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Abstract

Sparse signal representations and approximations from overcomplete dictionaries have become an

invaluable tool recently. In this paper, we develop a new, heuristic, graph-structured, sparse signal

representation algorithm for overcomplete dictionaries that can be decomposed into subdictionaries

and whose dictionary elements can be arranged in a hierarchy. Around this algorithm, we construct

a methodology for advanced image formation in wide-angle synthetic aperture radar (SAR), defining an

approach for joint anisotropy characterization and image formation. Additionally, we develop a coordinate

descent method for jointly optimizing a parameterized dictionary and recovering a sparse representation

using that dictionary. The motivation is to characterize a phenomenon in wide-angle SAR that has not

been given much attention before: migratory scattering centers, i.e. scatterers whose apparent spatial

location depends on aspect angle. Finally, we address the topic of recovering solutions that are sparse in

more than one objective domain by introducing a suitable sparsifying cost function. We encode geometric
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objectives into SAR image formation through sparsity in twodomains, including the normal parameter

space of the Hough transform.

Index Terms

sparse signal representations, overcomplete dictionaries, optimization methods, tree searching, inverse

problems, synthetic aperture radar, Hough transforms

I. INTRODUCTION

Whether for filtering, compression, or higher level tasks such as content understanding, the transfor-

mation of signals to domains and representations with desirable properties forms the heart of signal

processing. The last decades have seen overcomplete dictionaries and sparse representations take a place

in the processing of signals such as those that are multiscale in nature or can be traced to physical

phenomena. By sparse, it is explicitly meant that a signal can be adequately represented using a small

number of dictionary elements. Sparse signal representation and approximation has proven successful

in solving inverse problems arising in a variety of application areas such as array processing [1], time-

delay estimation [2], coherent imaging [3], electroencephalography [4], astronomical image restoration

[5], and others. Inverse problems may be cast as sparse signal representation or approximation problems

in conjunction with dictionaries whose elements have a physical interpretation, having been constructed

based on the observation model of a particular application.

Representing a signalg ∈ C
N using an overcomplete dictionary{φ1,φ2, . . . ,φM}, M > N involves

finding coefficientsam such thatg =
∑M

m=1 amφm. Since the dictionary is overcomplete, there is no

unique solution for the coefficients; additional constraints or objectives, e.g. sparsity, are needed to specify

a unique solution. Among other properties, sparsity and overcomplete dictionaries have been known to

deal well with undersampled data, and provide superresolution, parsimony, and robustness to noise.

Traditionally, sparsity is measured using theℓ0 criterion, which counts the number of non-zero values.

The problem of finding the optimally sparse representation,i.e. with minimum‖a‖00 wherea is the set

of coefficients taken as a vector inCM , is a combinatorial optimization problem in general. Due tothe

difficulty in solving large combinatorial problems, greedyalgorithms such as matching pursuit [6] and

relaxed formulations such as basis pursuit [7] that are computationally tractable have been developed for

general overcomplete dictionaries. Methodologies such asthese have been proven to produce optimally

sparse solutions under certain conditions on the dictionary [8]–[10]. A sparse signal approximation is a

set of coefficients subject to a sparse penalty such that‖g−
∑M

m=1 amφm‖
2
2 is less than a small positive
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constant.

Oftentimes, the dictionary elementsφm, termedatoms, are chosen to have a physical interpretation.

Atoms may correspond to different scales, translations, frequencies, and rotations or the dictionary may

comprise subdictionaries, often given the namemolecules[11]. Many popular sparse signal representation

methods and algorithms are general and do not exploit natural decompositions of the dictionary into

molecules or hierarchical structure that may be present in the collection of atoms. Some approaches do

exist in the literature that take advantage of structured dictionaries, e.g. [11]–[16]. A main contribution

of this paper is an approximate algorithm for sparse signal representation, related to heuristic search,

that uses graphs, one per molecule, constructed with atoms as nodes connected according to hierarchical

structure.

In the context of solving inverse problems using sparse signal representation techniques, the design of

atoms based on the observation model is predicated on complete knowledge of the observation process.

However, it may be the case that the functional form of the observation process is known, but there is

dependence on some parameter or parameters that is not knowna priori. In this case, it is of interest

to both optimize the dictionary over the unknown parametersand to find sparse solution coefficients.

In overcomplete representation contexts other than inverse problems, this can be viewed as signal-

dependent dictionary refinement. A second contribution of this work is a coordinate descent approach

that simultaneously refines the dictionary and determines asparse representation.

Notationally, we takeΦ to be a matrix whose columns are atoms from the overcomplete dictionary,

andΦ(η) to reflect parametric dependence on the set of parametersη. The matrix for a dictionary with

L molecules is the concatenation ofL blocks: [Φ1 · · ·ΦL] or [Φ1(η1) · · ·ΦL(ηL)].

A fundamental premise of sparse signal representation is ofunderlying sparsity in some domain,

but signals may be sparse in more than one complementary, or loosely speaking ‘orthogonal,’ domain.

Accounting for and imposing simultaneous sparsity in multiple domains is important for recovering

parsimonious representations. Representational redundancy that may not be apparent in one domain, but

apparent in some other domain, can be appropriately reducedthrough sparsity in that other domain.

We consider this problem of sparsity in more than one domain and, as a third contribution, develop a

formulation whose objective function includes a carefullycomposed sparsity term for each domain.

Here we develop a general approach for sparse signal representation or approximation in which we

exploit both molecular structure in dictionaries and hierarchical structure within molecules. Additionally,

we incorporate dictionary optimization and simultaneously sparsity in multiple domains. While the

methods have wider applicability, we focus on modeling wide-angle spotlight-mode synthetic aperture
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radar (SAR) as an illustrative application. As a consequence, we advance the state of the art in radar

imaging as well.

