Integrated Fusion, Performance Prediction, and Sensor Management for Automatic Target Exploitation

Sparse Reconstruction and Feature Extraction

MURI Review Meeting

Lee Potter, Müjdat Çetin, Emre Ertin, Clem Karl, Randy Moses

September 14, 2007

Kick-off Vision: Decision-Directed Imaging

$$\widehat{f} = \arg\min_{f} \{-\log p(g|f) + \Psi(f)\}$$

Changing $\Psi(f)$ changes image and enhances/suppresses features of interest.

$$J(\mathbf{f}) = \left\| \mathbf{g} - \mathbf{T} \mathbf{f} \right\|_{2}^{2} + \alpha \left\| \boldsymbol{\phi}(\mathbf{f}) \right\|_{p}^{p}$$

Likelihood: physical model Prior and sparse representation (regularization)

Cetin (MIT) + Karl (BU)

MURI: Integrated Fusion, Performance Prediction, and Sensor Management for Automatic Target Exploitation

Kick-off Vision: Sensor and Signal Models

Canonical Shape	Icon	Scattering Model $S_{T(m)}$			
Top-hat		$S_{top} = \left(j\frac{f}{f_c}\right)^{1/2} \sin(\theta - \theta_m)$ $\theta \in (\theta_m, \theta_m + \frac{\pi}{4})$			
Trihedral		$S_{trih} = \left(j\frac{f}{f_c}\right)\sin(\phi - \phi_m)\cos\theta\sin(\theta - \theta_m)$ $\theta \in (\theta_m, \theta_m + \frac{\pi}{4}) \qquad \phi \in (\phi_m, \phi_m + \frac{\pi}{4})$			
Dihedral		$S_{dih} = \left(j\frac{f}{f_c}\right)\sin(\theta - \theta_m)$ $\cdot \operatorname{sinc}\left[\frac{2\pi f}{c}L_m\cos\psi_m\cos\phi_m\sin(\phi - \phi_m)\cos(\theta)\right]$ $\theta \in (\theta_m, \theta_m + \frac{\pi}{4}) \qquad \phi \in (\phi_m - \frac{\pi}{2}, \phi_m + \frac{\pi}{2})$			
Cylinder		$S_{cyl} = \left(j\frac{f}{f_c}\right)^{1/2} \operatorname{sinc}\left[\frac{2\pi f}{c}L_m \cos\psi_m \cos\phi_m \sin(\phi - \phi_m)\cos(\theta)\right]$ $\phi \in \left(\phi_m - \frac{\pi}{2}, \phi_m + \frac{\pi}{2}\right)$			
			Jackson + Moses (OSU)		

MURI: Integrated Fusion, Performance Prediction, and Sensor Management for Automatic Target Exploitation

What did we say at the kickoff? What have we done? - I

- Statistical shape models
- Physics-driven basis sets for regularized inversion
 - Use prior information in basis sets
 - Extract object-level information
- Physical optics for model-based imaging
 - **3**D
 - Sparse apertures
- Decision-directed feature extraction

Themes

- Posterior probabilities
 - Language for fusion
- Sparseness v. sparseness
 - Sparse apertures
 - Sparse signal representations
- Complexity reduction
 - 3D = 2+1
 - Dictionary grammar
 - Surrogate costs
- Directed processing
 - Adapt processing to priors, hypotheses

Ertin Ramakrishnan

Jointly reconstruct sparse IFSAR images with constraint on the pixel magnitudes

 $\underset{f_1, f_2}{\arg\min} \quad \|g_1 - T_1 f_1\|_2^2 + \|g_2 - T_2 f_2\|_2^2 + \lambda_1^2 \|f_1\|_p^p + \lambda_2^2 \|f_2\|_p^p$ subject to $|(f_1)_i| = |(f_2)_i| \quad i = 1, ..., N$

Traditional point scattering model is ill-suited to wide angle scattering

MURI: Integrated Fusion, Performance Prediction, and Sensor Management for Automatic Target Exploitation

Priors: smooth aspect, sparse scattering

Non-parametric, aspect-dependent imagingFormulation:

$$\hat{s}(x, y; \theta) = \arg\min_{s} \left[-\ln p(r \mid s) + J_{\text{aspect}}(|s|) + J_{\text{space}}(|s|) \right]$$

$$Data_{\text{Model}}$$

$$Aspect Prior_{\text{Knowledge}}$$

$$Spatial Prior_{\text{Knowledge}}$$

- J_{aspect}: e.g. piecewise smoothness of aspect dependent magnitude scattering behavior
- *J*_{space}: e.g. spatial sparsity of magnitude scattering behavior

Backhoe CAD Model

Conventional Polar-Format Image Azimuth extent: 5° Bandwidth: 500MHz

X-Patch Backhoe Example

Wide aperture 110°

Wide aperture 110°

Image of maximum aspect change

Quiver plot of magnitude and direction of scattering field

Anisotropic scattering: Dictionary + "grammar"

 Incorporate into dictionary prior information about scattering behavior

NxM matrix M=N(N+1)/2

MURI: Integrated Fusion, Performance Prediction, and Sensor Management for Automatic Target Exploitation

