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ABSTRACT
We propose a class of multiscale graphical models and algo-
rithms to estimate means and approximate error variances of
large-scale Gaussian processes efficiently. Based on emerging
techniques for inference on Gaussian graphical models with
cycles, we extend traditional multiscale tree models to pyra-
midal graphs, which incorporate both inter- and intra- scale
interactions. In the spirit of multipole algorithms, we develop
efficient inference methods in which variables far-apart com-
municate through coarser resolutions and nearby variables in-
teract at finer resolutions. In addition, we propose methods to
update the estimates rapidly when measurements are added or
new knowledge of a local region is provided.

Index Terms— graphical models, Gauss-Markov random
fields, multiresolution, multiscale, large-scale estimation prob-
lems

1. INTRODUCTION

The multiscale, or multiresolution modeling framework [1]
has attracted much attention in the signal and image process-
ing community for its rich modeling power as well as com-
putational efficiency. Traditional multiscale models use tree-
structured graphs (Figure 1 (bottom left)), which provide ex-
tremely powerful and efficient algorithms, but have limited
modeling power that may lead to blocky artifacts. Other ap-
proaches, motivated by multigrid methods, use multiple-scale
algorithms for computational efficiency but do not have con-
sistent stochastic structures between different scales. These
limitations have been recognized by a number of researchers,
who consider models that incorporate both intra- and inter-
scale interactions [1], [2]. However, due to the resulting model
complexity, they either allow only a limited extension of mul-
tiscale trees or use computationally expensive methods such
as simulated annealing to get solutions.

In recent years, there have been significant advances in
understanding and developing efficient inference algorithms
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for a larger class of Gaussian graphical models [3], [4]. Thanks
to these emerging techniques, it is no longer required to limit
the graph structure to trees in order to obtain tractable infer-
ence algorithms. This paper presents a pyramidal graph in
which consistent statistical links exist between neighbors at
each scale as well as between adjacent scales. We develop
highly efficient algorithms motivated by multipole methods
[5] to compute the optimal estimates as well as uncertain-
ties of the estimates given noisy measurements at some of the
nodes. In addition, using the consistent graphical structure of
our model, the estimates can be updated rapidly when mea-
surements are added or new knowledge of a local region (for
example, existence of discontinuities in the field) is provided.
The problem of fitting the model to best explain the given data
is also addressed and simulation results are presented.

2. GAUSS-MARKOV RANDOM FIELDS

A Gaussian random process x can be represented by a graph
G consisting of nodes V and edges E . Each node s is asso-
ciated with a random variable1 xs, and edges connecting the
nodes capture the statistical dependencies among the random
variables. The pdf of a Gaussian process x, parameterized
by its mean µ and covariance matrix P , can be equivalently
represented in information form J = P−1, and h = P−1µ.
The inverse covariance matrix J is sparse with respect to G: a
nonzero off-diagonal element in matrix J indicates the pres-
ence of an edge linking the corresponding nodes.

Consider a sparse noisy observation vector y = Cx + v,
where v ∼ N (0, R) is a Gaussian white noise process. The
conditional distribution of x is p(x|y) ∝ exp(− 1

2xT Jx +
xT h), where J = Jprior + CT R−1C and h = hprior +
CT y. The optimal estimates and error covariance matrix can,
in principle, be computed as

x̂ = arg max p(x|y) = E[x|y] = J−1h (1)
P̂ = E[(x− x̂)(x− x̂)T |y] = J−1. (2)

1All analysis in the paper can be easily extended to the case when xs is a
random vector.



Fig. 1. (top) A pyramidal graphical model for two-
dimensional processes, and its decomposition into (bottom
left) a quadtree and (bottom right) nearest-neighbor grids.

