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ABSTRACT

In this paper we consider the problem of joint enhancement of multichannel Synthetic Aperture Radar (SAR)
data. Previous work by Cetin and Karl introduced nonquadratic regularization methods for image enhancement
using sparsity enforcing penalty terms. For multichannel data, independent enhancement of each channel is
shown to degrade the relative phase information across channels that is useful for 3D reconstruction. We thus
propose a method for joint enhancement of multichannel SAR data with joint sparsity constraints. We develop
both a gradient-based and a Lagrange-Newton-based method for solving the joint reconstruction problem, and
demonstrate the performance of the proposed methods on IFSAR height extraction problem from multi-elevation
data.
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1. INTRODUCTION

Synthetic Aperture Radar (SAR) is one of the most widely-used sensing technologies for object and scene
recognition, due to its day/night and all-weather performance capabilities. Traditional SAR image formation
entails Fourier processing of limited-angle, limited-bandwidth measurements to form a reflectivity image of
the scene. Fourier processing has many advantages, namely linear processing, well-understood characteristics,
and computational speed. However, Fourier processing of limited-extent data has inherent resolution limits1;
in addition, Fourier processing generates significant sidelobe artifacts when some frequencies or measurement
angles are denied or blocked.2

To address these resolution limits and artifact terms, nonlinear reconstruction techniques have been pro-
posed.3–5 In this paper we focus on a sparse-signal enhancement approach.2, 3 The basic idea is to reconstruct
an image that is simultaneously in good agreement with the measured data, and is regularized by using some
prior information; the most common prior information is that the reconstruction is sparse in some domain. SAR
image reconstruction techniques of targets, using a sparse image regularization term, has been shown to provide
enhanced resolution2 and also significant robustness to missing data.2 The sparseness term attempts to find a
reconstructed image with a sparse number of large-amplitude pixels, to account for the simple prior knowledge
that at high frequencies, most large-amplitude backscattering from many objects occurs at discrete scattering
centers on the object.6

In this paper we consider similar SAR image reconstruction techniques when applied to multi-channel SAR
data. Multi-channel SAR may arise from multiple polarization channel measurement or from multiple phase
center measurements, such as in interferometric SAR (IFSAR). In IFSAR, the height of a scattering center (as
measured from the slant plane) can be estimated from the phase difference between the corresponding pixels
of two phase-coherent, high resolution SAR images with some elevation offset.7 For many multi-channel data
sets, the sparseness is expected to be the same for all the channels; for example, in IFSAR the high-amplitude
pixels are expected to be in the same locations for all channels. In addition, the relative phase of the images
across channels often contains important information, and it is important to preserve this relative phase in the
reconstruction process. For example, the polarimetric properties of a scattering center in multi-polarization data,
or the 3D location of a scattering center from two IFSAR images both depend on the relative phase.
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For multi-channel data, one approach to reconstruction is to apply existing techniques independently for
each channel. Such an approach neither enforces common sparsity nor preserves relative phase. Simulation
results presented in Section 4 demonstrate that for IFSAR, independent reconstruction results in different large-
amplitude pixels in each channel, and degrades relative phase across reconstructed images. To address these
issues, we propose a joint reconstruction approach that places a joint sparseness constraint across multi-channel
images. By constraining all reconstructed images to have the same large-amplitude pixels, the relative phase of
the reconstructed images appears to be much better preserved than in the independent reconstruction case.

The remainder of the paper is organized as follows. Section 2 presents the system model and describes
the independent enhancement problem. Section 3 introduces the joint-reconstruction problem and presents two
solution techniques, a gradient-based technique and a Lagrange-Newton technique. Section 4 presents numerical
examples that illustrates the effectiveness of the joint reconstruction technique as compared with independent
channel reconstruction. Finally, Section 5 presents conclusions and discusses potential future work.

2. SYSTEM MODEL

In this section, we describe the system model considered and present the independent enhancement problem. For
ease of explanation, the problem is developed for two SAR measurement apertures at closely-spaced elevations
as used for IFSAR, although the problem applies to > 2 channels or other applications than IFSAR.

