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ABSTRACT

The context of this paper is adaptive waveform design fomesding
parameters of an unknown channel under average energyaioisst
This paper focuses on the simpler problem of adaptive wawefo
amplitude design for which we obtain interesting analytieaults.

bias to reduce the MSE. Stein showed that this leads to teter
mators that achieve lower MSE than the linear least squaf®)sels-
timator for estimating the mean in a multivariate Gaussiatritu-

tion with dimension greater than two [4]. Other alternagigeich as
shrinkage estimator [5], Tikhonov regularization [6], axwvariance
shaping least squares (CSLS) estimator [7] have also bepoged

We treat an\V-step design problem where a fixed waveform can be, the |iterature. None of these approaches to improve peence

transmitted into the channéV times with amplitudes that can be
chosen as a function of past channel outputs.¥et 2 and a linear
Gaussian channel model, we derive the optimal amplitudeattst
mit at the second step as a function of the first measuremdris. T

incorporate the notion of sequential energy allocatioméirtwork.

In this paper, we formulate a problem of adaptively selgctin
waveform amplitudes for estimating parameters of a lineargsian
channel model under an average energy constraint over the-wa

adaptive2-step energy allocation strategy yields a mean-squared fsrms and over the number of transmissions. Waveform aougit

ror (MSE) improvement of at least.7dB relative to the optimal
non-adaptive strategy. Motivated by the optimal two-steptegy
we propose a suboptimal adaptixestep strategy that can achieve
an MSE improvement of more thaiB for N = 50. Applications
of our results to MIMO and inverse scattering channel modeds
discussed.

design can be cast as sequential parameter estimation elrenes-
mitted waveform is measured at a receiver after passingigira
channel having unknown parameters. We first obtain closad-f
expressions for the MSE of the optimal two-step sequentiafgy
allocation strategy for a scalar parameter in a multivariatear
Gaussian model. We then extend these results to the case-of ve

Index Terms— Parameter estimation, adaptive control, energytor parameters. Furthermore we provide/érstep sequential strat-

allocation, maximum likelihood, MMSE.

1. INTRODUCTION

One of the important components in adaptive sensing is ted fo

energy management. Most applications are limited by pealepor

average power. Hence it is important to consider energydiions
in waveform design problems. Most previous research hasstmzl
on waveform design under peak power constraints [1, 2]. &has
been little effort in adaptive energy management strasatiat allo-
cate different amounts of energy to the waveforms over timéis

paper, we find optimal sequential energy allocation stiesefpr a
general class of estimation problems under an average pmwer
straint and show performance gains over non-adaptive wssigte-
gies.

Measurement-adaptive estimation has countless numben-of i
portant applications in a wide variety of areas such as conicau
tions and control, medical imaging, radar systems, systimti-
fication, and inverse scattering. By measurement-adapstiena-

tion we mean that one has control over the way measurememts af (1,

made, e.g., through the selection of waveforms, projestiontrans-
mitted energy. The standard solution for estimating pataradrom
adaptive measurements is the maximum likelihood (ML) essttim
For the case of classic linear Gaussian model, i.e., a Gausbser-
vation with unknown mean and known variance, it is well-knd&]
that the ML estimator is unbiased and achieves the unbiasmt&
Rao lower boundCRB). Many researchers have looked at improv-
ing parameter estimation performance by adding a smalthasbr
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egy which yields more thaAdB gain over non-adaptive methods.
We conclude by providing applications to channel estinmtod
imaging. The results in this paper summarize the result8]cdiid
represent a significant extension of our previous paper [9].