SAR is a technology for producing high quality imagery of theground using a radar mounted on

a moving aircraft. Radar pulses are transmitted and received from many points along the flight path.

The full collection of measurements is used to form images; conventional image formation techniques

are based on the inverse Fourier transform. In principle, very long flight paths—wide-angle synthetic

apertures—which have become possible due to advances in sensor technologies, should allow for the

reconstruction of images with high resolution. However, phenomena such as anisotropy and migratory

scattering, described in the sequel, which arise in wide-angle imaging scenarios are not accounted for by

conventional image formation techniques and cause inaccuracies in reconstructed images. As we proceed

in the development of novel sparse signal representation methods for structured dictionaries, we use the

methods described herein in a way that does account for such phenomenology.

In Section II we describe a heuristic graph-structured algorithm for producing sparse representations

in hierarchical overcomplete dictionaries. Section III expands the scope of the algorithm to dictionaries

composed of molecules. The motivating application in Section II and Section III is the characterization of

anisotropy in wide-angle SAR measurements, a hurdle that once cleared, not only relieves inaccuracies in

image reconstruction, but also provides a wealth of information for understanding and inference tasks such

as automatic target recognition. Section IV discusses parameterized dictionaries and the joint optimization

of the expansion coefficients and the atoms themselves. The SAR problem investigated in this section is

of extracting object-level information as part of the imageformation process from migratory scatterers.

Section V introduces the objective of sparsity in multiple domains, focusing primarily on the two domain

case, specifically with the Hough transform domain and the SAR measurement domain. The applications

in Section IV and Section V take steps towards bridging low-level radar signal processing and higher-level

object-based processing in ways not seen in the SAR literature before. Section VI provides a summary

of our contributions.

II. GRAPH-STRUCTURED ALGORITHM FOR HIERARCHICAL DICTIONARIES

At the outset, we consider a dictionary that does not decompose into molecules and is known and

fixed. We look at a particular type of dictionary with a hierarchical arrangement of atoms that permits

the construction of a graph with the atoms as nodes. Then, we describe an algorithm based on hill-

climbing search, a heuristic search method also known as guided depth-first search. The final part of

the section applies the algorithm to the characterization of anisotropy of a point-scattering center from
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Fig. 1. Illustration of matrixΦ for N = 5. The solid dots (•) indicate a non-zero value and the empty dots (◦) indicate a zero

value.

wide-angle SAR measurements.

A. Graph Structure

Oftentimes in overcomplete dictionaries, including for example wavelet packet dictionaries [17], B-

spline dictionaries [18], and discrete complex Gabor dictionaries [6], the atoms have a notion of scale and

consequently a coarse-scale to fine-scale hierarchy. Translations or rotations are applied at finer scales

to create sets of atoms that have a common size but are differentiated in the placement of their region

of support; the regions of support may or may not overlap. Some dictionaries are constructed dyadically

such that the support of a coarser atom is twice the size of thenext finer atom or atoms.

In this work, we consider dictionaries in which the size of the support changes arithmetically rather than

geometrically between scales. The matrixΦ of such a dictionary for one-dimensional signals of length

N is illustrated in Fig. 1; the coarsest atom is the first columnand the finest atoms are theN right-most

columns. A full set of such atoms with all widths and all shifts has large cardinality (M = 1
2N2 + 1

2N

atoms), but is appealing for inverse problems because of thepossibility that a superposition of very few

atoms, perhaps just one, corresponds to a physical phenomenon of interest. As discussed in Section II-C,

for SAR anisotropy characterization, the signalg and atomsφm are such thatg is non-zero for contiguous

intervals and zero for other parts of the domain, and is well-represented by few atomsφm.

Due to the regular structure of this type of dictionary, we can take the atoms as nodes and arrange

them in a graph. As shown in Fig. 2, the coarsest atom is the root node, the finest atoms are leaves, and

the graph hasN levels. Each node has two children (except for those at the finest level). It is a weakly

connected directed acyclic graph, with a topological sort that is exactly the ordering from left to right of

the columns inΦ illustrated in Fig. 1. As we proceed, we make use of the graph structure, which we

term themolecular graph, treating the sparse signal representation problem as a graph search.
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Fig. 2. Illustration of graph structure for overcomplete dictionary, N = 5. Coarse-scale atoms are at the top and fine-scale

atoms are at the bottom. Different translations are in orderfrom left to right.

Fig. 3. Illustration of search-based algorithm forN = 7, G = 3. The guiding graph, a subgraph of the full molecular graph

indicated by triangular outline, is moved iteratively to find a sparse representation. The initialization and first two iterations are

shown. Molecular graph edges and node labels are omitted.

B. Algorithm Based on Hill-Climbing

As mentioned in Section I, many general methods for obtaining sparse representations give provably

optimal solutions (under certain conditions), but requirethe same computation and memory regardless of

whether the dictionary has structure. As an alternative approach for structured dictionaries, we propose

a heuristically-based technique with reduced complexity.The idea to have in mind during the exposition

of the algorithm is of a small subgraph, given the nameguiding graph, iteratively moving through

an N -level molecular graph, searching for a parsimonious representation. The specifics of the guiding

graph, the search strategy, and search steps are presented below. Fig. 3 illustrates the central idea of the

algorithm for a small dictionary; in practice, the dictionary and therefore molecular graph are of much

larger cardinality.

We assume thatg, the signal to be represented or approximated, can be composed using a few atoms

whose nodes are close together in the molecular graph under acommon parent node. This assumption
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is not as restrictive as it may seem: that the signal has a representation with a few atoms is basic for

sparsity. Contributing nodes are close together in the graph when the signal is localized in the domain.

Prior knowledge can guide the choice of atom shape and standard families of atoms may be used. The

assumptions are reasonable for SAR and other applications that lend themselves to such hierarchical

structures.