The ground-plane geometry for the spotlight-mode SAR is shown in Figure 1. We consider a linear path SAR
at each of the two elevations with the same center azimuth angle. The reflected field from the ground patch
is collected and processed to form the 2D complex reflectivity function f(x, y) where x, y are the downrange
and crossrange dimensions of the ground plane, respectively. The observation model for multiple spotlight-mode
SAR measurements are represented as

gi = T if i + wi, i = 1, 2, . . . , n (1)

where each N × 1 vector gi is the SAR image formed from the ith channel measurements using e.g., the polar-
formatting method, T i describes the point spread function of the imaging operator used in forming gi, f i is
the enhanced image for the ith channel, and wi is a measurement noise vector, which is assumed to be complex
additive white Gaussian noise. Here, N is the number of pixels in the SAR image.

In this paper, we assume n = 2 and that g1 and g2 are images formed at elevation angles ψ1 and ψ2 that are
sufficiently closely-spaced so that IFSAR processing can be used to obtain the 3D reconstruction of objects in
the scene.

2.1. Independent Enhancement

We assume that a pair of SAR images taken from two elevations ψ1 and ψ2 separated by △ψ ≪ 1 and from the
same center azimuth angle are formed using the Polar Formatting Algorithm.1 A method for enhancing the SAR
images by introducing nonquadratic sparsity inducing terms has been discussed, where the point-enhanced SAR
imaging is achieved by solving the following optimization problem,2

fi = argmin
f

Ji(f ) i = 1, 2 (2)

where Ji(f) is given by,
Ji(f ) = ‖gi − Tif‖

2
2 + λ2‖f‖p

p (3)

Each cost function Ji represents a tradeoff between choosing fi to match the measured data in an ℓ2-norm sense,
and sparsity in the resulting image by minimizing the ℓp-norm of fi for p ≤ 1. The parameter λ2 is chosen to
weight the data-fitting and solution sparseness terms in the optimization problem. Typically, p is chosen between
0.7 and 1.2

For independent enhancement, the above optimization problem is solved for each of the images to form two
point-enhanced SAR images corresponding to the elevations ψ1 and ψ2. Each enhancement involves solving
an unconstrained optimization problem with 2N real variables (Re(fi), Im(fi)). For IFSAR, one expects that



Figure 1. Spotlight SAR observation model.

the noiseless image has the property that large-amplitude pixels have the same amplitude and differing phase
(assuming that there is a single scattering center in the range/crossrange cell). The height estimate ẑi of the
scattering center, as measured orthogonal to the slant-plane image, is given by,

ẑj =
λc

4π△ψ
arg((f2)j(f1)

∗
j ) j = 1, ..., N (4)

Note that the height estimate is linearly dependent on the relative phase between the image pixels. Thus, it is
important that the phase difference across images be preserved during the enhancement process.

The independent enhancement technique has no component designed to preserve either amplitude or (relative)
phase information across the individual images. In fact, since the methods produce sparse output images, it is
often the case that scattering terms represented by several adjacent large-amplitude pixels in the conventional
image are enhanced to produce fewer (possibly one) large-amplitude pixel in the enhanced image. Due to
variations and noise in the individual images, it may well be that a different subset of large-amplitude pixels
result from each enhancement process. In worst case, none of the large-amplitude pixels in f1 may have a similar
large amplitude in image f2. In this case, IFSAR processing of independently-enhanced images is not possible.

3. JOINT ENHANCEMENT

In this section, we propose a method for jointly processing both images using sparsity inducing terms and also by
including appropriate constraints which result in the reduction of the errors in the height estimates. Specifically,
we impose an equal magnitude constraint, in which we jointly enhance the two SAR images such that their
magnitudes are equal. Mathematically this can be represented as,

arg min
f1,f2

L(f1,f2) (5)

subject to the constraint |(f1)i| = |(f2)i| i = (1, ..., N)
where L(f1,f2) is given by,

L(f1,f2) = ‖g1 − T1f1‖
2
2 + ‖g2 − T2f2‖

2
2 + λ2

1‖f1‖
p
p + λ2

2‖f2‖
p
p (6)

The values of λ2
1 and λ2

2 are usually taken to be equal to λ2, since both images are expected to be identically
sparse. As before, the λ2

i parameters provide a relative weight to the data-fitting and sparseness terms in the
optimization problem.