2.1. Inference using tractable subgraphs

For problems with a large number of variables, the matrix in-
version in (1) and (2) becomes intractable. Tree-structured
graphs provide efficient linear complexity algorithms to com-
pute both conditional means and error variances [1], but have
limited modeling capabilities. For inference on graphs with
cycles, embedded subgraph algorithms [3] utilize tractable
subgraphs such as trees or subgraphs consisting of a small
number of variables at each iteration to solve (1). For walk-
summable models [3], it can be proven that the iterations con-
verge for any sequence of subgraphs as long as each edge and
node is updated infinitely often. This allows us to choose sub-
graphs adaptively for each iteration to reduce estimation error
quickly as possible.

The Lagrangian Relaxation (LR) method [4] decomposes
an intractable graph explicitly into tractable subgraphs and
uses the estimates in each subgraph to perform approximate
inference for the entire graph. At each iteration, nodes and
edges shared by a set of subgraphs exchange potentials to
match marginal statistics. For the Gaussian case, this algo-
rithm converges to the true conditional means and gives upper
bounds on the variances.

3. PYRAMIDAL GRAPHS

The convergence rate of iterative inference algorithms can be
significantly improved by introducing auxiliary variables that
represent the field of interest at coarser resolutions. Although
the pyramidal graph we are proposing here can easily incor-
porate data or user objectives at multiple resolutions, we focus
on the case that the coarser scales are merely acting to help
inference at the finest scale. Let’s assume that the field of in-
terest is two-dimensional and originally can be described at a
single resolution. We construct a pyramidal graphical model

shown in Figure 1 (top) by placing the original field at the
bottom of the hierarchy and introducing hidden variables at
coarser scales. Unlike multigrid methods and the models con-
sidered in [2], the measurements are not replicated at coarser
scales. We denote the coarsest scale in our pyramidal graph
as Scale 1 and the finest scale as Scale M.

Suppose that the field we are estimating is smooth overall,
with the possible exception of a few discontinuities. The thin-
membrane model penalizes the differences between the neigh-
boring nodes: p(x) ∝ exp(−α

∑
i∈V

∑
j∈N (i)(xi − xj)2),

where N (xi) is the set of neighboring nodes of i, and α is a
parameter that controls the strength of constraints. We extend
this thin-membrane model to define prior in the pyramidal
graph, which consists of two components: Jprior = Jt + Js.
The quadtree structure in Figure 1 (bottom left) is represented
by Jt, which imposes the constraint that each parent node has
a value close to its children. Js corresponds to the nearest
neighbor grid model for each scale as shown in the bottom
right plot and imposes smoothness within each scale. With-
out loss of generally, we assume that hprior = 0. As long as
all parameters are nonnegative, it can be easily shown that the
pyramidal graph is walk-summable.

The resulting marginal covariance at the finest scale has
long-range correlations compared to its monoscale counter-
part thanks to coarser scale variables. However, the condi-
tional correlation of one scale, conditioned on adjacent scales,
decays fast since long-range correlations are captured by coarser
scale nodes [6]. This indicates that far-field effects can be well
approximated at coarser scales, and each fine scale can only
compute interactions among nearby nodes. A similar approx-
imation technique is used in multipole methods [5].

4. MULTIPOLE-MOTIVATED INFERENCE
ALGORITHMS

4.1. Computation of estimates and re-estimates

The optimal estimates on the pyramidal graph can be com-
puted iteratively using a tractable subgraph at each iteration.
We first develop a simple algorithm in which the order of in-
ference steps follows the spirit of multipole algorithms, and
then extend the idea to a more sophisticated algorithm that
selects subgraphs adaptively.

The multipole-motivated inference algorithm starts by get-
ting rough estimates at all nodes in the pyramidal graph using
only the Jt component in our prior model:

x̂(0) = (Jt + CT R−1C)−1h.

