficients from (1),
and have the same sparsity structure as that ¢dnd consequently the same structuregasLet these
off-diagonal entries be the edge weightsdni.e. R, ; is the weight of the edgé¢t, s}. A walkin G is
defined to be a sequence of vertiees= {w;}¢_, such that{w;, w;+1} € € for eachi = 0,...,¢ — 1.

Thus, there is no restriction on a walk crossing the same node or traversing the same edge multiple times.

The weight of the walk ¢(w) is defined:

{—1
¢(w) é H Rw'i7w7+1 .
=0

Note that the partial-correlation matrik is essentially a matrix of edge weights. Interpreted differently,
one can also view each element®fas the weight of the lengthwalk between two vertices. In general,
(RE)LS is then the walk-sung(s LN t) over the (finite) set of all length-walks froms to ¢ [17], where

the walk-sumover a finite set is the sum of the weights of the walks in the set. Based on this point of
view, we can interpret estimation in Gaussian models from equation (2) in terms of walk-sums:

P = (=R, =Y (R) =D 650, 3)
’ £=0

=0
Thus, the covariance between variablgsand z; is the length-ordered sum over all walks framo ¢.

This, however, is a very specific instance of an inference algorithm that converges if the spectral radius
conditionp(R) < 1 is satisfied (so that the matrix geometric series converges). Other inference algorithms,
however, may compute walks dlifferent ordersIn order to analyze the convergence of general inference

algorithms that submit to a walk-sum interpretation, a stronger condition was developed in [17] as follows.

Although our analysis of the algorithms in Section Il is specified for normalized models, these algorithms and our analysis

can be easily extended to the un-normalized case. See Appendix A.

Given a countable set of walkg/, thewalk-sumover)V is the unordered sum of the individual weights

of the walks contained iwV:

o) 2 3 o(w).

weWw
In order for this sum to be well-defined, we consider the following class of Gaussian graphical models.

Definition 1: A Gaussian graphical model defined @n= (V,€) is said to bewalk-summabléf the
absolute walk-sums over the set of all walks between every pair of verticgsame well-defined. That
is, for every pairs,t € V,

ds—t)E Y |pw)] < oo
_ weW(s—t)
Here, ¢ denotes absolute walk-sums over a set of walkés — ¢) corresponds to the set of all

walks’ beginning at vertexs and ending at the vertex in G. Section II-C lists some easily tested
equivalent and sufficient conditions for walk-summability. Based on the absolute convergence condition,
walk-summability implies that walk-sums over a countable set of walks can be compuéey iorder

and that the unordered walk-sumis — ¢) is well-defined [24, 25]. Therefore, in walk-summable models,

the covariances and means can be interpreted as follows:

Pt,s = ¢(S - t)7 (4)
Ht = Z Pt,shs - Z hs¢(3 - t)? (5)
seV seV

where (3) is used in the first equation, and (4) in the second. In words, the covariance between variables
zs and z; is the walk-sum over the set of all walks fromto ¢, and the mean of variable; is the
walk-sum over all walks ending &t with each walk being re-weighted by the potential value at the
starting node.

The goal in walk-sum analysis is to interpret an inference algorithm as the computation of walk-sums
in G. If the analysis shows that the walks being computed by an inference algorithm are the same as those
required for the computation of the means and covariances above, then the correctness of the algorithm
can be concluded directly for walk-summable models. This conclusion can be reached regardless of the
order in which the algorithm computes the walks due to the fact that walk-sums can be computed in
any order in walk-summable models. Thus, the walk-sum formalism allows for very strong yet intuitive

statements about the convergence of inference algorithms that submit to a walk-sum interpretation. Indeed,

2We denote walk-sets byV but generally drop this notation when referring to the walk-sum o%gri.e. the walk-sum of
the setW(~) is denoted byp(~).

the overall template for analyzing our inference algorithms is simple. First, we show that the algorithms
submit to a walk-sum interpretation. Next, we show that the walk-sets computed by these algorithms are
nested, i.eW,, C W, 11, whereW,, is the set of walks computed at iteratian Finally, we show that

every walk required for the computation of the mean (5) is containédf,jrfor somen. A key ingredient

in our analysis is that in computing all the walks in (5), the algorithms muostovercountany walks.
Although each step in this procedure is non-trivial, combined together they allow us to conclude that the

algorithms converge in walk-summable models.

C. Properties of walk-summable models and Walk-sum algebra

Very importantly, there are easily testable necessary and sufficient conditions for walk-summaubility. Let
R denote the matrix of the absolute values of the element®.dFhen, walk-summability is equivalent

to either [17]

e o(R)<1,o0r
e« I-R>0.
From the second condition, one can draw a connection to H-matrices in the linear algebra literature [16,
18]. Specifically, walk-summable information matrices are symmetric, positive-definite H-matrices.
Walk-summability of a model is sufficient but not necessary for the validity of the model (positive-
definite information/covariance). Many classes of models are walk-summable [17]:
1) Diagonally-dominant models, i.e. for easte V, 37, [Jss| < Jss.
2) Valid non-frustrated models, i.e. every cycle has an even number of negative edge weights and
I — R > 0. Special cases include valid attractive models and tree-structured models.
3) Pairwise normalizablenodels, i.e. there exists a diagonal matfix- 0 and a collection of matrices
{Je = 0|(Je)st =01if (s,t) #e,ecE} suchthat/ =D + > ¢ Je.
An example of a commonly encountered walk-summable model in statistical image processing is the
thin-membrane prior [26]. Further, linear systems involving sparse diagonally dominant matrices are also
a common feature in finite element approximations of elliptical partial differential equations [27].
We now describe some operations that can be performed on walk-sets, and the corresponding walk-sum
formulas. These relations are valid in walk-summable models [17]:
o Let{l,} 7, be acountable collection of mutually disjoint walk-sets. From the sum-partition theorem
for absolutely summable series [25], we have h@t>> ,U,) = > 2 | ¢(Uy). Further, let{if, } > ;

be a countable collection of walk-sets whéfe C U, 1. We have that (U2, Uy,) = limy, o0 ¢(Un,).

o Letu = uguy -+ Ueng ANAV = VstartV1 - - Vy(y) D Walks such thate,q = vstart- The concatenation
of the walks is defined to be - v = wuguq - - - Uepqv1 - - - Ug(v)- NOW consider a walk-sel/ with
all walks ending at vertexi.,q and a walk-sety with all walks starting atvstart = Uend- The

concatenation of the walk-sets V is defined:
URVE{u-v|uel,veV}

If every walkw € U ® V can be decomposed uniquely intoc I/ andv € V so thatw = u - v,
thenl @V is said to beuniquely decomposablato the setg/,). For such uniquely decomposable
walk-sets,p(U @ V) = o(U)p(V).

Finally, the following notational convention is employed in the rest of this paper. We use wild-card
symbols ¢ and e) to denote a union over all vertices th For example, given a collection of walk-
sets W(s), we interpretW(x) as (J ., W(s). Further, the walk-sum over the s&V(x) is defined
p(W(x)) £ 3.y #(W(s)). In addition to edges being assigned weights, vertices can also be assigned
weights (for example, the potential vectb). A re-weighted walk-sum of a walk = wy - - - w, with
vertex weight vector: is then defined to be(h;w) = h,,¢(w). Based on this notation, the mean of

variablez, from (5) can be re-written as

pe = ¢(h;x — t). (6)

I11. N ON-STATIONARY EMBEDDED SUBGRAPHALGORITHMS

In this section, we describe a framework for the computation of the conditional mean estimates in
order to solve the Gaussian estimation problem of Section II-A. We present three algorithms that become
successively more complex in nature. We begin with the parallel ET algorithm originally presented in
[10, 13]. Next, we describe a serial update scheme that involves processing only a subset of the variables
at each iteration. Finally, we discuss a generalization to these non-stationary algorithms that is tolerant to
temporary communication failure by using local memory at each node to remember past messages from
neighboring nodes. A similar memory-based approach was used in [14] for the special case of stationary
iterations. The key theme underlying all these algorithms is that they are based on solving a sequence of
inference problems on tractable subgraphs involving all or a subset of the variables. Convergent iterations
that compute means can also be used to compute exact error variances [10]. Hence, we restrict ourselves

to analyzing iterations that compute the conditional mean.