The problem of finding coefficientsa such thatΦa equals or well-approximatesg with few non-zero

am may be reformulated as a search for a node or a few nodes in the molecular graph. In addition

to finding nodes, i.e. atomsφm that contribute to the expansion, the corresponding coefficient values

am must also be determined. Numerous search algorithms exist to find nodes in a graph. Blind search

algorithms incorporate no prior information to guide the search. In contrast, heuristic search algorithms

have some notion of proximity to the goal available during the search process, allowing the search to

proceed along paths that are likely to lead to the goal and reduce average-case running time.

Hill-climbing search is an algorithm similar to depth-firstsearch that makes use of a heuristic. In depth-

first search, one path is followed from root to leaf in a predetermined way, such as: “always proceed

to the left-most unvisited child.” In contrast, hill-climbing search will “proceed to the most promising

unvisited child based on a heuristic.” In both algorithms, if the goal is not found on the way down and

the bottom is reached, there is back-tracking. The approachpresented here has hill-climbing search as

its foundation.

In standard graph search problems, nodes are labeled and thegoal of the search is fixed and specified

with a label, e.g. “find node K.” Thus the stopping criterion for the search is simply whether the label

of the current node matches the goal of the search. Also, there is often a notion of intrinsic distance

between nodes that leads to simple search heuristics.

When the sparse signal representation problem is reformulated as a search on anN -level molecular

graph, stopping criteria and heuristics are not obvious. One clear desideratum is that calculation of both

should require less memory and computation than solving thefull problem. The guiding graph, chosen

to be aG-level molecular graph,G ≪ N , with its root at the current node of the search, guides the

search by providing search heuristics and stopping conditions.

Intuition about the problem suggests that if the atom or atoms that would contribute in an optimally

sparse solution are not included in the guiding graph when solving for coefficients in a sparsity enforcing

manner, then the resulting solution will have a non-zero coefficient for the atom most ‘similar’ to the

signalg. In terms of theN -level molecular graph, this suggests that if the optimal sparse representation

is far down in the molecular graph, but the problem is solved with a small dictionary containing atoms
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from a guiding graph near the top of the molecular graph, thencoefficients in the firstG − 1 levels

will be zero and one or more coefficients in levelG non-zero. In the same vein, if the guiding graph is

rooted below the optimal representation, then the root coefficient may be non-zero and the coefficients

in levels two throughG will be zero. If the guiding graph is such that it contains theoptimal atoms,

then the corresponding coefficients will be non-zero and therest of the coefficients zero. This intuition

is demonstrated empirically; details are in the appendix.

A simple heuristic for the search based on the coefficient values of theG nodes in levelG is apparent

from the intuition and experimental validation. Due to the structure of the molecular graph, each node has

two children, so the heuristic is used to determine whether to proceed to the left child or the right child.

We find the center of mass of the bottom level coefficient magnitudes—the search is guided towards

the side that contains the center of mass. A stopping criterion is also apparent: stopping when all of the

nodes in levelG are zero during the search.

Hill-climbing search finds a single node—a single atom. However, the algorithm that we propose

is able to find a small subset of atoms due to the guiding graph.When the stopping criterion is met,

i.e. when the finest-scale coefficients are all zero in the sparse solution of the representation problem

with atoms from the current guiding graph, then that sparse solution is taken as the solution to the full

problem. Consequently, the guiding graph allows a subset ofatoms rather than a single atom to be used

in the representation.

In summary, the algorithm based on the molecular graph and hill-climbing search is as follows.

(1) Initialization: Let i← 1 and Φ(i) ← atoms from the top G levels of the molecular

graph.

(2) Find a sparse a(i) such that Φ(i)a(i) approximates g.

(3) Calculate weighted sum of bottom row coefficient magnitudes: µ←
∑G

m=1 m|a
(i)
1

2
G2

−

1

2
G+m
|.

(4) If µ = 0 then stop. Otherwise, i ← i + 1. If bottom row nodes are leaves of

the molecular graph or both children of the guiding graph have been visited before,

then Φ(i) ← atoms from the highest unvisited guiding graph.

Else, Φ(i) ← (µ < G+1
2

∑G

m=1 |a
(i)
1

2
G2

−

1

2
G+m
| and left child unvisited ? atoms from the

left child guiding graph : atoms from the right child guiding graph). Iterate to

step (2).

The graph-structured algorithm that we propose is able to produce representations in which there are

contributions from atoms that lie within the span of a guiding graph. The approximate nature of the

approach is controlled byG; by increasing the size of the guiding graph we may, at the expense of
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Fig. 4. Comparison of graph-structured algorithm and matching pursuit: (a) the signalg; (b) atoms scaled by coefficients in

solution obtained with graph-structured algorithm; (c) atoms scaled by coefficients in solution obtained with matching pursuit.

increased complexity, draw from a larger subset of atoms in the solution. The smaller problem with

Φ(i)a(i) is more tractable than the large problem withΦa.

While any of a number of formulations and techniques may be used to solve the smaller problem, here

we use a non-convex,ℓp, p < 1, relaxation, minimizing the cost function:

J
(

a(i)
)

=
∥

∥

∥
g −Φ(i)a(i)

∥

∥

∥

2

2
+ α

∥

∥

∥
a(i)

∥

∥

∥

p

p
, p < 1, (1)

by a quasi-Newton technique detailed in [19] to obtain a sparse vector of coefficientsa(i). Each step of

the quasi-Newton minimization involves solving a set ofMG linear equations, whereMG is the number

of atoms in the guiding graph. Direct solution requiresO(M3
G) computations. However, the particular

matrix involved is Hermitian, positive semidefinite, and usually sparse, so the equations may be solved

efficiently via iterative algorithms. We use the conjugate gradient method and terminate it when the

residual becomes smaller than a threshold.