2. PROBLEM SETTING FOR ESTIMATION

We denote vectors it by boldface lower case letters and matrices
in CM>*Y by boldface uppercase letters. The sympol| refers to
thel»-norm of a vector, i.e |x|| = vxx, where(-)" denotes the
conjugate transpose. L@t= [01,...,0]" be theM-element vec-
tor of unknown parameters, whefg” denotes the transpose. The
problem of waveform design is to select the sequence of \oavef
{x;}I¥, in order to best estimate the parametis the model

yi:H(xi)0+ni7 i=1,2,..., N, (1)

whereH(x;) = [h1(x;), ha(x;), ..., ha(x;)] is a knownK x M
matrix and/NV indicates the number of time steps. Thelement de-
sign vectors{x;}; can depend on the past measuremeris=
.,¥yi—1), Wherey; is the i" K-element received signal
vector. TheK -element noise vectofm; } ., are independent iden-
tically distributed (i.i.d) circularly symmetric complé&Xaussian ran-
dom variables with zero mean and variancedenoted byn; ~
CN(0,0°T). WhenH(x) is linear inx, we can writeh; (x)
H;x, j = 1,2,..., M. In this caseH(-) is uniquely determined
by the K x T'matrices{ H1, H», ..., Hs }. For the case of a scalar
parametep,, the measurements are

i=1,2,...,N.

yi = hi(x:)01 + ny, 2

We evaluate the performance of the measurement schemania ter
of the MSE of the ML estimator of; given {y;};~, subject to the



energy constraints [Zf;l ||xz~||2] < Ey, whereFEj is the total

available energy antl [-] denotes the statistical expectation. The
ML estimator off; for the N-step procedure is given by

A(N) Zf\; hl(xi)HYi ®)

R i A

S I (i) |2

and the corresponding MSE E [|é§N) — 91|2] is
2
h 7 A %
MSE(N) ({Xz}z 1 — H ! X) 112 :| . (4)
Sy [ (x|

DenoteE;(y1,...,yi-1) = ||xi(y1,...,yi—1)||>, whereE; rep-

resents the energy allocated at each time &tdfhe total energy in
the measurements is given by

N

Z Ei(yh. .

i=1

£ [{Xz‘(y“wyiﬂ)}f\il} —E

7yz'1)] )

Our goal is to find the best sequence of the transmitted sigsa} Y,
to minimize the MSE™) in (4) under the average energy constraint

E [zjil HxiH?] < Bo. Define SNR({x;}\V.,) as

E[{xily1, .-, yi—1)}iei] .

o2

SNR™) ({xi}Ly) =

The average energy constraint can be rewritten as‘S8NR SNRy,
where SNRB = Eo/0%. Minimizing MSE?Y) subject to an SNR
constraint SNRY) < SNR; is equivalent to minimizing MSE") x
SNR™ [8]. The product of MSEY) and SNR™ is given by

N
Zfil hl(xi)Hni B [Zi:1 ||X2H2]
Sy b ()2 o?

As a benchmark for comparison, we consider the non-adagéise
wherex;(y1,...,yi-1) = VE; X;. Herex;, E; are determin-
istic quantities, independent ¢fi, y2,...,yi—1, ||Xi|| = 1, and

(6)

2
MSE™N) xSNRY) = £

SN, E; < FEo. For the model (2), MSE) is given by
2 2 2
MSE™) = —— 2 N Unh & = U/\ '
Yima I Ga)ll? - 3L, B G T Fodm

M
where equality is achieved iffi x; = vm, the normalized eigen-
vector corresponding tam, the maximum eigenvalue of the chan-
nel matrix H{' H;. Note Am = maxx(x? HI H1x)/(x7x) =
maxy ||h1(x)||?/||x||?. Furthermore, the performance of the ML
estimator does not depend on the energy allocation. Henitle; w
out loss of generality we can assume that all energy is dtdce
the first transmission. The minimum MSE of the one-step (@rno

Energy allocation at second step for a two—step procedi
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Fig. 1. Plot of the optimal solution to the normalized energy trans
mitted at the second stage as a function of received sigriaisat
stage.

and the corresponding M$E to be minimized fron(4) is

|hy (X1)Hn1 + hl(X2)Hn2|2

MSE®
(1 (x)[12 + [[hi(x2)[?)?