10

A. Non-Stationary Parallel Updates: Embedded Trees Algorithm

Let S be some subgraph of the graghThe stationary ET algorithm is derived by splitting the matrix
J = Js— Ks, whereJg is known as th@reconditionerand K s is known as theutting matrix Each edge
in G is either an element af or £\S. Accordingly, every non-zero off-diagonal entry dfis either an
element ofJs or of —Ks. The diagonal entries of are part ofJs. Hence, the matri¥<s is symmetric,
zero along the diagonal, and contains non-zero entries only in those locations that correspond to edges
not included in the subgraph generated by the splitting. Cutting matrices may have non-zero diagonal
entries in general, but we only consider zero-diagonal cutting matrices in this paper. The splitting of
according toS transforms (2) to/Jsz = Ksx + h, which suggests a recursive method for solving the
original linear system:

Jsz™ = Ksz™ V) 4 h. @)

If J5* exists then a necessary and sufficient condition for the iterai€8}°° ; to converge toJ~'h
for any initial guesst(® is thatg(ngKg) < 1 [10]. ET iterations can be very effective if applying‘1
to a vector is efficient, e.g. if corresponds to a tree or, in general, any tractable subgraph.

A non-stationary ET iteration is obtained by lettitig= Js, — Ks,, where the matricesgs, correspond
to some embedded tree or subgraphin G and can vary in an arbitrary manner with This leads to
the following ET iteration:

Js. 2™ = Kg 2"V 4+ p. (8)

Our walk-sum analysis proves the convergence of non-stationary ET iterations based on any sequence of
subgraphdS,, }22 ; in walk-summable models. Every step of the above algorithm is tractable if applying
Jgn1 to a vector can be performed efficiently. Indeed, an important degree of freedom in the above
algorithm is the choice of,, at each stage so as to speed up convergence, while keeping the computation

at every iteration tractable. We discuss some approaches to addressing this issue in Section VI.

B. Non-Stationary Serial Updates of Subsets of Variables

We begin by describing the block GS iteration [15, 16]. For each 1,2,..., let V,, C V be some
subset ofV. The variablesry, = {zs : s € V,,} are updated at iteration. The remaining variables do
not change from iteration — 1 to n. Let J™ = [J]y. be the|V;,| x |V;,|-dimensional principal sub-matrix

corresponding to the variabl@s$,. The block GS update at iterationis as follows:

f%z) N (O (RVn,V,f f%}j;l) + hvn) ; ©)
ﬁ/") — :E%ffl). (10)

n n

11

Here,V,; refers to the complement of the vertex $&t In equation (9),Ry, v. refers to the sub-matrix
of edge weights of edges from the verticé$ to V,,. Every step of the above algorithm is tractable as
long as applying]("r1 to a vector can be performed efficiently.

We now present a general serial iteration that incorporates an element of the ET algorithm of Section IlI-
A. This update scheme involves a single ET iteration within the induced subgraph of the update variables
V... We split the edge& (V) in the induced subgraph 6f, into a tractable sef,, and a set of cut edges
E(Vn)\En. Such a splitting leads to a tractable subgraph= (V,,,&,) of the induced subgraph df,.

That is, the matrix/(") is split asJ(™ = Js — K . This matrix splitting is defined analogous to the

splitting in Section 1lI-A. The modified conditional mean update at iteratios as follows:

w = gt (Ke, #07Y + Rue 307) (11)
2 = g (12)

Every step of this algorithm is tractable as long as apply]gg to a vector can be performed efficiently.
The preceding algorithm is a generalization of both the block GS updat€1(@) and the non-stationary
ET algorithm (8), thus allowing for a unified analysis framework. Specifically, by letfing= £(V},)
for all n above, we obtain the block GS algorithm. On the other hand, by letfing V' for all n, we
recover the ET algorithm. This hybrid approach also offers a tractable and flexible method for inference
in large-scale estimation problems, because it possesses all the benefits of the ET and block GS iterations.
We note that in general application there is one potential complication with both the serial and the
parallel iterations presented so far. Specifically, for an arbitrary graphical model with positive-definite
information matrix.J, the corresponding information sub-matti¢, for some choices of subgrapls
may not be valid, i.e. may have negative eigenvalukaportantly, this problenneverarises for walk-
summable models, and thus we are free to use any sequence of embedded subgraphs for our iterations
and be guaranteed that the computations make sense probabilistically.
Lemma 1: Let J be a walk-summable model, 1&t C V, and letJs be the|V| x |V|-dimensional
information matrix corresponding to the distribution over some subg@f the induced subgraph
E(V). Then, Js is walk-summable, ands > 0.

Proof: For every pair of vertices, t € V, itis clear that the walks betweerandt in S are a subset of

the walks between these verticegini.e. W(s —> t) € W(s — t). Henced(s — t) < ¢(s — t) < oo,

3For example, consider a-cycle with each edge having a partial correlation-a§.6. This model is valid (but not walk-
summable) with the correspondinfghaving a minimum eigenvalue 6£0292. A spanning tree models obtained by removing

one of the edges in the cycle, however, is invalid with a minimum eigenvalue0di392.

12

because/ is walk-summable. Thus, the model specified iy is walk-summable. This allows us to

conclude that/s >~ 0 because walk-summability implies validity of a model.

C. Distributed Interpretation of (11)(12) and Communication Failure

We first re-interpret the equations (3(L2) as local message-passing steps between nodes followed
by inference within the subgrap$),. At iterationn, let ,, denote the set afirectededges in(V,,)\&,
and fromV,¢ to V,,:

Kn = {(5,t) | {s,t} € E(Vn)\En Or s € VE L €V,) (13)

The edge sek,, corresponds to the non-zero elements of the matid€gsand Ry, v. in equation (11).
Edges ink,, are used to communicate information about the values at iterationl to neighboring
nodes for processing at iteration

For eacht € V,,, the messagé/(s — t) = Ry iﬁ"fl) is sent at iteratiom from s to ¢t using the
links in x,,. Let M, (t) denote the summary of all the messages received at hati@erationn:

My(t)= Y Ms—t)= > Rz (14)

{sl(s;t)ern} {sl(s;t)ern}

Thus, eacht € V,, fusesall the information received about the previous iteration and combines this with
its local potential value:; to form a modified potential vector that is then used for inference within the
subgraphsS,:

70 =I5 (My(Va) + hy,), (15)

n

where M,,(V,,) denotes the entire vector of fused messafggt) for t € V,,. An interesting aspect
of these message-passing operations is that thejoea¢ and only nodes that are neighborsgnmay
participate in any communication. If the subgraghis tree-structured, the inference step (15) can also
be performed efficiently in a distributed manner using only local BP messages [9].

We now present an algorithm that is tolerant to temporary link failure by using local memory at each
nodet to store the most recent messas — t) received at from s. If the link (s,) fails at some
future iteration the stored message can be used in place of the new expected message. In order for the
overall memory-based protocol to be consistent, we also introduce an additional post-inference message-
passing step at each iteration. To make the above points precise, we specify a memory protocol that
the network must follow; we assume that each node in the network has sufficient memory to store the

most-recent messages received from its neighbors. Bifstust not contain any failed links; every link

13

{s,t} € £(V,) that fails at iterationn must be a part of the cut-Set(s, t), (¢, s) € x,. Therefore, the
links &, that are used for the inference step (15) must be active at iterati8econd, in order for nodes
to synchronize after each iteration, they must perform a post-inference message-passiAfestéme
inference step (15) at iteratiom, the variables inV,, must update their neighbois the subgraphs,,.