The parameterα trades data fidelity, the first term, and sparsity, the secondterm. The choice ofα is

important practically and is an open area of research. Withα too small, the solution coefficient vectora(i)

is not sparse and the heuristic is not meaningful; the guiding graph strays away from good search paths.

With α too large, the algorithm incorrectly terminates early withall zero coefficients in the solution. In

this work, we choose the parameter subjectively and can usually set it once for a given problem size. We

keepα constant for all iterations of the graph-structured algorithm. Generally, solutions in step (2) of the

algorithm are not very sensitive to small perturbations ofα. It is possible, however, for a small change

in α to cause the number of non-zero elements in the solution to change, but such a change in solution

is not necessarily accompanied by a change in the heuristic and stopping criterion. In all examples in

this paper, thep of the ℓp relaxation is0.1; for the highly redundant dictionary that is employed, a small

value ofp results in suitable sparsity.
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The search-based procedure we have presented is greedy, butnot in the same way as matching pursuit

and related algorithms [6], [14]–[16]. A commitment is not made to include an atom in the representation

until the final iteration when the stopping criterion is met,and also, atoms within a guiding graph are

considered jointly. As the guiding graph slides downwards,any subset of fine-scale atoms can start

contributing to the representation. This behavior discourages the assignment of a coarse-scale atom to

represent what would be better represented using a few closefine-scale atoms. In some later iteration,

a matching pursuit-like algorithm includes a fine-scale atom with a negative coefficient to cancel extra

energy from the coarse-scale atom included earlier. An example of this behavior is given in Fig. 4. For a

particular signalg and an overcomplete dictionary of boxcar-shaped atoms, solutions are obtained using

both the graph-structured algorithm presented in this section and the basic matching pursuit algorithm

[6], and compared. Both the graph-structured algorithm andmatching pursuit produce solutions that sum

to approximateg, but the decomposition of the graph-structured algorithm is more atomic.

The algorithm for dictionaries without molecular decomposition is straightforward; its operation in

dictionaries withL > 1 molecules, which we discuss in Section III, is more interesting. Before reaching

that point however, we illustrate the application of this method to anisotropy characterization in SAR.

C. Application to Wide-Angle SAR

Spotlight-mode SAR has an interpretation as a tomographic observation process [20]. As mentioned

in Section I, SAR uses a radar mounted on an aircraft to collect measurements. From one point along

the aircraft’s flight path, the radar transmits a modulated signal in a certain direction, illuminating a

portion of the ground known as the ground patch, and receivesback scattered energy, which depends

on the characteristics of the ground patch. Radar signals are similarly transmitted and received at

many points along the flight path. The radar antenna continually changes its look direction to always

illuminate the same ground patch. The geometry of data collection in spotlight-mode SAR is illustrated

in Fig. 5. Coordinates on the ground planex, range, andy, cross-range, are centered in the ground patch.

Measurements are taken at equally spaced aspect anglesθ as the aircraft traverses the flight path. The

ground patch, with radiusR, is shaded.

The scattering from the ground patch under observation is manifested as an amplitude scaling and

phase shift that can be expressed as a complex number at each point. Thus, scattering from the entire

ground patch can be characterized by a complex-valued function of two spatial variabless(x, y), which

is referred to as the scattering function. Due to the design of the radar signal and the physics of the

observation process, the collection of received signals isnot s(x, y) directly. Procedures for obtaining
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Fig. 5. Ground plane geometry in spotlight-mode SAR.

s(x, y) from the measurements are known as image formation. In wide-angle SAR, measurements come

from vastly different viewpoints and consequently, scattering behavior shows dependence onθ, referred to

as anisotropy, as well as on(x, y) [21]. For example, a mirror-like flat metal sheet reflects strongly when

viewed straight on, but barely reflects from an oblique angle. The relationship between the measurements

g, obtained over a finite bandwidth of frequencies and over a range of aspect angles, and the anisotropic

scattering functions(x, y, θ) is given by:

g(f, θ) =

∫∫

x2+y2≤R2

s (x, y, θ) e−j 4πf

c
(x cos θ+y sin θ)dx dy, (2)

where c is the speed at which electromagnetic radiation propagates. The set of aspect anglesθ is

inherently discrete, because pulses are transmitted from adiscrete set of points along the flight path. The

measurements are sampled in frequencyf to allow digital processing. The collection of measurements

g(f, θ) is known as the phase history.

The scattering response of objects such as vehicles on the ground is well-approximated by the su-

perposition of responses from point scattering centers when using frequencies and aperture lengths

commonly employed in SAR [22]. The anisotropic scattering from a single point-scatterer takes the

form s(x, y, θ) = s0(θ) · δ(x − x0, y − y0) and the measurement model is:

g(f, θ) = s0(θ)e−j 4πf

c
(x0 cos θ+y0 sin θ). (3)

The phenomenon of anisotropy often manifests as large magnitude scattering in a contiguous interval

of θ and small, close to zero magnitude scattering elsewhere. Consequently, the dictionary described

in Section II-A containing all widths and all shifts of contiguous intervals is well-suited for obtaining
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Fig. 6. Single point-scatterer example: (a) aspect-dependent scattering magnitude measurement (gray line) and solution (black

line); (b) search path of graph-structured algorithm.

parsimonious representations of anisotropic scattering.An overcomplete expansion is as follows:

g(f, θ) =

M
∑

m=1

ambm(θ)e−j 4πf

c
(x0 cos θ+y0 sin θ). (4)

Atoms areφm(θ) = bm(θ)e−j 4πf

c
(x0 cos θ+y0 sin θ), wherebm(θ) are dilations and translations of a common

pulse shape. We can use boxcar pulses, Hamming pulses, or other shapes that we expect to encounter.