When the coarsest scale of the pyramidal graph has multiple
nodes, the Js component at the coarsest scale is also included
in this initial step to get globally consistent estimates2. Then,

2The number of variables at the coarsest scale is significantly smaller than
that of the finest scale, so we assume that exact inference within the coarsest
scale is tractable.



we alternate between the in-scale inference step (equivalent
to a coarse-to-fine sweep) and the tree inference step (a fine-
to-coarse sweep) until convergence. Let x̄(n) and x̂(n) denote
the estimates computed at the nth in-scale and tree iteration,
respectively. We use the notation J[i,j] to represent the sub-
matrix of J corresponding to scale i and scale j, and xm to
represent the subvector of x corresponding to scale m.

In the in-scale inference step, we decompose (1) by scale:
J[m,m]x̂m = hm − J[m,m−1]x̂m−1 − J[m,m+1]x̂m+1. Then,
starting from the coarsest scale (m = 1) and proceeding down-
ward, the nodes at scale m are updated using the just-computed
estimates at its coarser neighbor, m−1, and the previous tree-
inference estimates at the next finer scale, m+1. Exact infer-
ence is not tractable for scales with a large number of nodes,
so J[m,m] is again decomposed into Ja, which corresponds to
a tractable subgraph embedded in the grid model at scale m,
and Ka = J[m,m]−Ja. Then, this inference step is equivalent
to computing the following equation:

x̄(n)
m = J−1

a (hm −Kax̂(n−1)
m

−J[m,m−1]x̄
(n)
m−1 − J[m,m+1]x̂

(n−1)
m+1 )

Utilizing the multipole idea, we choose Ja to be diag(J[m,m]),
a diagonal matrix with entries taken from J[m,m], which cor-
responds to a fully disconnected graph at each scale. Then,
this step is essentially applying a single Gauss-Jacobi itera-
tion within each scale.

In the tree inference step, the quadtree(s) connecting dif-
ferent scales3 is used as a tractable subgraph. Although it is
sufficient for this step to pass messages upward, to facilitate
convergence analysis in terms of embedded subgraph algo-
rithms, we pass messages both upward and downward to per-
form exact inference on the quadtree(s). Let Jn be defined
as the associated J matrix corresponding to the quadtree(s):
Jn = Jt + diag(Js) + CT R−1C. Then, the tree inference
step using the quadtree structure can be represented as

x̂(n+1) = J−1
n (h−Knx̄(n))

where Kn = J − Jn.
Instead of using the fixed subgraphs as described above,

the adaptive Embedded Tree (ET) algorithm [3] can also be
applied to each iteration step. For the tree-inference step, a
spanning tree of the pyramidal graph is selected to minimize
the residual h−Jx̂(n), and similarly for the in-scale inference
step, a spanning tree in each grid model can be adaptively
chosen. It has been observed that alternating the adaptive in-
scale and tree inference steps results in much faster conver-
gence than applying the adaptive ET algorithm to the pyrami-
dal graph without any guidance of its hierarchical structure.
Note that from the walk-summability of the pyramidal graph,

3Note that when the coarsest scale have multiple nodes, the quadtree
structure is a set of disjoint quadtrees, each of which has a root node at the
coarsest scale.

both non-adaptive and adaptive iterations are guaranteed to
converge [3].

Assume that we already have solved an estimation prob-
lem based on a large number of measurements, and then wish
to modify the estimates to account for new local information.
We refer this problem as re-estimation, which can arise in two
possible scenarios. The first case is when a new set of mea-
surements are introduced in a local region. The second case
is modifying the prior model locally to weaken the smooth-
ness constraints across surface discontinuities so that high-
frequency components can be recovered. For either case, the
re-estimation problem can be posed as the following: given
the estimates x̂ = J−1h, compute the updated estimates x̃ =
(J + ∆J)−1(h + ∆h), where ∆J and ∆h have nonzero ele-
ments only in a localized area.