That is, for eacht € V,,, a message must be received post-inference from evench that{s,t} € &,:

M(s —t) = Ry, 3. (16)

S

This operation is possible since the edget} is assumed to active. Apart from these two rules, all other

aspects of the algorithm presented previously remain the same. Note that every new message received

overwrites the existing stored message, and only the most recent message received is stored in memory.
Thus, link failure affects only equation (14) in our iterative procedure. Suppose that a message to be

received att € V,, from nodes is unavailable due to communication failure. The messafje — t)

from memory can be used instead in the fusion formula (14).r,ét — ¢) denote the iteration count

of the most recent information at nodeabout variables at the information fusion step (14) at iteration

n. In general;r,(s — t) < n — 1, with equality ift € V,, and (s,t) € k,, is active. With this notation,

we can re-write the fusion equation (14):

M(t)= Y M(s—t)= > Ry, a0t (17)

{s(s,0)€Rn} {sl(s.)€Rn)
IV. WALK-SUM INTERPRETATION ANDWALK -SUM DIAGRAMS

In this section, we analyze each iteration of the algorithms of Section Il as the computation of
walk-sums inG. Our analysis is presented for the most general algorithm involving failing links, since
the parallel and serial non-stationary updates without failing links are special cases. For each of these
algorithms, we then present walk-sum diagrams that provide intuitive, graphical interpretations of the
walks being computed. Examples that we discuss include classic methods such as Gauss-Jacobi (GJ) and
GS, and iterations involving general subgraphs. Throughout this section, we assume that the initial guess
(0 = 0, and we initializeM (s — t) = 0 andr (s — t) = 0 for each directed edgés,t) € £. In

Section V, we prove the convergence of our algorithms for any initial gi€ss

4One way to ensure this is to sele$t to explicitly avoid the failed links. See Section VI-B for more details.

14

A. Walk-sum interpretation

For every pair of vertices,t € V, we define a recursive sequence of walk-sets. We then show that

these walk-sets are exactly the walks being computed by the iterative procedure in Section IlI-C:

Wals = 1) = Wi me(s = 5 @ W 8 o) @ W(e 2 1) UW(s 2= 1), s e Vit e V,(18)

Wa(s —=t) = Wyh_i1(s—t), seVteVy, (19)

with

Wo(s —t) =0, s,t V. (20)
The notation in these equations is defined in Section C, (,_.,)(s — *) denotes the walks computed
up to iterationr,, (x — o). W(x o (1)) corresponds to a lengthwalk (called ahop) across a directed
edge ink,. Finally, W(e Sn, t) denotes walks withinS,, that end att. Thus, the first RHS term
in (18) is the set of previously computed walks that hop across an edge,iand then propagate
within S,,. W(s Sn, t) is the set of walks that live entirely withis,,. To simplify notation, we define
bn(s —t) 2 ¢(W, (s — t)). We now relate the walk-setd/,, (s — t) to the estimate?i”) at iterationn.

Proposition 1: At iterationn = 0,1, ..., with Z(©) = 0, the estimate for nodec V is given by:

5 =" hatn(s = t) = (b= — 1), (21)
seV
where the walk-sum is over the walk-sets defined by{2@), andﬁcf”) is computed using (15,17).

This proposition, proven in Appendix B, states that each of our algorithms has a precise walk-sum
interpretation. A consequence of this statement is that no walk is over-counted, i.e., each Walk in
submits to a unique decomposition with respect to the construction procesa@L&ee proof for details),
and appears exactly once in the sum at each iteration. As discussed in Section V (Propositions 3 and 4), the
iterative process does even more; the walk-sets at successive iterations are nested and, under an appropriate
condition, are “complete” so that convergence is guaranteed for walk-summable models. Showing and
understanding all these properties are greatly facilitated by the introduction of a visual representation of

how each of our algorithms computes walks, and that is the subject of the next subsection.

B. Walk-sum diagrams

In the rest of this section, we present a graphical interpretation of our algorithms, and of the walk-sets
W, (18-20) that are central to Proposition 1 (which in turn is the key to our convergence analysis in

Section V). This interpretation provides a clearer picture of memory usage and information flow at each

15

iteration. Specifically, for each algorithm we construct a sequence of géiphsuch that a particular set

of walks in these graphs correspor@sctlyto the set3V,, (18—20) computed by the sequence of iterates
z(W. The graphs(™ are calledwalk-sum diagramsRecall thatS,, corresponds to the subgraph used
at iterationn, generally using some of the values computed from a preceding iteration. The @fdph
captures all of these preceding computations leading up to and including the computations at iteration

As a result,G™ has very specific structure for each algorithm. It consists of a numbkavefs —
within each level we capture the subgraph used at the corresponding iteration, and the final level
corresponds to the results at the end of iteratiorlthough some variables may not be updated at each
iteration, the values of those variables are preserved for use in subsequent iterations; thus, each level
of G includes all the nodes if¥. The update variables at any iteration (i.e., the node§,jnare
represented as solid circles, and the non-update ones as open circles. All edgesSy eaatges of
G included in this subgraph — are included in that level of the diagram. A, ithese are undirected
edges, as our algorithms perform inference on this subgraph. However, this inference update uses some
values from preceding iterations (15,17); hence, we use directed edges (correspongihfraen nodes
at preceding levels. The directed nature of these edges is critical as they capture the one-directional
flow of computations from iteration to iteration, while the undirected edges within each level capture the
inference computation (15) at each iteration. At the end of iteratioonly the values at leveb are of
interest. Therefore, the set of walks (re-weightedibyn G(™ that begin at any solid node at any level,
and end at any node at the last level are of importance, where walks can only move in the direction of
directed edges between levels, but in any direction along the undirected edges within each level.

Later in this section we provide a general procedure for constructing walk-sum diagrams for our most
general algorithms, but we begin by illustrating these diagrams and the points made in the preceding
paragraph using a simpknode, fully connected graph (with variables denotedzs, x3). We look at
two of the simplest iterative algorithms in the classes we have described, namely the classic GJ and GS
iterations [15, 16]. Figure 1 shows the walk-sum diagrams for these algorithms.

In the GJ algorithm each variable is updated at each iteration using the values from the preceding
iteration of every other variable (this corresponds to a stationary ET algorithm (7) with the sulsgraph
being the fully disconnected graph of all the nodés Thus each level on the left in Figure 1 is fully
disconnected, with solid nodes for all variables and directed edges from each node at the preceding level
to every other node at the next level. This provides a simple way of seeing both how walks are extended
from one level to the next and, more subtly, how walks captured at one iteration are also captured at

subsequent iterations. For example, the wikin G is captured by the directed edge that begins at

16

[]

Fig. 1. (Left) Gauss-Jacobi walk-sum diagra@§” for n = 1,2,3. (Right) Gauss-Seidel walk-sum diagramg§® for
n=1,234.

nodel at level 1 and proceeds to nodeat level2 (the final level ofG()). However, this walk inG®)
is captured by the walk that begins at nadat level2 and proceeds to nodzat level3 in G,

The GS algorithm is a serial iteration that updates one variable at a time, cyclically, so thavafter
iterations each variable is updated exactly once. On the right-hand side of Figure 1, only one node at
each level is solid, using values of the other nodes from the preceding level. For non-update variables
at any iteration, a weight-directed edge is included from the same node at the preceding level. For
example, since:; is updated at levet, we have open circles for nodésand3 at that level and weight-
directed edges from their copies at lexeM/eight-1 edges do not affect the weight of any walk. Hence,
at level 4 we still capture the walk2 from level 2 (from nodel at level1 to node2 at level 2); the
walk is extended to node at levels3 and4 with weight-1 directed edges.

For general graphs, the walk-sum diagréfft) of one of our algorithms is constructed as follows:

1) Forn = 1, create a new copy of eadhe V using solid circles for update variables and open
circles for non-update variables; label the§g. Draw the subgrapl$; using the solid nodes and
undirected edges weighted by the partial correlation coefficient of each 6tlgds the same as
S; with the exception thag(!) also contains non-update variables denoted by open circles.