E 9)

We assume that the shape of the optimal designs,{xe/||x;| }

is the one-step optimum given by, defined below(??) and min-
imize the MSE over the energy of the waveforms. Derjpte| =
VEoar and ||x2(y1)|| = VEoaz(y1). The average energy con-
straint,€ [x1,x2(y1)] = E [||x1]]* + ||x2]|*] < Eo can be rewrit-
ten asal + E [a2 Y1 ] < 1. We use Lagrangian multipliers to

minimize the MSE? in (9) with respect tav; andas(-) under this
energy constraint. The optimal design for the two-step gdace is

x3(y1) = vVEoa3(y1)vm, Where
wiivy — g (| (y1 = vVEooiha (vi)0)
30 =4 | e = )

has MSE satisfying Msﬁi)n x SNR) = 7, ~ 0.68, anda] ~
0.7421. The optimal solution in terms o8(-) is shown in Fig. 1.
This solution depends on the unknown paraméteand thus we
will call this minimizer an “omniscient” energy allocatistrategy.
The two-step strategy yields32% improvement in performance or
a 1.7dB gain in terms of SNR. The product MSE x SNR, is
plotted for various values af; using both simulations (dotted) and

adaptive N-step) strategy for a scalar parameter is then given bytheory (solid) in Fig. 2. The details of the derivation canfbend

MSIi(j) = 1/SNP0 whereSNR, = AnSNR,. We first look at a
two-step sequential design procedure.

3. OMNISCIENT TWO-STEP SEQUENTIAL STRATEGY

In the two-step sequential procedure, we have= 2 time steps
where in each time step= 1, 2, we can control input waveform;
to obtain signaly;. The two-step ML estimator df; from (3) is

hy (x1)7y1 4+ hy(x2) 7y

0 —
[ (x1) 12 + [ (x2) 2

®)

in [8].

The “omniscient” solution (11) depends on the parameteeto b
estimated. Here, we prove that we can approach the optinwal tw
step solution by implementing & -independent energy allocation
strategy wherd; is bounded, i.e§1 € [0q,0s], 0a, 6, € R. Since
we do not know the value of the actual parameter, we refladsy
a ‘guess’ off; say#d, in the optimal solution to the energy at the
second stage given in (11). The resulting suboptimal ddsign

ai|[hi (vm) [V Eo
g

x2 =VEo 8 (’fh + (61 — eg)D vm, (11)
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Fig. 3. Plot of gain over non-adaptive energy allocation stratanyy

Fig. 2. Reduction in MSE for varying values of energy transmittedtained by implementing the adaptivé-step procedure as a function

at the first stagey; .

Whereﬁl = l’ll(Vm)H (y1 — EoOéIhl(Vm)al) //\ma' ~ C./\/(O, 1).
When the optimal two-step design is used within place of6,,

n(z) = MSE® x SNR is
ai?[fun]® + B2(|7n + z[)
(ai? + B2(Jfn + 2())?

n(z) = E } B [af® + (i + 2])] .

wherez = ajvEo|lhi (vi) || (61 — 6,) /0 = af\/SNRy(61 — 6,)

andSNR” = AnSNR®). Therefore, MSE x SNR" is a func-
tion of z only and is optimum at = 0. Note that when SNR

becomes sufficiently small MSE x §hTR(2) approaches its min-
imal value. Hence instead of performing one two-step proaed

of NV through theory [8] and simulations.

performance of this suboptimal approach using simulati®esfor-
mance gairgy (in dB) is presented in Fig. 3. We see that5it
steps, we are able to achieve a gain of more @il Moreover, by
the same argument presented in Section 3, SNR decreasezhat ea
step which implies that as the number of steps increasetack®f
knowledge or9; has a limited effect on the overall performance.

5. VECTOR PARAMETER CASE

A generalN-step procedure for the case lf unknown parameters

is defined in(1). For the multiple parameter case, we consider the
trace of the MSE matrix as a measure of performance. Thegmobl
of multiple parameter estimation is more complicated thstimea-

we perform a set oV independent two-step procedures with equaltion of a single parameter for the following reason. We stubive
energyEo/N and average the estimates from each step to obtain theection 2 that independent of the shapecpfany non-adaptive en-
new estimate. In such a way, we reduce the SNR at each stagergy allocation strategy is to assign all energy to the fiegps.e., a

thereby eliminating the effect of the unknown parameier As

*

N — o0, z — 0 and the optimum two-step MSE x SNR” = s
is achieved. The complete proof can be found in [8].