The above joint formulation leads to a constrained optimization problem with 4N real variables (|f1|, |f2|,
φ1 and φ2), where |fi|, |φi|, are the vectors of element magnitudes and phases of the complex vector fi:

f1 = ejφ1 |f | f2 = ejφ2 |f | (7)

where,

ejφ1 = diag
{

ej(φ1)i

}

, ejφ2 = diag
{

ej(φ2)i

}

, i = 1, 2, ..., N (8)

are diagonal matrices and (φ1)i, (φ2)i i = 1, 2, ..., N are the set of angles at each pixel of f1 and f2 respectively.
This is compared to two unconstrained optimizations with 2N real variables each resulting from (2). In order to
avoid the difficulty of differentiating the ℓp-norm terms near zero, we approximate them by3

‖f1‖
p
p ≈

N
∑

i=1

(|(f1)i|
2 + ǫ)

p

2 , ‖f2‖
p
p ≈

N
∑

i=1

(|(f2)i|
2 + ǫ)

p

2 (9)

where ǫ is a small positive constant. The following subsections develop two methods to solve this joint optimiza-
tion problem.

3.1. Gradient Descent Method

One solution to (5) is obtained by including the equal magnitude constraint in the cost function itself. This is
accomplished by forcing the enhanced images to have the same magnitudes, i.e. |(f1)i| = |(f2)i| = |(f)i| for
i = 1, . . . , N , which we denote with the compact notation |f1| = |f2| = |f |. With this formulation, the number
of unknowns in the cost function is decreased from 4N to 3N real variables, i.e., we minimize the cost function
L(f1,f2) with respect to the 3N × 1 vector θ given by,

θ =





|f |
φ1

φ2





We propose to use the gradient descent method for this purpose and hence find the gradient of L(f1,f2) with
respect to θ. The gradient vector after sufficient simplifications is given by,

∇Lθ =





∇L|f |

∇Lφ1

∇Lφ2



 (10)

where,

∇L|f | = 2Re[−SH
1

g1 − SH
2

g2 + (SH
1

S1 + SH
2

S2)|f |] + 2λ2Λ|f |

∇Lφ1
= 2Re[jF H

1
T H

1
g1 − jF H

1
T H

1
T1f1]

∇Lφ2
= 2Re[jF H

2
T H

2
g2 − jF H

2
T H

2
T2f2] (11)

and where,

S1 = T1e
jφ1 , S2 = T2e

jφ2

F1 = diag
{

(f1)i

}

, F2 = diag
{

(f2)i

}

,

Λ = diag

{

1

(|(f)i|2 + ǫ)1−
p

2

}

i = 1, 2, ..., N (12)

The gradient vector is used to update the value of θ.

θk+1 = θk + γ∇Lθ (13)



where γ is a user-selected step size. The iteration is initialized by |f | = |g1|+|g2|
2 and the initial phase angles are

set to be the same as the observed phase angles, i.e. those of g1 and g2. These iterations are carried out until
the convergence criteria

‖f1

k+1 − f1

k‖

‖f1

k‖
< δ and

‖f2

k+1 − f2

k‖

‖f2

k‖
< δ

are met, for some user-selected δ > 0. One main advantage of the gradient descent method is that it ensures
that the final images f1 and f2 have pixels with exactly the same magnitudes, since the constraint is directly
included in the cost function.

3.2. Lagrange-Newton Method

The Lagrange-Newton method is used for numerous nonlinear control optimization problems. In this method,
the constraints are included in the cost function using the Lagrangian and the resulting function is optimized
using quasi-Newton method. The optimization problem in this case becomes,

min
f1,f2

max
β

L(f1,f2,β) (14)

where, β = [β1, . . . , βN ]T and

L(f1,f2,β) = ‖g1 − T1f1‖
2
2 + ‖g2 − T2f2‖

2
2 + λ2

1‖f1‖
p
p + λ2

2‖f2‖
p
p +

N
∑

i=1

βi(|(f1)i|
2 − |(f2)i|

2) (15)

The constraint has been included in the cost function and βis are the Lagrange multipliers which will also be
taken as parameters to be optimized.