Anisotropy of narrow angular extent comes from physical objects distributed in space and anisotropy of

wide angular extent comes from physical objects localized in space; hence the atoms provide a directly

meaningful physical interpretation. Appropriately stacking the measurements at different frequencies, we

have the sparse signal representation problem with a non-molecular hierarchical dictionary and can obtain

solutions using the graph-structured algorithm describedabove.

D. Anisotropy Characterization of Single Point-Scatterer

We now show anisotropy characterization on SAR phase history measurements from XPatch, a state-

of-the-art electromagnetic prediction package, using thegraph-structured heuristic method described in

this section. A scene containing a single scatterer is measured atN = 140 aspect angles spaced one

degree apart. The scattering magnitude as a function of aspect angle is the gray line plotted in Fig. 6a.

(The line shows the measurements at one particular frequency within the frequency band covered by the

radar pulse; frequency dependence is minimal and scattering magnitude at all frequencies is nearly the

same.)

Using boxcar pulses for atoms in the overcomplete dictionary and a guiding graph of sizeG = 32,

we obtain a sparse approximation for the aspect-dependent scattering given by the black line in Fig. 6a.

The search path of the graph-structured algorithm is shown in Fig. 6b. The line indicates the location of

the root node of the guiding graph within the full molecular graph. When the stopping criterion is met,
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the atom at the root of the guiding graph is of width34 samples. The finest atoms that contribute to the

approximation have width4 samples. The sparse solution has14 non-zero coefficients out of a possible

M = 9870 coefficients forN = 140.

From the solution, it is possible to infer physical properties about the object being imaged because

thin anisotropy corresponds to objects of large physical size and wide anisotropy to objects of small

physical size. Sparsity and the particular overcomplete dictionary are important because they allow this

characterization directly by identifying the coarsest non-zero coefficient.

III. A LGORITHM FOR MOLECULAR DICTIONARIES

In the previous section, we described a search-based algorithm for dictionaries whose atoms have a

hierarchy, but did not consider dictionaries that have a molecular decomposition into subdictionaries. In

this section, the heuristic algorithm is extended by applying it to dictionaries withL > 1 molecules,

each individually having a hierarchical structure of atoms. We haveL coexisting molecular graphs and

thus not just one search, butL simultaneous searches. As we shall see, these searches are not performed

independently, but rather interact and influence each other. For joint anisotropy characterization and image

formation, theL molecules correspond toL different point-scatterers or spatial locations in the ground

patch being imaged.

A. Molecular Dictionaries

Overcomplete dictionaries composed of molecules are fairly common, arising in one of two ways.

The first is as the union of two or more orthogonal bases and thesecond, through dependence on some

parameter that takes the same value for one subset of atoms, another value for a subset disjoint from the

first, and so on.

An example of the first instance is a dictionary made up of the union of an orthogonal basis of lapped

cosines and an orthogonal basis of discrete wavelets that provides atoms to represent tonal and transient

components in audio signals [11]; the same idea is used for images as well, taking two different bases

together as an overcomplete dictionary, one for periodic textures and one for edges [23]. An example in

audio of the second instance is molecules whose atoms share acommon fundamental frequency [12]. In

the radar imaging example in Section III-D, atoms within molecules share a common(x, y) location and

different molecules correspond to different spatial locations.

The two types of decompositions into molecules present different properties. In the first type, different

molecules aim to represent very different phenomena and areincoherent from each other, whereas in
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the second, the molecules correspond to different instances of the same phenomenon and may be highly

coherent. In this work, we consider dictionaries whose molecules all have hierarchical structure that

permits the construction of molecular graphs, regardless of decomposition type. We use simultaneous

searches on all molecular graphs; the difficulty of the problem increases as the coherence between

molecules increases.

B. Interacting Searches on Multiple Graphs

The general framework for the graph-structured algorithm with dictionaries containing more than one

molecule is the same as for dictionaries without molecules,but with a few key differences. Here the

dictionary is of the form
[

Φ1 Φ2 · · · ΦL

]

with each moleculeΦl having a molecular graph. We

assume that all atoms in the dictionary are distinct and thatmolecules do not share atoms.L guiding graphs

iterate through theL molecular graphs, one guiding graph per molecular graph. The vector of coefficients

a also partitions as
[

aT
1 aT

2 · · · aT
L

]T

. L searches are performed simultaneously, as follows.

(1) Initialization: Let i← 1 and for all molecules l = 1, . . . , L, Φ
(i)
l ← atoms from

the top G levels of molecular graph l. Φ(i) ←
[

Φ
(i)
1 · · · Φ

(i)
L

]

.

(2) Find a sparse a(i) such that Φ(i)a(i) approximates g.

(3) For all l = 1, . . . , L, calculate weighted sum of bottom row coefficient magnitudes:

µl ←
∑G

m=1 m|a
(i)

l, 1

2
G2

−

1

2
G+m
|.

(4) If
∑L

l=1 µl = 0 then stop. Otherwise, i ← i + 1. For all l = 1, . . . , L, if µl = 0,

then Φ
(i)
l ← Φ

(i−1)
l . Else if bottom row nodes are leaves of molecular graph l or both

children of guiding graph l have been visited before, then Φ
(i)
l ← atoms from the

highest unvisited guiding graph. Else, Φ
(i)
l ← (µl < G+1

2

∑G

m=1 |a
(i)

l, 1

2
G2

−

1

2
G+m
| and left

child unvisited ? atoms from the left child guiding graph : atoms from the right

child guiding graph). Iterate to step (2).