2) Giveng(»—1, create a new copy of eache V using solid circles for update variables and open
circles otherwise; label thes&€”. Draw S,, using the update variables with undirected edges. Draw
a directededge from the variable’(“—%) in g1 (sincer, (v — v) < n — 1) to v(™ for each
(u,v) € ky. If there are no failed linksy,,(u — v) = n — 1. Both these undirected and directed
edges are weighted by their respective partial correlation coefficients. Draw a directed edge to each
non-update variablé™ from the corresponding”—% with unit edge weight.

A level k in a walk-sum diagram refers to thieth replica of the variables.
Rules for walks in G(™: Walks must respect the orientation of each edge, i.e., walks can cross an

undirected edge in either direction, but can only cross directed edges in one direction. In addition, walks

17

< : (Y W ¥ Sl F O'
N\ e e
) &y o @ o1 S
o < cL :
* —o—9»
83
) xr3
a o2 €3
= /\)
Zo I3 g " Sy g(-’”

Fig. 2. (Left) Non-stationary ET: subgraphs and walk-sum diagram. (Right) Hybrid serial updates: subgraphs and walk-sum
diagram.

can only start at the update variablés for each levelk < n. Interpreted in this manner, walks {#H™
re-weighted byk and ending at one of the variable¢$) are exactly the walks computed ﬁ‘ﬁk).
Proposition 2: Let G be a walk-sum diagram constructed and interpreted according to the preceding
rules. For anyt € V andk < n,
20 = p(hsx 95 40, (22)
Proof: Based on the preceding discussion, one can check the equivalence of the walks computed by
the walk-sum diagrams with the walk-sets {2&). Proposition 1 then yields (22}l

The following sections describe walk-sum diagrams for the various algorithms presented in Section IIl.

C. Non-Stationary Parallel Updates

We describe walk-sum diagrams for the parallel ET algorithm of Section 1lI-A. Héres V for all
n. Since there is no link failure, (+ — ¢) = n — 1. Hence, the walk-sum formulas (389) reduce to

Wha(s —t) = Wyp_1(s — %) @ W(x puls o) @ W(e Sn, t) UW(S Sn, t), s,teV. (23)

The stationary GJ iteration discussed previously falls in this class. The left-hand side of Figure 2 shows
the treesS;, So, S3, and the corresponding first three levels of the walk-sum diagrams for a more general
non-stationary ET iteration. This example illustrates how walks are “collected” in walk-sum diagrams at
each iteration. First, walks can proceed along undirected edges within each level, and from one level to
the next along directed edges (capturing cut edges). Second, the walks relevant at each iteration must
end at that level. For example, the wdl231 is captured at iteratiom as it is present in the undirected
edges at level. At iteration 2, however, we are interested in walks ending at |&/€The walk 13231

is still captured, but in a different manner — through the wt3R3 at level 1, followed by the ho1

along the directed edge from nodeat level1 to nodel at level 2. At iteration 3, this walk is captured

18

1 i) &I

e en 8 O
o S,
L R (2,1) G
ol

/ 8 (1,3}
) L Fi

Fig. 3. Non-stationary updates with failing links: Subgraphs used along with failed edges at each iteration (left) and walk-sum
diagramG™® (right).

first by the hop from nodé at level1 to node3 at level 2, then by the ho2 at level 2, followed by

the hop from node at level2 to node3 at level 3, and finally by the ho@B1 at level 3.

D. Non-Stationary Serial Updates

We describe similar walk-sum diagrams for the serial update scheme of Section IlI-B. Since there is
no link failure, r,,(x — o) = n — 1. The recursive walk-set update (18) can be specialized as follows:

Wals = t) = Woi(s —) @ W(s " o) @ W(e Zu)| JW(s 2), seVite Ve (24)

While (23) is a specialization to iterations with parallel updates, (24) is relevant for serial updates. The
GS iteration discussed in Section IV-B falls in this class, as do more general serial updates described in
Section IlI-B in which we update a subset of variablgsbased on a subgraph of the induced graph of

V... The right-hand side of Figure 2 illustrates an example forlnode model. We show the subgraphs

S, used in the first four stages of the algorithm and the correspondiagel walk-sum diagram. Note

that at iteratior2 we update variables, andzs without taking into account the edge connecting them.
Indeed, the updates at the first four iterations of this example include block GS, a hybrid of ET and

block GS, parallel ET, and GS, respectively.

E. Failing links

We now discuss the general non-stationary update scheme of Section IlI-C involving failing links.
The recursive walk-set computation equations for this iteration are given by28 Figure 3 shows
the subgraph and the edges#p that fail at each iteration, and the correspondirtpvel walk-sum
diagram. We elaborate on the computation and propagation of information at each iteration. At iteration
1, inference is performed using subgrafh followed by noded and2 passing a message to each other

according to the post-inference message-passing rule (16). At iteeatiaty x3 is updated. As no links

19

fail, node3 gets information from nodek and?2 at level 1. At iteration 3, the link (2, 1) fails. But node

1 has information about, at level1l (due to the post-inference message passing step from itergtion
This information is used from the local memory at nddm (17), and is represented by the arrow from
node2 at level1 to nodel at level3. At iteration4, the links(1,3) and(3,1) fail. Similar reasoning as

in iteration 3 applies to the arrows drawn across multiple levels from nbde node3, and from node

3 to nodel. Further, post-inference message-passing at this iteration only takes place betweeh nodes

and2 because the only edge & is {1, 2}.

V. CONVERGENCEANALYSIS

We now show that all the algorithms of Section Il converge in walk-summable models. As in
Section IV-A, we focus on the most general non-stationary algorithm with failing links of Section III-C.
We begin by showing that(™ converges to the correct means whgf = 0. Next, we use this result
to show that we can achieve convergence to the correct means for any initialzjtless

The proof thatg,,(h; + — t) — (J~'h), asn — oo relies on the fact thatV,(s — t) eventually
contains every element of the 98t(s — t) of all the walks inG from s to ¢, a condition we refer to as
completenessShowing this begins with the following proposition proved in Appendix C.

Proposition 3: (Nesting The walk-sets defined in equations (130) are nested, i.e. for every pair of
verticess,t € V, Wy_1(s — t) C W, (s — t) for eachn.

This statement is easily seen for a stationary ET algorithm because the walk-sum di#gtanom
levels2 to n is a replica ofG("~1) (for example, the GJ diagram in Figure 1). However, the proposition is
less clear for non-stationary iterations. The discussion in Section IV-C illustrates this point; the paths that
a walk traverses change drastically depending on the level in the walk-sum diagram at which the walk
ends. Nonetheless, as shown in Appendix C, the structure of the estimation algorithms that we consider
ensures that whenever a walk is not explicitly captured in the same form it appeared in the preceding
iteration, it is recovered through a different path in the subsequent walk-sum diagram (no walks are lost).

Completeness relies on both nesting and the following additional condition.

Definition 2: Let (u,v) be any directed edge i§. For eachn, let k%/v¢ C x,, denote the set of
directed active edges (links that do not fail) ip at iterationn. The edge(u,v) is said to beupdated
infinitely ofter? if for every N > 0, there exists amn > N such that(u,v) € &, U xactive,

If there is no link failure, this definition reduces to including each verteX’iin the update set,

infinitely often. For parallel non-stationary ET iterations (Section IlI-A), this property is satisfieafpr

®If G contains a singleton node, then this node must be updated at least once.

20

sequence of subgraphNote that there are cases in which inference algorithms may not have to traverse
each edge infinitely often. For instance, supposedhedn be decomposed into subgraghsandg, that
are connected by a single edge, with having small size so that we can perform exact computations.
For example,G, could be a leaf node (i.e., have degree one). We can eliminate the variabfgs in
propagate information “into; along the single connecting edge, perform inference wighinand then
back-substitute. Hence, the single connecting edge is traversed only finitely often. In this case the hard
part of the overall inference procedure is on the reduced graph with leaves and small, dangling subgraphs
eliminated, and we focus on inference problems on such graphs. Thus, we assume that each gertex in
has degree at least two and study algorithms that traverse each edge infinitely often.