The goal is to minimize the function given by the equation (15). The partial derivatives of L(f1,f2) are with
respect to two complex vectors and hence has to be taken with respect to the real and imaginary components
separately and then combined to form a complex vector. By doing this and simplifying the first partial derivatives
with respect to f1,f2 and β, we find

∇L(f1,f2)f1
= [2T H

1
T1 + pλ2

1Λ1 + 2B]f1 − 2T H
1

g1

∇L(f1,f2)f2
= [2T H

2
T2 + pλ2

2Λ2 − 2B]f2 − 2T H
2

g2 (16)

where the matrices B,Λ1 and Λ2 are given by,

B = diag
{

βi

}

, Λ1 = diag

{

1

(|(f1)i|2 + ǫ)1−
p

2

}

Λ2 = diag

{

1

(|(f2)i|2 + ǫ)1−
p

2

}

i = 1, 2, ..., N (17)

and the gradient with respect to each βi gives the constraint |(f1)i| = |(f2)i| = |(f)i| which, when substituted
into (17), yields Λ1 = Λ2 = Λ. Thus, the equations (16) become

∇L(f1,f2)f1
= [2T H

1
T1 + pλ2Λ + 2B]f1 − 2T H

1
g1

∇L(f1,f2)f2
= [2T H

2
T2 + pλ2Λ − 2B]f2 − 2T H

2
g2 (18)

To find vectors f1,f2 which minimize (15) we set (18) to zero which further requires us to solve the following set
of equations with the constraint that both f1 and f2 must have the same magnitude in each of their components.

[2T H
1

T1 + pλ2Λ + 2B]f1 = 2T H
1

g1

[2T H
2

T2 + pλ2Λ− 2B]f2 = 2T H
2

g2 (19)

For solving these set of equations, along with the βis as parameters, iterative methods such as the Conjugate
Gradient method can be used.8 But with direct implementation, it is not possible to ensure that the βis remain



real-valued. Instead, we implement the real and imaginary parts of equations (19) separately, along with the
(real) equation for β. This gives:

M∆x = a (20)

where,

M =



















M11 0 2

[

DR1

DI1

]

0 M22 −2

[

DR2

DI2

]

2
[

DR1 DI1

]

−2
[

DR2 DI2

]

0



















(21)

M11 = RH
1

R1 +

[

Λ 0

0 Λ

]

+ 2

[

B 0

0 B

]

M22 = RH
2

R2 +

[

Λ 0

0 Λ

]

− 2

[

B 0

0 B

]

DR1 = diag{Re(f1)}, DI1 = diag{Im(f1)}, DR2 = diag{Re(f2)}, DI1 = diag{Im(f2)}

∆x =













∆Re(f1)
∆Im(f1)
∆Re(f1)
∆Im(f1)

∆β













a =















−Re{[2T H
1

T1 + pλ2Λ + 2B]f1 − 2T H
1

g1}

−Im{[2T H
1

T1 + pλ2Λ + 2B]f1 − 2T H
1

g1}

−Re{[2T H
2

T2 + pλ2Λ− 2B]f2 − 2T H
2

g2}

−Im{[2T H
2

T2 + pλ2Λ − 2B]f2 − 2T H
2

g2}
−|f1|

2 + |f2|
2















(22)

and the matrices R1, R2 are given by,

R1 =

[

Re(T1) Im(T1)
−Im(T1) Re(T1)

]

R2 =

[

Re(T2) Im(T2)
−Im(T2) Re(T2)

]

(23)

Thus, the 3N complex equations have been rewritten as 5N real equations so that the constraint on the βis that
they must be real is easily satisfied. The matrix equation (20) cannot be iteratively solved using the Conjugate
Gradient method since the matrix M is not guaranteed to be positive definite. We instead solve this equation
using the minimum residual method, which requires the matrix M to be symmetric but not positive definite

The implementation of the Lagrange-Newton method requires two iterations, an outer iteration for updating
the 5N variables and an inner iteration for solving the matrix equation using minimum residual method. This
is done iteratively until the stopping criterion

‖f1

k+1 − f1

k‖

‖f1

k‖
< δ,

‖f2

k+1 − f2

k‖

‖f2

k‖
< δ and

‖βk+1 − βk‖

‖βk‖
< δ

is met for some user-selected δ > 0.

The primary advantage of the Lagrange-Newton method, over the Gradient Descent solution discussed pre-
viously, is that the Lagrange-Newton method has quadratic convergence. On the other hand, the computation
involves a larger number of parameters. There does not seem to be a definitive statement that one approach
is better than the other in all cases, and characterization of their relative performance is a subject of ongoing
research.