Let us emphasize that although theL searches are performed simultaneously, they are not performed

independently. The searches are coupled because the inverse problem is solved jointly for all molecules

on every iteration; contributions to the reconstruction ofg from all of the molecules interact. There is no

notion of molecules when solving the smaller inverse problem g ≈ Φ(i)a(i). The molecular structure only

comes into play aftera(i) has been solved, and the heuristics, stopping criteria, andΦ
(i)
l updates are to

be calculated. Since we consider all molecules jointly rather than one at a time as matching pursuit-like

algorithms would do, we see similar advantages of the formulation presented here to those seen in Fig. 4

for the single molecule case.
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The dictionary used in calculating the heuristic and stopping criterion hasO(G2) atoms per molecule

andO(G2L) atoms forL molecules, instead ofO(N2L) atoms used if one were to solve the full inverse

problem. However, the graph-structured algorithm requires O(N2) iterations, whereas solving the full

inverse problem at once requires just one iteration.G is a small constant that is fairly independent of

N . For joint anisotropy characterization and image formation, L andN may be in the thousands. The

realistic example given in Section III-E would have eighty-nine million atoms if the full problem were

solved at once, but the graph-structured approach allows usto only consider a small fraction of them.

In the following section, we discuss variations to the algorithm presented thus far that further reduce

computation or memory requirements.

C. Algorithmic Variations

The graph-structured algorithm described thus far uses thefull hill-climbing search including back-

tracking, taking steps of single levels per iteration basedon a heuristic employing guiding graphs taking

the form ofG-level molecular graphs. A number of variations to the basicalgorithm may be made; we

present a few here, but many others are also possible. Algorithms that use one variation or use a few

variations together can be used to solve the sparse signal representation problem. Depending on the size

of the problem and the requirements of the application, one algorithm can be selected from this suite of

possible algorithms.

1) Hill-climbing without back-tracking:Hill-climbing search always finds the goal node because of

back-tracking. In a first variation, we limit the search to disallow back-tracking. This reduces the iterations

from O(N2) to O(N), but results in a greedier method. If, on a particular example, hill-climbing with

back-tracking were to terminate on the first pass down molecular graphs before reaching leaves, then the

same operation would be achieved whether the original algorithm or the variation were used. In practice,

we often observe termination on the first downward search, including in the example seen in Section

II-D and an example presented below in Section III-D.

2) Modified molecular graph:Molecular graphs are structured such that in hill-climbingwithout back-

tracking, one wrong step eliminates many nearby nodes and paths because each node has only two

children. The graph may be modified to increase the number of children per node to four for interior

nodes and three for nodes on the edges of the graph, consequently not disallowing as many nodes and

paths per search step.

A modified heuristic to go along with this modified graph is to use theG coefficients in levelG of

the guiding graph as before, but instead of determining whether the center of mass of the coefficient
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magnitudes is in the left half or the right half, determiningwhich quarter it is in. If the left-most quadrant,

then the search proceeds to the node in the next level that is two to the left of the current node. If the

middle left quadrant, then the next node is one to the left in the next level, and so on. With these

additional edges, search without back-tracking is less greedy with no additional cost, since calculating

this modified heuristic is no more costly than calculating the original heuristic.

3) Modified guiding graph and larger steps:The guiding graph need not be aG-level molecular

graph; for example, the graph may be thinned and include the top node, nodes in levelG, and nodes

in a few intermediate levels rather than all intermediate levels, further reducing the number of atoms in

Φ(i). These atoms are sufficient for calculating the heuristic and stopping condition. Also, searches may

take larger steps than moving guiding graphs down just one level per iteration.

4) Removal of stopped molecules:The graph-structured algorithm reduces the number of atomsper

molecule fromO(N2) to O(G2), but does nothing to reduce the number of moleculesL. A further

variation to the hill-climbing search without back-tracking may be introduced that reduces the average-

case dependence of the number of atoms onL. It is observed that, despite interactions among contributions

from different molecules, once the search on a particular molecule stops it does not restart in general,

but may occasionally restart after a few iterations. It is thus natural to consider fixing the contribution

from a molecule upon finding its coefficients.

In the algorithm, this implies that once the stopping criterion is met at moleculel, the signalg is

updated to beg′ = g −Φlal, andΦl is removed fromΦ, thereby reducing the number of atoms inΦ.

We perform the removal some iterations after the stopping criterion is met and maintained to allow for

a possible restart. This variation, though distinct, has some similarity to matching pursuit.

D. Joint Anisotropy Characterization and Image Formation

The problem of joint anisotropy characterization and imageformation in wide-angle SAR takes the

problem of characterizing anisotropy of a single point-scatterer seen in Section II and extends it to doing

so for all points in the ground patch. In other words, whereasstandard image formation attempts to

recovers(x, y) assuming no dependence onθ, we aim to recovers(x, y, θ).

The observation model from more than one point is a superposition of terms like (3):

g(f, θ) =

L
∑

l=1

sl(θ)e−j 4πf

c
(xl cos θ+yl sin θ). (5)

DRAFT January 21, 2008



VARSHNEY et al.: SPARSE REPRESENTATION IN STRUCTURED DICTIONARIES WITH APPLICATION TO SAR 17

0

1

θ

0

1

θ

0

1

θ

0

1

θ

0

1

θ

0

1

θ

0

1

θ

0

1

θ

0

1

θ

0

1

θ

0

1

θ

0

1

θ

0

1

θ

0

1

θ

0

1

θ

0

1

θ

0

1

θ

0

1

θ

0

1

θ

0

1

θ

0

1

θ

0

1

θ

0

1

θ

0

1

θ

0

1

θ

Fig. 7. Scattering magnitude at each spatial location.

The observation model (5) lends itself to an overcomplete expansion of the form:

g(f, θ) =

L
∑

l=1

M
∑

m=1

almbm(θ)e−j 4πf

c
(xl cos θ+yl sin θ), (6)

in a similar manner to the single point-scatterer case. Herethe dictionary is naturally decomposed into

molecules, with each molecule corresponding to a differentspatial location(xl, yl). We can thus use the

methods described above for joint anisotropy characterization and image formation [24].