Proposition 4: (Completenegd.et w = s---t be an arbitrary walk frons to ¢ in G. If every edge in
G is updated infinitely often (in both directions), then there existsVasuch thatw € W, (s — t) for
all n > N, where the walk-se¥V,,(s — t) is defined in (18-20).

The proof of this proposition appears in Appendix D. We can now state and prove the following.

Theorem 1: If every edge inG is updated infinitely often (in both directions), then(h;* — t) —
(J='h), asn — oo in walk-summable models, with, (s — ¢) as defined in Section IV-A.

Proof: One can check thatV,(s — t) C W(s — t),¥n. This is because equations (180) only
use edges from the original gragh We have from Proposition 4 that every walk frasmto ¢ in G is
eventually contained iV, (s — t). Thus,Us2 W, (s — t) = W(s — t). Given these arguments and
the nesting of the walk-setd/, (s — ¢) from Proposition 3, we can appeal to the results in Section II-C
to conclude that,, (h; * — t) — (J~'h), asn — co. [

Theorem 1 shows that™ — (J7'h), for 2 = 0. The following result, proven in Appendix E,
shows that in walk-summable models convergence is achieved for any choice of initial cdhdition

Theorem 2: If every edge is updated infinitely often, théff”) computed according to (15,17) con-
verges to the correct means in walk-summable models for any initial gii&ss

This result shows that walk-summability isafficientcondition for all our algorithms — non-stationary
ET, serial updates, memory-based updates — to converge for a very large and flexible set of sequences
of tractable subgraphs or subsets of variables (ones that update each edge infinitely often) on which to
perform successive updates. The following result, proven in Appendix F, shows that walk-summability
is alsonecessaryor this complete flexibility. Thus, while any of our algorithmsay converge for some

sequence of subsets of variables and tractable subgraphs, for a non-walk-summable model there is at

SNote that in this case the messages must be initializetilés — t) = R; , Z. for each directed edges, t) € &.

21

least one sequence of updates for which the algorithms diverge.
Theorem 3: For any non-walk-summable model, there exists at least one sequence of iterative steps

that is ill-posed, or for whichz(™, computed according to (15,17), diverges.

VI. ADAPTIVE ITERATIONS AND EXPERIMENTAL RESULTS

In this section we address two topics. The first is taking advantage of the great flexibility in choosing
successive iterative steps by developing techniques that adaptively optimize the on-line choice of the
next tree or subset of variables to use in order to reduce the error as quickly as possible. The second is

providing experimental results that demonstrate the convergence behavior of these adaptive algorithms.

A. Choosing trees and subsets of variables adaptively

At iteration n, let theerror be (™ = 7 — 7(™ and theresidual errorbe 1™ = h — J 7(™. Note that
it is tractable to compute the residual error at each iteration.

A.1 Trees. We describe an efficient algorithm to choose spanning trees adaptively to use as
preconditioners in the ET algorithm of Section IlI-A. We have the following relationship between the

error at iterationn and the residual error at iteration— 1;

e = (17— Jgh) nrh.,

Based on this relationship, we have the walk-sum interpretatioh= ¢(h"~1: « Ay s), and conse-

quently the following bound on thé& norm of e(™):

™o, = 3 o B)

seV
< (R V6\Sn)
= o(n"V;9) — (IR S,), (25)

where G\S,, denotes walks irG that must traverse edges not &, |h("~1)| refers to the entry-wise
absolute value vector df"~1), ¢(|h("~1|; G) refers to the re-weighted absolute walk-sum over all walks
in G, and $(|h("V|; S,,) refers to the re-weighted absolute walk-sum over all walks,jn The above
inequality becomes an equality for attractive models with a non-negative potential ¥ed#tnimizing

the errore(™ reduces to choosing, to maximizea(|h("~1|;S,). Hence, if we maximize among all

trees, we have the followinmaximum walk-sum treproblem:

arg max, ,ree $(|h(n71)|38n)‘ (26)

22

Rather than solving this combinatorially complex problem, we instead solve a problem that minimizes a
looser upper bound than (25). Specifically, consider any ddge} € £ and all of the walksS(u,v) =
(uv, vu, vvu, vuv, vouv, vuvy, . . .) that live solely on this single edge. It is not difficult to show that

|RU7U|

_ Pl g (n=1) B=11 (27
T i (R, @)

Wy v £ &(’h(n_l)‘»s(uv 7))) = (‘h(un_l)| + |h§)n_1)|) Z |Ru,v|e =
(=1

This weight provides a measure of the error-reduction capacity of ¢dge} by itself at iterationn.
This leads directly to choosing threaximum spanning tref28] by solving
arg Max, agee >, Wuo- (28)
{u}eS,

For any treeS,, the set of walks captured in the sum in (28) is a subset of all the wall&,irso that
solving (28) provides a lower bound on (26) and thus a looser upper bound than (25). For sparse graphical
models with|£| = O(|V|), each iteration using this technique requié®gV’| log |V'|) computations [28].

A.2 Subsets of variablesWe present an algorithm to choose the next best subsetvafiables for

the block GS algorithm of Section IlI-B. The error at iteratiorcan be written as follows:

n ~ ~(n n)—1 _ n—
e = By, — 2y = I Ry, e [T ROy
) = Fy—ay) =el) = [Ay

As with (25), we have the following upper bound that is tight for attractive models with non-negative

le™le, = llet e, + llel?

4

< |@(hm D+ L V) — (VLY vyl + g(ReD)x L v

= G(hDG) — (R v, By, (29)

where&(V,,) refers to the edges in the induced subgrapf,pfMinimizing this upper bound reduces to
solving the followingmaximum walk-sum blogaroblem:

- _ E(V,
arg max, <, oA VLV, T v, (30)

As with the maximum walk-sum tree problem, finding the optimal such block directly is combinatorially
complex. Therefore, we consider the following relaxed maximum walk-sum block problem based on
single-edge walks:

arg maxy, < (R V|V, 25 1), (31)

23

where 2% denotes the restriction that walks can traverse at most one edge. The walks in (31) are a
subset of the walks in (30). Thus, solving (31) provides a lower bound on (30), hence minimizing a
looser upper bound on the error than (29).

Solving (31) is also combinatorially complex; therefore, we use a greedy method for an approximate

solution:

1) SetV,, = 0. Assuming that the goal is to solve the problem fo& 1, compute node weights
w, = [hG Y],

based on the walks captured by (31) if nadevere to be included itV,,.
2) Find the maximum weight nodeg* from V\V,,, and setV,, — V,, U u*.
3) If |V,,| =k, stop. Otherwise, update each neighbar V'\V,, of «* and go to stepe:

|RU*7U|
1- |RU*7U| .

This update captures the extra walks in (31) fvere to be added t®,.

Wy — wy + (Ihgf_l)\ + |h§”_1)\)

Step3 is the greedy aspect of the algorithm as it updates weights by computing the extra walks that
would be captured in (31) if node were added td/,, with the assumption that the nodes alreadyjin
remain unchanged. Note that only the weights of the neighbot$ afe updated in step; thus, there is
a bias towards choosing a connected block. In choosing successive blocks in this way, we collect walks
adaptively without explicit regard for the objective of updating each node infinitely often. However, our
method is biased towards choosing variables that have not been updated for a few iterations as the residual
error of such variables becomes larger relative to the other variables. Indeed, empirical evidence confirms
this behavior with all the simulations leading to convergent iterations. For sparse graphical models with
|€] = O(]V|) andk bounded, each iteration using this technique requir@sg |V'|) computations using
an efficient sort data structure.