4. SIMULATION RESULTS

We illustrate the performances of the proposed joint approach using the synthetic multi-elevation data. We
simulate four point scatterers in the scene at the (x, y, z) positions given by: (0,0,0), (0,3,0), (-2,-2,0) and (1,1,2)
meters, and each with unit amplitude. We simulate two linear flight path apertures, with center elevations of
29.5◦ and 29.57◦; these are close enough in elevation to permit IFSAR processing for scattering center height
estimation. Both apertures are 20◦ wide and centered at 0◦. The center frequency and bandwidth of the SAR
system are 10GHz, 1GHz respectively and the images are formed over an azimuth width of 20◦. Complex white
Gaussian noise is added to the phase history data such that the peak SNR of the scatterers in the image is 21dB.
Relative phase angles for image domain pixels within the top 35 dB are also plotted.

Figure 2 shows the resulting SAR images using the polar format algorithm for image formation, using a
hamming window to reduce sidelobe artifacts. Also shown is the relative phase for pixels that are within 35 dB
of the maximum image value. We see four clusters of relative phase values, corresponding to each of the four
scattering centers.
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Figure 2. Noisy SAR Slant plane images showing the top 35dB for the two peak elevation angles 29.5 and 29.5714 degrees

and the corresponding relative phase plot.

Figure 3 shows the results of independent image enhancement.2 Specifically, point-enhanced SAR images are
obtained using p = 1 and λ2 = 0.8. The magnitudes of the resulting images are shown in Figure 3. We have used
for the termination condition, δInd = 10−4, CG tolerance to be δCG = 10−3 and the approximation parameter in
(9) as ǫ = 10−5. It is clear from the relative phase plot in Figure 3 that processing the two images independently
degrades the inter-channel information, compared with the polar format algorithm images in Figure 2. The
relative phase degradation would result in a similar degradation for scattering center height estimation using
equation (4).
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Figure 3. Independently Enhanced SAR Slant plane images showing the top 35dB for the two peak elevation angles 29.5

and 29.5714 degrees and the corresponding relative phase plot.



Figure 4 shows the resulting image and relative phases for the jointly-enhanced image using the procedure
in Section 3. Since the magnitudes of both reconstructed images are equal, only a single magnitude image
is shown. The images were obtained using the Gradient Descent method, using λ2 = 0.8 and p = 1 as in
the independent enhancement case; we set δ = 5x10−3 and we have used γ = 10−4. The Gradient Descent
method was slower than the independent enhancement case and required about 40 times the computation of
the independent enhancement technique. We also observed that the convergence time for the Gradient Descent
method was very sensitive to the choice of δ. The relative phases for this case are considerably less varied than
in the independent-enhancement case, and hence would result in lower scattering center height estimation errors
in subsequent IFSAR height estimation.
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Figure 4. Jointly Enhanced SAR Slant plane images showing the top 35dB for the two peak elevation angles 29.5 and

29.5714 degrees and the corresponding relative phase plot.

The Lagrange-Newton method was computationally more intensive than the conjugate gradient method for
this example. However, our implementation does not take advantage of some of the structure inherently present
in the matrix M ; this structure could be exploited to develop faster algorithms, and is a subject of current
research.

5. CONCLUSIONS

We have developed a joint enhancement technique that applies to multiple SAR images of the same scene, such
as IFSAR images at closely-spaced elevation angles or multiple polarization images. The enhancement technique
is a reconstruction method that simultaneously minimizes a measurement error and imposes a sparsity condition
on the reconstructed images.2, 3 While separate enhancement of each image is possible, relative phases of the
resulting image pixels is not well-preserved. Relative phases are important for subsequent polarimetric processing
or 3D scattering center location estimation via IFSAR processing. We developed a joint reconstruction problem,
and derived two iterative algorithms for computing the jointly-enhanced images. Simulation results demonstrate
that the jointly-enhanced images retain inter-channel phase information much better than the independently-
enhanced method.

The two joint-enhancement algorithms derived are based on the gradient descent and the Lagrange-Newton
methods, respectively. The gradient descent method is of smaller size (3N versus 5N for joint enhancement of
two images), but has linear convergence. The Lagrange-Newton method has quadratic convergence, but is a
larger optimization problem. Future work will consider the tradeoffs between the two methods, and will also
consider implementations that take better advantage of the structure of the Lagrange-Newton problem.
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