When performing joint anisotropy characterization and image formation, a grid of pixels in the image

to be reconstructed or points of interest identified throughpreprocessing may be used as the spatial

locations(xl, yl). We now present an example withL = 25 spatial locations in a five by five grid, with

rows and columns spaced one meter apart. Unlike Section II-Dwhich uses XPatch data, the synthetic

data in this example is matched to the dictionary for illustrative purposes.

This example hasN = 160 aspect angles equally spaced over a110◦ aperture. Fig. 7 shows the

scattering magnitude at each of the 25 spatial locations arranged as in an image; five of the spatial

locations contain boxcar-shaped scattering and the other twenty do not have scatterers. The coherent sum

of the scatterers is the phase history measurementg(f, θ), plotted in Fig. 8 for one frequency.

We recover a signal representation from the phase history measurements using the basic algorithm for

molecular dictionaries with guiding graphs of sizeG = 8 and boxcar-shaped atoms. The search paths

for the different locations are shown in Fig. 9. The overcomplete dictionary forN = 160, L = 25 has

322, 000 atoms. In the solution of the sparse signal representation problem, contributions come from

January 21, 2008 DRAFT



18 IEEE TRANSACTIONS ON SIGNAL PROCESSING, ACCEPTED

−50 0 50
0

2

4

θ (degrees)

|g
(θ

)|

Fig. 8. Phase history measurement magnitude.

Fig. 9. Search paths of basic algorithm for molecular dictionaries.

exactly the five atoms used to generate the synthetic data; the coefficient values are also recovered. If the

solution were to be overlaid on Fig. 7 and Fig. 8, it would not be distinguishable. Looking at the search

paths, despite not containing scatterers, a couple of molecules initially iterate nonetheless, but in the end

correctly give all zero coefficients. This effect is a resultof the interaction between different molecules.

The algorithm operates correctly on this synthetic example; a larger example on XPatch data is given

below and others may be found in [24], [25].

E. Approaches to Wide-Angle SAR and a Realistic Example

To conclude this section, a large, realistic example with XPatch data is presented. The scene being

imaged contains a backhoe-loader, illustrated in Fig. 10a [26]; measurements are taken atN = 1541

equally-spaced angles over an aperture ranging from−10◦ to 100◦. L = 75 spatial locations are identified

from a composite subaperture image using the method of [27],for which anisotropy is then jointly

characterized. The full dictionary for this example hasM = 89, 108, 325 atoms. We apply the graph-
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Fig. 10. Backhoe-loader example: (a) illustration of the scene;L = 75 spatial locations of interest shaded according to (b)

maximum magnitude, (c) center angle of anisotropy (degrees), and (d) angular extent of anisotropy (degrees) in solution; (e)-(f)

aspect-dependent scattering solution for two spatial locations.

structured algorithm with all of the variations listed in Section III-C to the problem and obtain seventy-five

functions of aspect angle.

The magnitudes of two of these functions are plotted in Fig. 10e and Fig. 10f. In order to provide spatial

visualization of the scattering behavior, the magnitude, center angle of anisotropy, and angular extent of

anisotropy for each of the spatial locations is indicated bythe shading of the markers in Fig. 10b-d.

In the magnitude visualization, light gray is small magnitude and black is high magnitude. Points

corresponding to the front bucket of the backhoe-loader have high magnitude. In the visualization of

center angle, the left side of the front bucket has responsescloser to−10◦ (light gray) and the right

side of the front bucket has responses closer to+100◦ (black). In the angular extent visualization, it

can be seen that narrow and wide anisotropy is distributed, but the points on the front bucket with high

magnitude also have narrow extent. Overall, one can note from the visualizations that the front bucket
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flashes on its two sides and the other parts of the backhoe-loader have scattering with smaller magnitude

and wider anisotropy.

Through joint anisotropy characterization and image formation, we obtain much more information than

a simple image would provide, namely an entire dimension of aspect-dependence. The reflectivities of

scatterers with narrow angular persistence, which are lostin Fourier-based image formation, are obtained.

The formulation presented here solves for the anisotropy ofall spatial locations within one system of

equations, taking interactions among scattering centers into account.

The formulation is more flexible than parametric methods foranisotropy characterization such as [28],

[29]. Also, solutions have more detail in aspect angle than subaperture methods such as [30]–[33], in

which the measurements are divided into smaller segments covering only parts of the wide-angle aperture.

Consequently, using the method presented here, angular persistence information can be extracted as in

Fig. 10d, which is not possible from subaperture methods. Also, since data from the full wide-angle

aperture is used here throughout, cross-range resolution is not reduced as it is with subaperture methods.

IV. D ICTIONARY REFINEMENT

In Section II and Section III, the dictionaryΦ is known and fixed, but this need not always be the

case. A more ambitious goal is to find the best dictionary under some criteria and an optimally sparse

representation jointly. The idea of learning overcompletedictionaries has been applied in the case that

one has many examples of signalsg, much more than the number of atoms inΦ, and a dictionary is

to be determined that is able to most sparsely represent all of the signals, usually for compression tasks

[34], [35]. In inverse problems, where the interest is in extracting physical meaning from the obtained

sparse representation for each input signalg, rather than compression of an entire signal class, it is of

interest to look at the best dictionary for each input ratherthan the best dictionary to represent an entire

set of training signals. At this point, one could conclude that a dictionary withφ1 = g is optimal and

stop. However, we would like to consider dictionaries derived from a parameterized observation model

and only consider parameterized atoms, not arbitrary atoms. In this section we propose and demonstrate

a formulation for joint optimization to achieve a sparse coefficient vector and optimal parameter settings

for a dictionary with parameterized atoms or molecules.

A. Joint Dictionary and Sparse Coefficient Optimization

We begin with a dictionary whose atoms depend on a set of parametersη; each parameter may or

may not be shared by atoms or molecules. Furthermore, we consider the ℓp relaxation to the sparse
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signal representation problem mentioned in Section II-B [19]. The optimization problem at hand then is

to minimize the following cost function:

J(a,η) = ‖g −Φ(η)a‖22 + α‖a‖pp, p < 1, (7)

jointly determining a dictionaryΦ(η) and coefficientsa.