A.3 Experimental lllustration. We test the preceding two adaptive algorithms on randomly generated
15 x 15 nearest-neighbor grid models with(R) = 0.99, and withz(®) = 0. The blocks used in block
GS were of sizé: = 5. We compare these adaptive methods to standard non-adaptive one-tree and two-
tree ET iterations [13]. Figure 4 shows the performance of these algorithms. The plot shows the relative
decrease in the normalized residual er%%% versus the number of iterations. The table shows the

average number of iterations required for these algorithms to reduce the normalized residual error below

"The grid edge weights are chosen uniformly at random fferh, 1]. The matrixR is then scaled so thai(R) = 0.99. The

potential vectorh is chosen to be the all-ones vector.

24

——1l-tree
e Method Avg. iterations
10t —+— Block GS (145) | One-troc 307
3 Two-tree 102.70
v o 1 Adaptive Max. Spanning Tree 44.04
E Adaptive Block Gauss-Seidel (/45) 26.57

. . . I . . L 1 L
o 10 20 30 40 a0 B0 70 60 a0 100
Iteration

Fig. 4. (Left) Convergence results for a randomly generatea 15 nearest-neighbor grid-structured model. (Right) Average

number of iterations required for the normalized residual to reduce by a fact@rdf over 100 randomly generated models.

10~ 1%, The average was computed based on the performand@®nandomly generated models. All
these models are poorly conditioned because they are barely walk-summable. The number of iterations
for block GS is sub-sampled by a factor%“i = 45 to provide a fair comparison of the algorithms. The
one-tree ET method uses a spanning tree obtained by removing all the vertical edges except the middle
column. The two-tree method alternates between this tree and its rotation (obtained by removing all the
horizontal edges except the middle row).

Both the adaptive ET and block GS algorithms provide far faster convergence compared to the one-tree
and two-tree iterations, thus providing a computationally attractive method for estimation in the broad

class of walk-summable models.

B. Dealing with Communication Failure: Experimental lllustration

To illustrate our adaptive methods in the context of communication failure, we consider a simple model
for a distributed sensor network in which links (edges) fail independently with failure probad;jlaynd
each failed link remains inactive for a certain number of iterations given by a geometric random variable
with mean%. At each iteration, we find the best spanning tree (or forest) among the active links using
the approach described in Section VI-A.1. The maximum spanning tree problem can be solved in a
distributed manner using the algorithms presented in [29, 30]. Figure 5 shows the convergence of our
memory-based algorithm from Section 11I-C on the same randomly genetatgdl 5 grid model used
to generate the plot in Figure 4 (again, witl) = 0). The different curves are obtained by varyiag
and (. As expected, the first plot shows that our algorithm is slower to converge as the failure probability
a increases, while the second plot shows that convergence is fastersaiscreased (which decreases
the average inactive time). These results show that our adaptive algorithms provide a scalable, flexible,

and convergent method for the estimation problem in a distributed setting with communication failure.

25

—+— =01
—e—=03
2 ——a=ns| 2

Mormalized residual
Marrmalized residual

. L I L . L 1 L I . . . I . . L 1 L
a 10 20 30 40 a0 B0 7 80 20 100 o 10 20 30 40 a0 B0 70 60 a0 100
Iteration Iteration

Fig. 5. Convergence of memory-based algorithm on same randomly genéfated5 used in Figure 4: Varyingx with
B = 0.3 (left) and varying$ with a = 0.3 (right).

VIlI. CONCLUSION

In this paper, we have described and analyzed a rich set of algorithms for estimation in Gaussian
graphical models with arbitrary structure. These algorithms are iterative in nature and involve a sequence
of inference problems on tractable subgraphs over subsets of variables. Our framework includes parallel
iterations such as ET, in which inference is performed on a tractable subgraph of the whole graph at
each iteration, and serial iterations such as block GS, in which the induced subgraph of a small subset of
variables is directly inverted at each iteration. We also describe hybrid versions of these algorithms that
involve inference on a subgraph of a subset of variables. We also discuss a method that uses local memory
at each node to overcome temporary communication failures that may arise in distributed sensor networks.
Our memory-based framework applies to the non-stationary ET, block GS, and hybrid algorithms.

We analyze these algorithms based on the recently introduced walk-sum interpretation of Gaussian
inference. A salient feature in our analysis is the development of walk-sum diagrams. These graphs
correspond exactly to the walks computed after each iteration, and provide an intuitive graphical com-
parison between the various algorithms. This walk-sum analysis allows us to conclude that for the broad
class of walk-summable models, our algorithms converge for a very large and flexible set of sequences
of subgraphs and subsets of variables used. We also describe how this flexibility can be exploited by
formulating efficient algorithms that choose spanning trees and subsets of variables adaptively at each
iteration. These algorithms are then used in the ET and block GS algorithms respectively to demonstrate
that significantly faster convergence can be obtained using these methods over traditional one-tree and
two-tree ET iterations.

Our adaptive algorithms are greedy in that they consider the effect of edges individually (by considering
walk-sums concentrated on single edges). A strength of our analysis for the case of finding the “next

best” tree is that we do obtain an upper bound on the resulting error, and hence on the possible gap

26

between our greedy procedure and the truly optimal one. Obtaining tighter error bounds, or conditions
on graphical models under which our choice of tree yields near-optimal solutions is an open problem.
Another interesting question is the development of general versions of the maximum walk-sum tree and
maximum walk-sum block algorithms that might choose fkienext best trees or blocks jointly. For
applications involving communication failure, extending our adaptive algorithms in a principled manner
to explicitly avoid failed links while optimizing the rate of convergence is an important problem. Finally,

the fundamental principle of solving a sequence of tractable inference problems on subgraphs has been
exploited for non-Gaussian inference problems (e.g. [12]), and extending our methods to this more general

setting is of clear interest.

ACKNOWLEDGEMENTS

The authors would like to thank Dr. Erik Sudderth for helpful discussions and comments on early

drafts of this work.

APPENDIX
A. Dealing with un-normalized models

Consider an information matriX = D — M (whereD is the diagonal part of) that is not normalized,

i.e. D # I. The weight of a walkw = {w;}{_, can be re-defined as follows:

{— /—1
Hi:é Mwiawi+l o Hi:o V DwnwiRwuwz‘H V Dwi+17wi+1 . ¢(w)

Y(w) =
Hf:() Dwi,wi Hf:() Du)l ,Wi Dw():wﬂ Dwfzwl

where)(w) is the weight ofw with respect to the un-normalized model, apdv) is the weight ofw

)

in the corresponding normalized model. We can then define walk-summability in terms of the absolute
convergence of the un-normalized walk-surfs — t) over all walks froms to ¢ (for each pair of vertices

s,t € V). A necessary and sufficient condition for this un-normalized notion of walk-summability is

0 (D‘i M D‘%> < 1, which is equivalent to the original condition(?) < 1 in the corresponding
normalized model. Un-normalized versions of the algorithms in Section 11l can be constructed by replacing
every occurrence of the partial correlation matkbby the un-normalized off-diagonal matri¥. The rest

of our analysis and convergence results remain unchanged because we deal with abstract walk-sets. (Note
that in the proof of Proposition 1, every occurrencefdimust be changed td/.) Alternatively, given

an un-normalized model, one can first normalize the modg}-£, — D2 Junnorm D‘%), then apply

the algorithms of Section Ill, and finally “de-normalize” the resulting estimﬁié)r(orm — Dz fﬁﬁ,lm).

Such a procedure would provide the same estimate as the direct application of the un-normalized versions

of the algorithms in Section Ill as outlined above.