4. DESIGN OF N-STEP PROCEDURE

In Section 3, we looked at the optimal two-stage sequengaigth
procedure for energy allocation and proved that we can eehiie
optimal performance using alV x 2-step strategy. In this sec-
tion, we generalize the solution from the two-step case tdestep
strategy. We assume that the shape of the transmitted wavés$o
fixed and look at the energy allocation among the varioussstegt
the energy at step be denoted as&z (y1,...,ye_1), i.€., X =
Vg (Y1,---,¥k—1), 1 <k < N.Then

|3 ha(xi) "oy k> 2
k-1 N2gz = PF ) =
Yima (%) [P

Note that the definition of the energy at each stage is re@rshis
suboptimal energy allocation for th¥-step case is an approxima-
tion to the optimal threshold like solution for the two-stegse. We
chooseA = [A4,...,Ax] andp = [p1,..., pn] appropriately to
satisfy the average energy constraint. The intuition kekttie choice

a1 :*/417 Oék:AM (

one step strategy with total enerdy. But this is not true for a
multiple parameter setting. Let us consider a simple examopésti-
mating two paramete® = [f; 62]7 in the modely = H(x)0 + n,

where
1
0 )

x = [z1 22)T, y = [y1 y2]7, andn = [n1 n2]” ~ CN(0,c%I).
Then for a one-step process, we have M$@,) = 202 /z? and
MSE™M (02) = o2 /2. Minimizing the t{ MSE™) = MSE™ (6,)+
MSE™M (62) (tr denotes the trace) over the energy constriaidi® <
Eo = 1, we obtainz; = x5 = 1/v/2 and t{MSE'"). ) = 602. Now

nin

consider the following two-step non-adaptive energy desig

X2

H(x) .

(12)

Stepl. I

Step2.

TX:x=[z10
Tx:x = [0z2]", Rx: [11]ys = 222602 + [1 1]nz.

, RX: g1 = 2101 +na,

Minimizing tr(MSE®) = MSE® (0;) + MSE®? (03) = 0% /z? +
o?/2x3 over the energy constraint, we obtain = x2 = 1/4/2
and tl(MSEffi)n) = 30, This translates to 8dB gain in SNR for
the two-step non-adaptive strategy over the one step apiprodle
control the inputx = [z 22]” such that we have different energy
allocation for each column of the matH. By specifically design-
ing the two-step non-adaptive strategy given in stend stef2, we

of A, p is motivated by an asymptotic result in [8]. We evaluate thehave reduced the estimation of the vector parantter [6,, 6] to



two independent problems of estimating scalar paraméteandf-
respectively. For each of these scalar estimators, we rilésig V-
step sequential procedures as in Section 4 for scalar ¢entr@and
2 to obtain an improvement in performance of estima#hgAp-
plying the N-step design to both; andz», we have MSEY) (¢;) =

GnMSEY) (6,) and hence tMSE™)) = Gntr(MSE?), ). In other

nin

words, we would obtain the gains of thé-step procedure over non-
adaptive strategies for the vector parameter case as well.

6. APPLICATIONS OF SEQUENTIAL ESTIMATION

6.1. MIMO Channel Estimation

One important component in a MIMO system is the need to accu-

rately estimate the channel state information (CSI) atrdmesimitter
and receiver. Recently, [2] proposed four different tnagnbased
methods for the flat block-fading MIMO system including tleadt
squares and best linear unbiased estimator (BLUE) appifoathe
case of multiple LS channel estimates. In order to estinete & ¢
channel matrix® with ¢ transmit andr receive antennasy > t
training vectorsX = [x1, . ..
ing received signal iR = ©®©X + M, whereR = [rq,..
ar x N matrix, M = [my,..

