Integrated Fusion, Performance Prediction, and Sensor Management for Automatic Target Exploitation

Summary

MURI Annual Review Meeting

Randy Moses

September 14, 2007

Year 1 Advances I

Regularized Tomography for Sparse reconstruction

- Sparse apertures
- Sparse 'objects' (targets or scenes)
- Anisotropy characterization
- Reconstruction for wide angle and circular SAR
- Decision-directed reconstruction

- Shape Analysis
- Bayesian Classification from Shapes

Х

MURI: Integrated Fusion, Performance Prediction, and Sensor Management for Automatic Target Exploitation

Year 1 Advances II

- Scalable, flexible inference
 - Low-rank uncertainty estimation in graphical models
 - GM-based Tracking
 - Learning Model structure

- Distributed Estimation and Management
 - MIMO radar fusion with calibration errors
 - Distributed estimation with unreliable communications

MURI: Integrated Fusion, Performance Prediction, and Sensor Management for Automatic Target Exploitation

Year 1 Advances III

- Sensor Management:
 - Adaptive data fusion
 - Adaptive waveform scheduling
 - Real-time SM algorithms and performance bounds

What's next – Signal Processing

- Regularized linear inversion
 - Automatic hyperparameter choice
 - Errors in sensing model parameters
 - Learn scattering functions from data
 - Design dictionary from target hypotheses
 - Anisotropic penalties in 3D
- Radar sensor degrees of freedom for unambiguous signal representation
- Regularized linear inversion for nonlinear regression problems
 - Unifying parametric and nonparametric processing techniques
- Shape estimation features for ATE
 - One-Shot Learning of Shapes
 - Graphical Models for Studying Configurations of Shapes

What's next – Information Fusion

- More on learning behavioral models and multitarget tracking
- More on learning tractable models for fusion and discrimination
 - E.g., introducing hidden variables to capture hidden causes
- More on informing resource management
 - Which data should be gathered and fused
 - How to do this efficiently
- Integrated learning of embedded graphical models
 - Joint clustering/classification and manifold learning
 - Distributed topological inference

What's next – Sensor Management

- More on scalable algorithms
- More on performance bounds
- Integration of graphical fusion models and performance estimates into algorithms
- Algorithms for unknown target classes
- Integrated SM and front end processing for imaging
 - SM driven by info theoretic imaging criteria
 - Incorporating inverse scattering models
 - Image priors e.g., sparsity, smoothness, shape

Questions or Comments?