The re-estimation problem can be solved iteratively by up-
dating a subset of variables at each iteration. Let S denote the
region at the finest scale in which changes have been made,
i.e. in which either ∆J or ∆h is nonzero. Also, let TS denote
the set of (disjoint) quadtrees, each of which is rooted at a sin-
gle node at the coarsest scale and has non-empty intersection
with the nodes in S. Our algorithm alternates between tree in-
ference iterations on TS and the adaptive block Gauss-Seidel
iterations [3] in order to choose a subset of variables to be
updated. The latter steps provide rapid estimate adjustments,
primarily at finer scales and in the vicinity of S, while the tree
inference steps propagate these estimates more broadly across
the field.

4.2. Computation of variances

The diagonal elements of the error covariance matrix P corre-
spond to the uncertainties in the estimates at each node. Note
that by decomposing the pyramidal graph into the quadtree(s)
and separated vertical and horizontal chains within each scale,
the LR method [4] can be applied to compute not only the op-
timal estimates but also upper bounds on error variances.

Alternatively, we may use the fact that error variances
conditioned on adjacent scales decay fast and thus can be ef-
ficiently computed using the low-rank approximation algo-
rithm [7]. In [6], we derive a set of equations for approximate
variances which can be iterated using coarse-to-fine sweeps.
Let Vm be the set of nodes at scale m, and let p̄ij be the vari-
ance between i ∈ Vm and j ∈ Vm conditioned on the adjacent
scales. Then, the approximate variance of i computed at the
nth iteration is given by

σ
(n)
i = p̄ii +

∑

j,k∈(N (i)∪{i})∩Vm

p̄ij · p̄ik · (Q̃(n)
m )jk (3)

where Q̃
(n)
m is defined as

Q̃(n)
m = J[m,m−1]Σ

(n)
[m−1]J[m−1,m]+J[m,m+1]Σ

(n−1)
[m+1]J[m+1,m]

Σ(n)
[m] is a diagonal matrix with each element corresponding



0 5 10 15 20 25 30
0

2

4

6

8

10

scaled iterations

er
ro

r
monoscale
multigrid
pyramid

0 5 10 15 20 25 30
0

2

4

6

8

10

scaled iterations

er
ro

r

monoscale
multigrid
pyramid

Fig. 2. The convergence of RMS errors in surface estima-
tion. The horizontal axes are in units of equivalent monoscale
iterations. (top) Non-adaptive iterations. (bottom) Adaptive
iterations.

to approximate variances of variables at scale m computed at
the nth coarse-to-fine sweep.

It can be proven that the approximate variances in (3) pro-
vide lower bounds on the true error variances [6]. The lower
bounds closely approximate the true values as long as the
conditional correlations decay fast. However, for some mod-
els with sparse measurements, even conditional correlations
may have relatively slow decay. An alternative that provides
accurate variances even in such cases is the wavelet-based
low-rank approach [7]. The structure of the pyramidal graph
allows efficient and simple implementation of the wavelet-
based algorithm.

4.3. Parameter estimation

In order to fit our pyramidal graph to best explain the given
data, parameters can also be estimated from the measure-
ments. Here, we consider estimating two parameters: ϕ that
controls the strength of the smoothness constraints and γ, the
reciprocal of the measurement noise variance. Let JP the
prior matrix Jprior with a unit parameter value, then J =
ϕJP + γCT C. The tractable methods for the computation
of estimates and variances allow us to derive an efficient EM
algorithm to estimate the parameters.

In the E-step, the expected values of potential functions
are evaluated using the conditional means x̂(n−1) and error
variances P̂ (n−1) computed from the parameters estimated at
iteration (n− 1):

η1 = tr(JP P̂ (n−1)) + (x̂(n−1))T JP x̂(n−1)

η2 = ‖ y − Cx̂(n−1) ‖2 +tr(CP̂ (n−1)CT )
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Fig. 3. A cross section of approximate variances computed
by (top) the LR method and the coarse-to-fine low-rank algo-
rithm, (bottom) the wavelet-based low-rank algorithm.

