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ABSTRACT

We consider principal component analysis (PCA) in decomposable
Gaussian graphical models. We exploit the prior information in these
models in order to distribute its computation. For this purpose, we
reformulate the problem in the sparse inverse covariance (concen-
tration) domain and solve the global eigenvalue problem using a se-
quence of local eigenvalue problems in each of the cliques of the de-
composable graph. We demonstrate the application of our methodol-
ogy in the context of decentralized anomaly detection in the Abilene
backbone network. Based on the topology of the network, we pro-
pose an approximate statistical graphical model and distribute the
computation of PCA.

Index Terms— Principal component analysis, graphical mod-
els, distributed data mining.

1. INTRODUCTION

We consider principal component analysis (PCA) in Gaussian graph-
ical models. PCA is a classical dimensionality reduction method
which is frequently used in statistics and machine learning. Gaus-
sian graphical models, also known as covariance selection models,
provide a graphical representation of the conditional independence
structure within the Gaussian distribution [1, 2]. This structure al-
lows for efficient distributed implementation of statistical inference
algorithms, e.g., the well known belief propagation method. Our
main contribution is the application of decomposable graphical mod-
els to PCA which we nickname DPCA, where D denotes both De-
composable and Distributed.

The main motivation for DPCA is decentralized PCA. Dis-
tributed dimensionality reduction plays a leading role in distributed
estimation and compression theory in wireless sensor networks and
decentralized data mining techniques, e.g., [3, 4, 5] and references
within. It has also been used in anomaly detection in computer net-
works [6]. Graphical models have been recently developed for these
setting within the statistics and signal processing communities, e.g.,
[7, 8].

DPCA exploits the structure of the decomposable graphical
model in order to distribute the PCA computation. Decomposable
covariance selection models result in sparse concentration (inverse
covariance) matrices which can be estimated in a decentralized
manner. Therefore, we propose to reformulate DPCA in the con-
centration domain and solve the global eigenvalue problem using
a sequence of local eigenvalue problems in each of the cliques of
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the graph with a small amount of message passing. This allows for
distributed implementation according to the topology of the graph
and reduces the need to collect all the observed data in a centralized
processing unit. When the algorithm terminates, each clique obtains
its own local version of the principal components.

To illustrate DPCA we apply it to distributed anomaly detection
in Internet traffic on the Abilene backbone network [9, 6]. In this
context, DPCA learns a low dimensional model of the normal traffic
behavior and allows for simple outlier detection. This application
is natural since the network’s topology provides a physical basis for
constructing an approximate graphical model. For example, consider
two nodes which are geographically distant and linked only through
a long path of nodes. It is reasonable to believe that their information
is approximately independent conditioned on the values of the nodes
on the path. We examine the validity of this claim by applying DPCA
in the context of anomaly detection in the Abilene network using a
real-world dataset.

The outline of the paper is as follows. In Section 2, we begin
with a brief review on decomposable graphical models. In Section 3
we introduce the problem formulation and solution to DPCA. Next,
in Section 4 we illustrate its application to anomaly detection using
a real-world dataset from the Abilene backbone network.

The following notation is used. Boldface upper case letters de-
note matrices, boldface lower case letters denote column vectors,
and standard lower case letters denote scalars. The superscripts (·)T

and (·)−1 denote the transpose and matrix inverse, respectively. The
cardinality of a set a is denoted by |a|. The matrix I denotes the
identity, eigmin (X) is the minimum eigenvalue of square symmet-
ric matrix X, umin (X) is its associated eigenvector, eigmax (X) is
the maximum eigenvalue of X, and X Â 0 means that X is positive
definite. Finally, we use indices in the subscript [x]a or [X]a,b to
denote sub-vectors or sub-matrices, respectively, and [X]a,: denotes
the sub-matrix formed by the a’th rows in X. Where possible, we
omit the brackets and use xa or Xa,b instead.

2. REVIEW ON DECOMPOSABLE GRAPHICAL MODELS

Graphical models are intuitive characterizations of conditional in-
dependence structures within multivariate distributions [1, 2]. An
undirected graph G is a set of nodes connected by undirected edges.
A random vector x satisfies the Markov property with respect to G, if
for any pair of non-adjacent nodes the corresponding pair of random
variables are conditionally independent given the values of the rest
of the elements in x. In the Gaussian distribution, this definition has
an appealing property. If K is the concentration matrix of a jointly
Gaussian multivariate x that satisfies G, then [K]i,j = 0 for any pair
{i, j} of non-adjacent nodes.