27

B. Proof of Proposition 1

Remarks: Before proceeding with the proof of the proposition, we make some observations about the
walk-setsW, (s — t) that will prove useful for the other proofs as well. Foe V,,, notice that since

the set of edges contained & (in subgraphsS,) and x,, are disjoint, the walk-set®V(s Sn, t) and

Wi, (r—e) (8 = %) @ W(x galt) o) X W(e Sn, t) are disjoint. Therefore, from Section II-C,

buls > 1) = ¢<s#t>+¢(mny(s = 1) @ WY &) @ W(e 51, >)

= ¢(s—>t —i—(b(U Wi, (u—v) (8 = u) @ W(u —(>)v)®W(v—>t)>. (32)

u, eV

Every walk w € W, (u—v)(s — u) @ W(u) v) @ W(v S, t) can bedecomposed uniquelgs

W = W - Wy We, Wherew, € Wy, (y—p) (s — u), wp € W(u () v), andw, € W(v S, t). The unique

decomposition property is a consequencé,phndk,, being disjoint, and the walk ir,, being restricted

to a lengtht hop. This property also |mpI|es tha,., (u—v)(s — u) @ W(u) v) @ W(v Sn, t) and

Wi, (w—v) (8 = 1) @ W(u/ paty V) @ W S, t) are disjoint if (u,v) # (u/,v"). Based on these two

observations, we have from Section II-C that

(U Wi (s = 1) @ Wi 2 >®W<vi”>

u,veV

> ¢< ra(u=v) 5*“)®W(uﬁ)v)®w(vﬁ>t)>

u,veV
Kn (1)

= Z ¢T’,,L(u—>v) (3 - ’LL) (b(u -

u,veV

) plv 2 t). (33)
Proof of proposition: We provide an inductive proof. From (20)¢(s — t) = 0. Thus,

golhix — 1) =Y hy do(s —) =0 =7,
seV

which is consistent with the proposition because we assume that our initial guess &ach node.

Assume thab? = ¢ (h;x — t), for 0 < n’ < n —1, as the inductive hypothesis. Foe V¢,
=3 = (b — 1) = nlhix — 1),

where the first equality is from (12), the second from the inductive hypothesis, and the third from (19).

Hence, we can focus on nodeslif). Fort¢ € V,,, (32—33) can be re-written as:

u(s =) =0(s =5t + 3 b qumny(s — w) 3w ™D v) v I p), (34)

(u,0)Ekn

28

becauses(u Y v) = 0 if (u,v) ¢ xn. From (32-34) we have that:

Gullix=1) = Db |66 =20+ D 6y (s = w) ol 0) oo 2 1)
seV (u,v)Eky,
frd Z h < Z qb’r‘n(u—m) (S — U) Rv,u (J‘Si'nl)tﬂ) s
seV (u,v)Eknp

where we have used the walk-sum interpretation@f and ,,. Simplifying further, we have that

Sn(hix —t) = (Jghy), + D b wowy(hix— 1) Ruu (J5 o
(u,0)Ekn
= (Jg'h),+ D w0 Ry (Jge- (35)
(u,0)Ekn

The last equality is from the inductive hypothesis becduser, (v — v) < n — 1. Next, we have that

(z)n(h;* - t) = JS hv + Z JS Z Rvu f’"n(“ﬂv)
veV, {UI(uw)EHn}
= (I), + Y (JsHew Ma(v)
veV,
= 7"

where the second equality is from (17), and the third from (I5).

C. Proof of Proposition 3

We prove the following lemma that will be useful later for the proof of the proposition.
Lemma 2: Let w = wsggrt- P - ¢ Weng b€ an arbitrary walk inV, (wsiart — Wenaq), and let
W = Wsart - - - p D aleading sub-walk ofw. There exists &, < n with w € Wy, (wstart — p) SO that
at least one of the following conditions is trug;, = n and the edgép, q) € &,, or k, < r,(p — q).
Proof: The base case is vacuously true becads€ws:a+ — wenq) = 0. For the inductive hypothesis,
assume that the statement is true o< n’ < n — 1. This can be used to prove the statement if
Weng € V.. Assume thatv € W, (Wstart — Wena) With wenq € V,,. From the remarks in Appendix B,
eitherw € W(wsiart Sn, Wend), OF W € Wy (ymsv)(Wstart — 1) @ W(u o (1) v) @ W(v Sn, Wenq) for
some unique pair of vertices,v € V with r,(v — v) < n — 1. If w € W(wstart Sn, Wend), then
k, =n and(p,q) € &,.

Kn (1) S
—

If w e W, (o) (Wstart — u) @ W(u v) @ W(v = wenq), then from the remarks in Appendix

B, w can be uniquely decomposed @s= w, - wy, - we With wa € W, (y—v)(Wstart —), wp = uv €

W(u galt v), andw, € W(v LN Weng)- SUppose the trailing papt: - - wenq IS @ sub-walk ofw,, or is

29
equal tow.. We can uniquely decompose aswg - wy - (v -+ p) € Wy (u—u) (Wstart — 1) @ W(u onll)
v) @ W(v Sn, p). This shows that,, = n. Also, (p, q) € &, becausav. € W(v S, Wend)-

SUppoSey - - - weyg IS NOt a sub-walk ofw,.; then eitherw = w, or w must be a leading sub-walk of
wq. If W = wg, then(p, q) = (u,v) andk,, = r,(p — ¢q). If w is a leading sub-walk ofv,, we can use
the inductive hypothesis (becausg(u — v) < n — 1) to obtain ak, = k, () < mn(u — v) < n.

If kn = Ky (u—v) = ™n(u — v), then(p,q) € &, -y and one can check that,(p — q) > ky,
(because a post-inference message is passed on(ggdgeat iterationr, (v — v) = k;,). Otherwise,
kn =k, (u—sv) < Trp(u—v) (P — @) <nlp — q). O

Proof of proposition: We provide an inductive proof. Let any two verticest € V be given. The
base caséVy(s — t) C Wi (s — t) clearly follows from the fact thaiVy(s — ¢) = () from (18). For
the inductive hypothesis, assume th&f, _1(s — t) C Wy (s — t) for0 <n’ <n—1. If t € V[, the
proposition follows becaus®,,(s — t) = W,,_1(s — t) from (19). So we can restrict ourselves to the
case that € V,,. Let somew € W,,_1(s — t) be given.

First, we check ifw € W(s Sn, t). If this is the case, then we are done. If nat,can be uniquely
decomposed a® = w, - wy, - w., Wherew, € W(ity), andw,. € W(q Sn, t) for somep,q € V. We
must show thatv, € W, (,—.q) (s — p). Butw, is a leading sub-walk of. We have from Lemma 2 that,
with respect to the walk-sét,,_,(s — t), there exists &,_1 < n—1 such thatw, € Wy, (s — p). If
kn—1 =n—1, then(p,q) € €,—1 andr,(p — q) = n — 1 (due to post-inference message (16)). Hence,
wq € We,_ (s = D) =Wy (psq(s = p). I ko1 <n—1, thenk, 1 <r,_1(p — ¢) from Lemma 2.
But k,—1 < 7p_1(p — q) < rm(p — ¢) <n—1 and we can apply the inductive hypothesis to show the

relation Wy, (s — p) CW, (p—q)(s = p). Thus,w, € Wy, _, (s = p) SW, (p—g)(s = p). O

D. Proof of Proposition 4

Let w = s---u - t. We provide an inductive proof with respect to the lengthuofIf every edge
is updated infinitely often, it is clear that every node is updated infinitely often. Therefore, the leading
lengthd part(s) is computed when is first updated at some iteratidn By the nesting of the walk-sets
W,, from proposition 3, we have thds) € Wy (s — s) for all ¥’ > k. Now assume (as the inductive
hypothesis) that the leading sub-walk- -« including all but the last step - ¢t of w is contained in
Whn(s — u) for someN (> k). Given the infinitely-often update property, there existsman> N
such that the edgéu,t) € &, U ke If (u,t) € xitve thenw € Wy,_1(s — u) @ W(u gulsy
t) @ W(t Sm, t) € Wp(s — t). This can be concluded from (18) and becasse- u € Wy,_1(s — u)

by the nesting argumentn(— 1 > N) of Proposition 3. Again applying the nesting argument, we can