MURI: Integrated Fusion, Performance Prediction, and Sensor Management for Automatic Target Exploitation

Example results -2

 Estimated scattering functions of three scatterers

MURI: Integrated Fusion, Performance Prediction, and Sensor Management for Automatic Target Exploitation

Other dictionaries: migrating phase centers

 Characterize reflector migration over subapertures

MURI: Integrated Fusion, Performance Prediction, and Sensor Management for Automatic Target Exploitation

- Internal summary: wide angle SAR
- Jointly characterize location and anisotropy from wide-angle SAR
 - Sparse signal representation for inversion
 - Model anisotropy using overcomplete dictionary
 - Approximate, graph-structured algorithm
 - Migratory atoms in overcomplete dictionary
 - Hough space regularization for glint anisotropy (have not described here)

Volumetric imaging

backprojection of ideal scatterer - using actual radar flight path

Nonlinear flight paths with sparse elevation sampling; aliasing and high side lobes in slant plane height

Volumetric Imaging

Coherent 360° image of a Taurus using all 8 elevation angles.

MURI: Integrated Fusion, Performance Prediction, and Sensor Management for Automatic Target Exploitation

Coherent 360° images using all 8 elevation angles.

Extension of nonquadratic regularization based image reconstruction methods [Cetin & Karl, 2001] to 3D

$$\arg\min_x \{ \|H \ast x - y\|^2 + \lambda \|x\|^p \}$$

Multi-pass forward model

MURI: Integrated Fusion, Performance Prediction, and Sensor Management for Automatic Target Exploitation

Posterior Cramér-Rao bound provides feature uncertainties

VSAR Image

Parametric Model Fit

- Nonconvex regression for {x,y,z,L,φ} at each reflector
 - Initialize using dictionary and noncoherent greedy selection
 - Design dictionary using Fisher information for parametric model

MURI: Integrated Fusion, Performance Prediction, and Sensor Management for Automatic Target Exploitation

Surrogate cost function for nonconvex regression

MURI: Integrated Fusion, Performance Prediction, and Sensor Management for Automatic Target Exploitation

Correlation and ambiguity

Easily confused best-fit features

	Model Fit Errors (dB)					
True Signal	Plate	Dihedral	Trihedral	Cylinder	Top-hat	Sphere
Plate	-43.0668	-42.3765	15.1250	-41.6044	15.6085	15.6083
Dihedral	-16.9800	-16.9292	15.1074	-19.7509	15.6003	15.6001
Trihedral	-14.5679	-14.6323	-26.6534	-20.3218	1.0707	6.3117
Cylinder	-25.9517	-29.6208	-15.2579	-29.6863	-5.8281	-5.8310
Top-hat	-13.7339	-15.4873	-14.7378	-11.8658	-15.6206	-14.5147
Sphere	-16.0719	-37.9948	-28.3642	-38.0509	-33.1546	-38.3475

Multiple models may fit well to the observed feature

Ertin Potter

?

Single orbit image [Gotcha]

MURI: Integrated Fusion, Performance Prediction, and Sensor Management for Automatic Target Exploitation

MURI: Integrated Fusion, Performance Prediction, and Sensor Management for Automatic Target Exploitation

Ertin Potter

Object model: vertically aligned one- and two-bounce reflectors 3D from layover

Transferring insight

- Electron paramagnetic resonance for medical imaging
 - Guide radiation therapy for tumors
 - Non-invasively monitor stents in coronary arteries

- Goal: accurate estimates with fast acquisition.

Signal is sparse in the field-of-view.

40:1 reduction in data acquisition time

•L-band spectrometer, 13 projections.

Initialization: regularized least-squares with constant line-shape
Nonlinear regression: 3D iterative spatially variant reconstruction

Themes

- Posterior probabilities
 - Language for fusion
- Sparseness v. sparseness
 - Sparse apertures
 - Sparse signal representations
- Complexity reduction
 - 3D = 2+1
 - Dictionary grammar
 - Surrogate costs
- Directed processing
 - Adapt processing to priors, hypotheses

What's next - I

Regularized linear inversion

- Automatic hyperparameter choice
- Errors in sensing model parameters
- Learn scattering functions from data
- Design dictionary from target hypotheses
- Anisotropic penalties in 3D & 4D
- Multipass IFSAR

Radar sensor degrees of freedom for unambiguous signal representation

	Best-fit Confuser Shapes						
	Monostatic	Monostatic	Bistatic				
True Shape	Linear	$\mathbf{Nonlinear}$	Nonlinear				
Plate	<u>-dihedral</u> <u>-cylinder</u>						
Dihedral	<u> </u>	<u> </u>	plato				
Trihedral			plate, dih , cyl , top-hat				
Cylinder	<u> </u>	<u> </u>	dihedral trihedral				
Top-hat	plate, dih., trih., cyl., sphere	dihedral, cylinder , sphere	plate, dihedral, trihedral				
Sphere	dihedral cylinder		dihedral, top-hat				

Polarization inconsistency

RCS inconsistency

What's next - III

Regularized linear inversion for nonlinear regression problems

 Unifying parametric and nonparametric processing techniques

MURI: Integrated Fusion, Performance Prediction, and Sensor Management for Automatic Target Exploitation