Decomposable graphs are a specific type of graphs which pos-



sess a special structure. A graph is decomposable (or chordal) if it
can be recursively be subdivided into disjoint sets of nodes a, b and
c, where c separates a and b, and c is complete, i.e., there are no
edges between a and b and all the nodes in c are connected by an
edge. The simplest non-trivial decomposable graph is:

a

©←→
c

©←→
b

© (1)

A clique is a maximal subset of nodes which is fully connected. It is
convenient to represent a decomposable graph using a sequence of
cliques C1, · · · , CK which satisfy a perfect elimination order. An
important property of this order is that Sj separates Hj−1\Sj from
Rj where

Hj = C1 ∪ C2 ∪ · · · ∪ Cj , j = 1, · · · , K

Sj = Hj−1 ∩ Cj , j = 2, · · · , K

Rj = Hj\Hj−1, j = 2, · · · , K. (2)

For example, in the graph in (1) we define C1 = {a, c}, C2 =
{c, b}, S2 = {c}, H1 = {a, c}, H2 = {a, c, b} and R2 = {b}.
Accordingly, S2 = {c} separates H1\S2 = {a} from C2\S2 =
{b}.

3. DECOMPOSABLE PRINCIPAL COMPONENT
ANALYSIS

3.1. Problem Formulation

Let G be a decomposable graph with the clique structure described
in (2) above. Let x be a zero mean, Gaussian random vector which
follows the Markov properties of G.

The input to DPCA is a set of n independent and identically
distributed realizations of x denoted by xi for i = 1, · · · , n.
More specifically, this input is locally distributed in the sense
that each clique has access only to [xi]Ck

for i = 1, · · · , n and
k = 1, · · · , K. Using this data and message passing between the
cliques, DPCA searches for the linear combination X = uT x hav-
ing maximal variance. When the algorithm terminates, each of the
cliques obtains its own local version of u, i.e., the sub-vectors [u]Ck

.

3.2. Solution: covariance estimation

Similarly to PCA, the first phase of DPCA is covariance estimation.
An appealing property of decomposable Gaussian graphical model
is that global Maximum Likelihood (ML) estimation of the concen-
tration matrix has a simple closed form which can be computed in a
distributed manner [1]:

K =

K∑

k=1

[
K̃Ck,Ck

]0

−
K∑

k=2

[
K̃Sk,Sk

]0

(3)

where the local estimates are defined as the inverses of the local sam-
ple covariances:

K̃Ck,Ck =

(
1

n

n∑
i=1

[xi]Ck
[xi]

T
Ck

)−1

, k = 1, · · · , K (4)

K̃Sk,Sk =

(
1

n

n∑
i=1

[xi]Sk
[xi]

T
Sk

)−1

, k = 2, · · · , K, (5)

The zero fill-in operator [·]0 in (3) outputs a matrix of the same
dimension as K where the argument occupies the appropriate sub-
block and the rest of the matrix has zero valued elements. For exam-
ple, in the simple two cliques graph in (1) we obtain:

K =


 K̃C1,C1 0

0
0 0 0


 +




0 0 0
0
0

K̃C2,C2


−




0 0 0

0 K̃S,S 0
0 0 0


 ,

(6)

where we have used the order xT = [ a c b ]. Note the sparse
block structure of the ML estimate in which Ka,b = KT

b,a = 0. On
the other hand, the global ML covariance estimate is the inverse of
the concentration estimate, i.e., S = K−1, and is not necessarily a
sparse matrix.

3.3. Solution: principal eigenvalue

The next phase in DPCA is principal eigenvalue computation. Given
the global estimate S, the PCA objective function is estimated as
uT Su and maximized subject to a norm constraint to yield

eigmax (S) =

{
maxu uT Su
s.t. uT u = 1.

(7)

This optimization gives both the maximal eigenvalue of S and its
eigenvector u.

The drawback to the above solution is that the EVD computa-
tion requires centralized processing and does not exploit the struc-
ture of K. Each clique needs to send its local covariance to a central
processing unit which constructs S and computes its maximal eigen-
value and eigenvector. We will now provide an alternative distributed
DPCA algorithm in which each clique uses only local information
along with message passing in order to calculate its local version of
eigmax (S) and u.