. ,I‘N] is
.,my] is ther x N matrix of sen-

sor noisex; is thet x 1 complex vector of transmitted signals and

m; is ther x 1 complex zero-mean white noise vector. Lt be
the transmitted training power constraint, igX || = Po, | - ||r
indicates Frobenius nornfiX||r = /tr(X#X)) ando? denote the
variance of receiver noise. Assuming co-located traneméthd re-
ceiver arrays and multiple training periods available ithe same
coherency time (quasi-static) to estimate the channels¢hef re-
ceived signals can be rewritten in the following form:
yi=H(X;)0 +n; i=12,...,K, (13)
wherey; = veqR;),0 = ved®),n; = veqM,), ved-) denotes
the column-wise concatenation of the matiik(X;) = (X; ® I)”
is a linear function of the inpuX;, and® denotes the Kronecker
product, which is the same model describedlin In [2], a method
of linearly combining the estimates from tli€ transmission stages

was proposed and the MSE of thé step estimator was shown to be

MSEE? = o*t*r/ Py, whereP, is the total power used in th&

steps, i.e.y" = | || X;||# < Po. If we have enough training samples,

we could completely control the matrid (X;) through our input
X,; and we can mak&I(X;) orthogonal. In this casel§) along
with the average power constraiit[}", || X;[|#] < P falls in the
framework of the problem of adaptive energy allocation ict®as
4 and 5 where the problem is then separable iNtandependent
estimation problems of scalar parameters. Hauvigteps in the
training sequence also directly enables us to implemenfostep
strategy to achieve optimal performance. Hence it direfciipws
that using our strategy we are guaranteed to achieve thealgiror

given by MSQ? ~ gKO'2t27‘/PO, which we have shown to be at
least5dB (in 50 steps) better than any non-adaptive strategy.

6.2. Inverse Scattering Problem

The problem of imaging a medium using an array of transdutass
been widely studied in many research areas such as mindidetec
ultrasonic medical imaging, and non-destructive testifge goal
in imaging is to detect and image small scatterers in a kncaak-b

ground medium. We apply our concept of designing a sequeihce o

measurements to image a medium of multiple scatterers wsing

, x| are transmitted. The correspond-

array of transducers. The imaging area (or volume) is dividéo

V voxels and the channel, denotad between a candidate voxel
and theN transducers is given by the homogeneous Green’s func-
tion and ignores the effect of multiple scattering. Eachelaan

be characterized by its scatter coefficient, e.g., radagsesection,
{6;}Y_,, which indicates the proportion of the received field that is
re-radiated. Thus the channel between the transmitteddiedhe
measured backscattered field at the transducer arvagliy 0) A7,
whereA = [a1,a2,--- ,av], 8 = [01,02,---,0v]", and diagh)
isaV x V diagonal matrix withy; as its:" diagonal element. The
probing mechanism for imaging of the scatter cross sectoegtes

the following sequence of noise contaminated signals
yi = Adiag@)A"x; + n; = H(x;)0 + n;, (14)
whereH(x;) = AdiaglA"x;). The goal is to find estimates for
the scattering coefficien® under the average energy constraint to
minimize the MSE. IfA is an invertible square matrix, then we can
condition diagA”x;) to have a single non zero component on any
one of the diagonal elements, which translates to isolatieg™
column for anyi. As in Section 5, we can perfori independent
N-step experiments to guarantee tNestep gains of at leasidB
over the standard single step ML estimation for imaging [10]

7. CONCLUSIONS

In this paper we considered thé-step adaptive waveform-amplitude
design problem for estimating parameters of an unknown redlan
under average energy constraints. For= 2 and a linear Gaus-
sian channel model, we found the optimal amplitude to tranam
the second step as a function of the first measurement forlar sca
parameter case. We showed that this two-step adaptivegjrab-
tained an improvement of at lealstdB over any non-adaptive strat-
egy. We then designed a suboptiméstage procedure based on the
two-step approach and proved gains of more thdl in N = 50
steps. Furthermore, we extended our results to the casectifrve
parameters. To conclude, we provided applications of osigdeto
MIMO and inverse scattering channel models.
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