30

prove the proposition because we now have that W, (s — t) for all n > m. We can use a similar

argument to conclude that € W, (s — t) for all n > m, if (u,t) € &,,. O

E. Proof of Theorem 2

From Theorem 1 and Proposition 1, we can conclude #44at converges toJ—'h element-wise
asn — oo for 20 = 0. Assume thatz(?) # 0. Consider a shifted linear systetfij = h, where
h = h — Jz©_ If we solve this system using the same sequence of operations (subgraphs and failed
links) that were used to obtain the iterat@¥), and with3(®) = 0, thenj(™ converges to the correct
solution.J~1h — 20 of the system/y = h. We will show thatj(™ = z(") — () which would allow us
to conclude thag(™ — J—1h element-wise as, — oo for any Z(?). We prove this final step inductively.
The base case is clear beca@$8 = 0. Assume as the inductive hypothesis tht) = z(") — z(© for

0 < n’ <n—1. From this, one can check th@ft}? = :?ﬁ}? —ﬁ?) Fort € V,,, we have from (15,17) that:

g o= s) + Y (Ushew s Row - @Y

(u,0)Ekn

= (J5! hv)e + S (s D - Ro - &)

(u,0)Ekn
_ (Jgnl . (JE(O))V”)t _ Z (Jgnl)t,v Ry - 5&0)
(u,v)Eky,
= 7" (J,;} (v B9+, B+ Ks, -3 + Ry, v @\(V(”))t
— 3" -z

The second equality follows from the inductive hypothesis, and the last two from simple algebra.

F. Proof of Theorem 3

Before proving the converse, we have the following lemma that is proved in [31].

Lemma 3: Suppose/ is a symmetric positive-definite matrix, anl= Js — Ks is some splitting
with Ks symmetric and/s non-singular. Theng(ngKS) < 1lifandonlyif J +2Kg > 0.

Proof of converse Assume that/ = 7 — R is valid but non-walk-summable. Therefoiie must contain
some negative partial correlation coefficients (since all valid attractive models, i.e. those containing only
non-negative partial correlation coefficients, are walk-summable; see Section II-CR e, + R_

with R, containing the positive coefficients aritl. containing the negative coefficients (including the

31

negative sign). Consider a stationary ET iteration (7) based on the cutting the negative edges so that
Js=1—- Ry and Kg = R_. If Jg is singular, then the iteration is ill-posed. Otherwise, the iteration
converges if and only ifg(ngKg) < 1 [15,16]. From Lemma 3, we need to check the validity of
J 4+ 2Kgs:

J+2Ks=1-R+2R_=I1-R.

But I — R >~ 0 if and only if the model is walk-summable (from Section 1I-C). Thus, this stationary

iteration, if well-posed, does not converge in non-walk-summable models.

REFERENCES

[1] S. L. Lauritzen,Graphical Models Oxford, U.K.: Oxford University Press, 1996.
[2] M. I. Jordan, “Graphical Models,Statistical Science (Special Issue on Bayesian Statistiog) 19, pp. 140-155, 2004.
[3] C. Crick and A. Pfeffer, “Loopy Belief Propagation as a basis for communication in sensor network8thiitConference
on Uncertainty in Artificial Intelligence2003.
[4] S. Geman and D. Geman, “Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of liBEges,”
Transactions on Pattern Analysis and Machine Intelligena®. 5, pp. 721-741, June 1984.
[5] J. Woods, “Markov Image Modeling|EEE Transactions on Automatic Contralol. 23, pp. 846—850, October 1978.
[6] R. Szeliski, “Bayesian modeling of uncertainty in low-level visiocdgurnal of Computer Visiarvol. 5, no. 3, pp. 271-301,
December 1990.
[7] P. Rusmevichientong and B. Van Roy, “An Analysis of Turbo Decoding with Gaussian densitidéguiral Information
Processing SystemsAdvances in MIT press, 2000.
[8] P. W. Fieguth, W. C. Karl, A. S. Willsky, and C. Wunsch, “Multiresolution optimal interpolation and statistical analysis
of TOPEX/POSEIDON satellite altimetry|[EEE Transactions on Geoscience and Remote Sengihg33, pp. 280-292,
March 1995.
[9] J. Pearl,Probabilistic Reasoning in Intelligent SystemsSan Mateo, CA: Morgan Kauffman, 1988.
[10] E. B. Sudderth, M. J. Wainwright, and A. S. Willsky, “Embedded Trees: Estimation of Gaussian processes on graphs with
cycles,”IEEE Transactions on Signal Processingl. 52, no. 11, pp. 3136—-3150, November 2004.
[11] L. K. Saul and M. I. Jordan, “Exploiting Tractable Substructures in Intractable Networkidgimal Information Processing
Systems1995.
[12] M. J. Wainwright, T. S. Jaakkola, and A. S. Willsky, “Tree-based reparameterization framework for analysis of sum-product
and related algorithmsJEEE Transactions on Information Theoryol. 49, pp. 1120-1146, May 2003.
[13] E. B. Sudderth, “Embedded Trees: Estimation of Gaussian Processes on Graphs with Cycles,” Master’s thesis, Massachusetts
Institute of Technology, 2002.
[14] V. Delouille, R. Neelamani, and R. Baraniuk, “Robust Distributed Estimation using the Embedded Subgraphs Algorithm,”
IEEE Transactions on Signal Processingl. 54, pp. 2998-3010, August 2006.
[15] G. H. Golub and C. H. Van LoarVatrix Computations Baltimore, Maryland: The Johns Hopkins University Press,
1990.
[16] R. S. VargaMatrix Iterative Analysis New York: Springer-Verlag, 2000.

[17]

(18]
[19]

[20]
[21]
[22]
(23]
[24]
[25]

[26]

[27]
(28]

[29]

[30]

[31]

32

D. M. Malioutov, J. K. Johnson, and A. S. Willsky, “Walk-Sums and Belief Propagation in Gaussian Graphical Models,”
Journal of Machine Learning Reseatctol. 7, pp. 2031-2064, October 2006.

R. A. Horn and C. R. Johnsoiippics in Matrix Analysis Cambridge, U.K.: Cambridge University Press, 1994.

R. Bru, F. Pedroche, and D. B. Szyld, “Overlapping Additive and Multiplicative Schwarz iterations for H-matticest
Algebra and its Applicationsvol. 393, pp. 91-105, 2004.

A. Frommer and D. B. Szyld, “H-Splittings and Two-stage iterative methadarherische Mathematikol. 63, pp. 345-

356, 1992.

T. Gu, X. Liu, and X. Chi, “Relaxed Parallel Two-Stage Multisplitting Methods IlI: Asynchronous Versiotefnational
Journal of Computer Mathematicsol. 80, no. 10, pp. 1277-1287, October 2003.

T. Speed and H. Kiiveri, “Gaussian Markov probability distributions over finite graghejals of Statistigsvol. 14, no. 1,

pp. 138-150, March 1986.

L. Scharf, Statistical Signal Processing Upper Saddle River, NJ: Prentice-Hall, 2002.

W. Rudin, Principles of Mathematical Analysis New York: Mc-Graw Hill, 1976.

R. GodementAnalysis | Springer-Verlag, 2004.

P. Fieguth, W. Karl, and A. Willsky, “Efficient multiresolution counterparts to variational methods for surface reconstruc-
tion,” Computer Vision and Image Understandingl. 70, no. 2, pp. 157-176, May 1998.

W. G. Strang and G. J. FiXAn Analysis of the Finite Element method/Nellesley Cambridge Press, 1973.

W. J. Cook, W. H. Cunningham, W. R. Pulleyblank, and A. Schrij¢é@mbinatorial Optimization New York: Wiley-
Interscience, 1998.

R. G. Gallager, P. A. Humblet, and P. M. Spira, “A distributed algorithm for minimum-weight spanning t/&es!’
Transactions on Programming Languages and Systeois5, no. 1, pp. 66—77, January 1983.

B. Awerbuch, “Optimal distributed algorithms for minimum weight spanning tree, counting, leader election, and related
problems,” inAnnual ACM Symposium on Theory of Computib@87.

L. Adams, “m-Step Preconditioned Conjugate Gradient meth@&I&yM Journal on Scientific and Statistical Computing
vol. 6, pp. 452463, April 1985.