Due to the sparsity of JP and C, we only need the variances of
individual nodes and covariances between the pairs of neigh-
boring nodes to compute both values [4].

The M-step, leads to the following simple expressions for
the next parameter estimates:

ϕ(n) =
N

η1
γ(n) =

Nmeas

η2

where N and Nmeas are the number of nodes and measure-
ments, respectively.

5. SIMULATION RESULTS

We test our multipole algorithm on a synthetic surface of
size 64 × 64 variables in which noisy (σ2 = 1) measure-
ments are available only at randomly chosen 10% of the vari-
ables. Figure 2 shows the convergence of RMS errors for
the non-adaptive (top) and adaptive (bottom) algorithms on
the pyramidal graph, together with the corresponding multi-
grid and monoscale algorithms. The multigrid algorithm uses
the estimates at coarser versions of the problem to guide in-
ference at finer scales, and the monoscale algorithm applies
Gauss-Jacobi (non-adaptive) or adaptive iterations directly on
a single-scale thin-membrane model. The monoscale algo-
rithm converges much slowly than the pyramidal graph which
achieves performance comparable to multigrid methods af-
ter a few iterations. Note that due to the lack of consistent
stochastic structure, it is not straightforward to estimate error
variances or to solve the re-estimation problem using multi-
grid methods.

Figure 3 (top) shows one cross section of the bounds on
variances of the synthetic surface. The upper bounds show
estimates computed by the LR method, and lower bounds are
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Fig. 4. Re-estimation applied to the problem of updating es-
timates to incorporate a new set of measurements in a local
region. (top left) Estimates before adding measurements. (top
right) Re-estimates. (bottom) A cross section of re-estimates.

computed by applying 5 coarse-to-fine sweeps of the low-
rank approximation method. The upper bounds obtained by
the LR method are rather loose, but they follow the shape
of the true variances, and note that the bounds are obtained
while computing the optimal estimates without any additional
cost. Figure 3 (bottom) shows the variances estimated by the
wavelet-based low-rank methods. It can be observed that the
estimates are close to the true variances.

Next, we apply the re-estimation algorithm to a real prob-
lem: estimating the top surface of a large salt deposit located
below the sea floor of Gulf of Mexico. The measurements,
provided by Shell International Exploration, Inc., consist of
377, 384 picks by analysts interpreted from seismic data. Af-
ter estimating the surface heights using a pyramidal graph
with four scales, we introduce 100 new measurements in a
small region. Figure 4 (top right) shows the re-estimates of
the local region after 10 iterations of the re-estimation algo-
rithm, which shows more detailed surface delineations com-
pared to the estimates before adding the measurements (top
left). The bottom plot shows one cross section of the re-
estimates. To compare the performance, the figure also shows
the updated estimates using a naive method: after modify-
ing J and h to model the new measurements, we simply per-
form inference on the entire pyramid. Using this naive imple-
mentation, 3 million nodes are updated at each iteration. The
re-estimation algorithm updates less than 1000 nodes at each
iteration, yet after 10 iterations, they converge to the same
result.

Lastly, Figure 5 shows the estimation results of ϕ using 5
sets of measurements generated from different sizes of pyra-
midal graphs. As the number of nodes grows larger, the esti-
mate of ϕ converges to the correct value.
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Fig. 5. Parameter ϕ estimated from 5 sets of measurements
generated by the pyramidal graph. The x-axis show the num-
ber of nodes at the finest scale of the pyramidal graph.

6. CONCLUSION

In this paper, we have introduced a class of multiscale Gaus-
sian graphical models defined on pyramidal lattices, and de-
veloped efficient algorithms for inference problems. Our al-
gorithms take advantage of the fact that long-range correla-
tions are well approximated at coarser scales, and alternates
global propagation of information using an embedded span-
ning tree of the pyramidal graph and local computations within
each scale. The hierarchical structure of our model also leads
to efficient methods to modify an estimated field when local
changes are made to the prior model or to the available data.
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