Our first observation is that DPCA can be equivalently solved in
the concentration domain instead of the covariance domain. Indeed,
it is well known that

eigmax (S) =
1

eigmin (K)
, (8)

when the inverse K = S−1 exists. The corresponding eigenvectors
are also identical. The advantage of working with K instead of S is
that we can directly exploit K’s sparsity as expressed in (6).

We now return to the problem of finding λ = eigmin (K) in a
distributed manner. We begin by expressing λ as a trivial line-search
problem:

λ = sup t s.t. t < eigmin (K) (9)

and note that the objective is linear and the constraint set is convex.
It can be solved using any standard line-search algorithm, e.g. bi-
section. At first, this representation seems useless as we still need to
evaluate eigmin (K) which was our original goal. However, we will
now show that checking the feasibility of a given t can be done in
a distributed manner. For simplicity, we begin with the simple two
cliques graph in (1), and obtain the following proposition.

Proposition 1 Let K be a symmetric matrix with Ka,b = KT
b,a =

0. Then, the constraint

t < eigmin







Ka,a Ka,c 0
Kc,a Kc,c Kc,b

0 Kb,c Kb,b





 (10)



is equivalent to the following pair of constraints

t < eigmin (KR2,R2) (11)

t < eigmin

(
KH1,H1 −

[
0 0
0 M (t)

])
(12)

with the message matrix defined as

M (t) = KS2,R2 (KR2,R2 − tI)−1 KR2,S2 . (13)

The proof is obtained by rewriting (10) as a linear matrix inequality
and using Schur’s Lemma [10, Appendix A5.5]. More details can be
found in [11].

Proposition 1 shows that the global eigenvalue inequality is
equivalent to two local eigenvalue inequalities. Using the recur-
sive structure of decomposable graphs, we can recursively decouple
these inequalities again until we obtain one local eigenvalue problem
in each clique. Thus, for any given t we can check the feasibility by
solving local eigenvalue problems and message passing via M (t)
whose dimensions are equal to the cardinalities of the separators.
The optimal global eigenvalue is then defined as the maximal glob-
ally feasible t.

In Algorithm 1 displayed below we provide a pseudo code for
DPCA that solves for t using the bisection method. Given initial
bounds L ≤ eigmin (K) ≤ U , Algorithm 1 is guaranteed to find the
minimal eigenvalue up to any required tolerance ε within log2

U−L
ε

iterations. Each iteration consists of up to K − 1 messages through
the matrices Mk (t) whose dimensions are equal to the cardinalities
of Sk for k = 2, · · · , K. A simple choice for the bounds is L = 0
and U = mink=1,··· ,K{eigmin (KCk,Ck )}.

Algorithm 1: Bisection line search for DPCA
Input: K, L, U , ε, clique tree structure
Output: t
while U − L > ε do

t = (U + L) /2
Q = K
for k = K, · · · , 2 do

if t < eigmin (QRk,Rk ) then
Mk (t) = QSk,Rk (QRk,Rk − tI)−1 QRk,Sk

QSk,Sk = QSk,Sk −Mk (t)
else

U = t
break loop

end
end
if U > t then

if t < eigmin (QC1,C1) then
L = t

else
U = t

end
end

end

3.4. Solution: principal eigenvector

After we obtain the minimal eigenvalue λ, we can easily recover
its corresponding eigenvector using similar local computations. For

simplicity, we begin again with the two cliques case in (6). Usually,
we have the strict inequality

eigmin (KR2,R2) > eigmin

(
KH1,H1 −

[
0 0
0 M (λ)

])
, (14)

in which case λ is given by the right hand side of (14) and the corre-
sponding eigenvector u is [11]

[u]C1
= umin

(
KH1,H1 −

[
0 0
0 M (λ)

])
(15)

[u]b = − [KR2,R2 − λI]−1 KR2,S2 [u]c . (16)

In general, it is possible that the inequality in (14) will not hold.
In this case, λ is equal to the left hand side of (14), and the corre-
sponding eigenvector is simply

[u]C1
= 0 (17)

[u]R2
= umin (KR2,R2) . (18)

This singular case is highly unlikely as the probability of (17) in
continuous models is zero. However, it should be checked for com-
pleteness.

The generalization of the two cliques solution to decomposable
graphs is a straightforward application of their recursive definition.
A pseudo code of this method is provided in Algorithm 2 below. The
first while loop searches backwards for the clique associated with λ,
whereas the second for loop propagates the solution forward.

Algorithm 2: Eigenvector computation
Input: K, λ, clique tree structure
Output: u
u = 0
Q = K
k = K
while (k > 1)& (λ < eigmin (QRk,Rk )) do

Mk (λ) = QSk,Rk (QRk,Rk − λI)−1 QRk,Sk

QSk,Sk = QSk,Sk −Mk (λ)
k = k − 1

end
u (Ck) = umin (QCk,Ck )
for k = k + 1, · · · , K do

u (Rk) = − (QRk,Rk − λI)−1 QRk,Sku (Sk)
end

3.5. Solution: higher order components

Algorithms 1 and 2 can be extended to compute higher order compo-
nents. We begin with the first component u1, find it and then rerun
the algorithms with respect to K + µu1u

T
1 where µ is a sufficiently

large number which ensures that u1 will not be found again. This
extension is not straightforward as K+µu1u

T
1 is no longer a sparse

matrix. Nonetheless, the modification is of low rank and can be han-
dled efficiently with only a slight increase in the required message
passing. More details about this procedure are available in [11].

4. APPLICATION TO DISTRIBUTED ANOMALY
DETECTION IN NETWORKS

A promising application for DPCA is distributed anomaly detection
in computer networks. In this context, PCA is used for learning a low
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Fig. 1. Anomaly detection in the Abilene backbone network using DPCA.

dimensional model for normal behavior of the traffic in the network.
The samples are projected into the subspace associated with the first
principal components. Anomalies are then easily detected by exam-
ining the residual norm. Our hypothesis is that the connectivity map
of the network is related to its statistical graphical model. The in-
tuition is that two distant links in the network are (approximately)
independent conditioned on the links connecting them and therefore
define a graphical model. We do not rigorously support this claim
but rather apply it in a heuristic manner in order to illustrate DPCA.

Following [9, 6], we consider a real world dataset of Abilene, the
Internet2 backbone network. This network carries traffic between
universities in the United States. Figure 1(a) shows the router con-
nectivity map consisting of 11 routers and 41 links (each edge cor-
responds to two links and there are additional links from each of the
nodes to itself). Examining the network it is easy to see that the links
on the east and west sides of the map are separated through six cou-
pling links: DNVR-KSCY, SNVA-KSCY and LOSA-HSTN. Thus,
our first approximated decomposable graph, denoted by G2 cliques,
consists of two cliques: an eastern clique and a western clique cou-
pled by these six links. Graph G2 cliques corresponds to a decompos-
able concentration matrix with a sparsity level of 0.33. Our second
decomposable graph denoted by G3 cliques is obtained by redividing
the eastern clique again into two cliques separated through the four
coupling links: IPLS-CHIN and ATLA-WASH. Its corresponding
concentration matrix has a sparsity level of 0.43. Finally, for com-
parison we randomly generate an arbitrary graph Grandom over the
Abilene nodes, with an identical structure as G3 cliques (three cliques
of the same cardinalities), which is not associated with the topology
of the Abilene network.

In our experiments, we learn the 41×41 covariance matrix from
a 41 × 1008 data matrix representing 1008 samples of the load on
each of the 41 Abilene links during the period April 7-13, 2003.
We compute PCA and project each of the 1008 samples of dimen-
sion 41 into the null space of the first four principal components.
The norm of these residual samples is plotted in the top plot of Fig.
1(b). It is easy to see the spikes putatively associated with anoma-
lies. Next, we examine the residuals using DPCA with G2 cliques,
G3 cliques and Grandom. The norms of the residuals are plotted in the
three lower plots of Fig. 1(b)., respectively. As expected, the topol-
ogy based plots are quite similar with spikes occurring at the times
of these anomalies. Thus, we conclude that the decomposable graph-
ical model for Abilene is a good approximation and does not cause
substantial loss of information (at least for the purpose of anomaly
detection). On the other hand, the residual norm using the random
graph model is a poor approximation as it does not preserve the
anomalies detected by the full non-distributed PCA. These conclu-
sions are supported in Fig. 1(c) where we show the absolute errors

of DPCA with respect to PCA using the different graphical models.
It is easy to see that G2 cliques results in minimal error, G3 cliques pro-
vides a reasonable tradeoff between performance and computational
complexity (through its increased sparsity level), while graph Grandom

is clearly a mismatched graphical model and results in significant in-
crease in error.
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