To carry out the joint minimization, we take a coordinate descent approach, alternately optimizing over

the coefficients and dictionary parameters. The two optimizations are:

a(t+1) = arg min
a

∥

∥

∥
g −Φ

(

η(t)
)

a

∥

∥

∥

2

2
+ α ‖a‖pp . (8)

η(t+1) = arg min
η

∥

∥

∥
g −Φ (η)a(t+1)

∥

∥

∥

2

2
+ α

∥

∥

∥
a(t+1)

∥

∥

∥

p

p

= arg min
η

∥

∥

∥
g −Φ (η)a(t+1)

∥

∥

∥

2

2
. (9)

The application will guide the particular initialization for η. The non-convex minimization (8) may be

performed using the graph-structured algorithms of Section II and Section III, or using quasi-Newton

optimization [19].

The minimization (9) may be recognized as nonlinear least-squares; many techniques exist in the

literature including the trust-region reflective Newton algorithm that we use [36]. Linear inequality

constraints on the parameter vectorη may be handled within this framework. Termination of the procedure

is upon the change inη falling below a small constant.

B. Characterization of Migratory Scattering Centers

We demonstrate joint dictionary parameter and sparse representation optimization on the charac-

terization of a phenomenon in wide-angle SAR imaging different from anisotropy. Certain scattering

mechanisms migrate as a function of aspect angleθ in wide-angle imaging [37], [38]. Migration occurs

when radar signals bounce back from the closest surface of a physical object, but the closest surface of

the object is different from different viewing angles; the physical object is not really moving, but appears

to move in the measurement domain. By accounting for this effect in solving the inverse problem, a

physically meaningful, parsimonious description can be extracted.

For example, considering a circular cylinder, the point of reflection on the surface closest to the radar

can be parameterized as a function ofθ around the center of the cylinder(xc, yc) using the radius of

the cylinderη. Whenθ = 0, the scatterer appears to be at(xc − η, yc), which we define as(x̄, ȳ). The
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Fig. 11. Tophat example: (a) aspect-dependent scattering measurement (gray line) and solution (black line); (b) conventionally

formed image with migration solution overlaid.

observation model for migratory point scatterers is:

g (f, θ) =
L

∑

l=1

sl(θ)e−j 4πf

c
((x̄l+ηl) cos θ+ȳl sin θ−ηl). (10)

A dictionary expansion for the observation model is:

g (f, θ) =

L
∑

l=1

M
∑

m=1

almbm(θ)e−j 4πf

c
((x̄l+ηl) cos θ+ȳl sin θ−ηl). (11)

In this instance, the atoms are parameterized by the radiusη, and moreover, all atoms in moleculel share

a common radiusηl; henceη is anL-vector of parameters. The inverse problem is to jointly recover the

anisotropy and radius of migration of all scatterers in the ground patch.

The radius is constrained to be non-negative, i.e.η ≥ 0. Most scatterers are not migratory, and thus

we initialize η with all zeroes. Often in practice, the coefficient vectora retains its sparsity structure on

every iteration because even forη = 0, characterized anisotropy may be close to correct, or at least have

the correct support. The procedure may be envisioned as simultaneously inflatingL balloons.

As an example, we look at data from XPatch of a scene containing a tophat that exhibits circular

migratory scattering. In the aperture withN = 15 aspect angles spaced one degree apart, the tophat also

has anisotropy, as shown in Fig. 11a. The magnitudes as well as the real and imaginary parts of the

measurements are shown, as migratory scattering affects phase, not magnitude. An image of the scene

formed using the polar format algorithm, a conventional method based on the inverse Fourier transform,

is shown in Fig. 11b.

After identifying the spatial location with largest magnitude in the conventionally formed image, the

coordinate descent described in this section is applied with L = 1. A raised triangle shape is used for the

atoms. The solution has radius 5.314 meters and anisotropy as plotted in Fig. 11a. The circular migration
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of radius 5.314 meters is overlaid on and matches well with the conventional image in Fig. 11b. Coordinate

descent to jointly optimize over radius and anisotropy is effective with realistic data seen here, and with

several scatterers in a scene (L > 1), see [25]. By allowing for a non-zero radius, image formation is not

simply pixel-based but more region-based. Although point scatterers can be equated to spatial locations,

if information about migration is considered, the scatterer is more of an object-level construct.

We have looked at characterizing the migration of scatterers when the migration is circular in shape.

Circles are an important subset of migratory scattering because many man-made objects contain scatterers

with circular migration. However, any shape defined by a radius functionη(θ) around a center is easily

expressed in the observation model:

g (f, θ) =

L
∑

l=1

sl(θ)e−j 4πf

c
((x̄l+ηl(0)) cos θ+ȳl sin θ−ηl(θ)). (12)

Under this model,ηl is not constant across all angles, so a lengthL vector of parameters is not sufficient.

One option is to take a functional form forηl(θ) with more degrees of freedom than just a constant

function, such as a polynomial, and lengthen the parameter vector η. Another option is to locally,

i.e. in small segments ofθ, approximateηl(θ) with pieces of circles [25]. The phenomenon of migratory

scattering, which has rarely been explored in the literature, is a source of information that can be mined

for details about object shape and size.

V. SIMULTANEOUS SPARSITY IN MULTIPLE DOMAINS

In the previous sections, we use an overcomplete dictionaryΦ to represent a signalg, assuming that

a sparse representation exists and then finding it. Our assumption in those sections is thatg is sparse in

the domain of the atoms. In this section, reverting to a knownand fixed dictionary, we look at signals

that are sparse in the domain of that known and fixed dictionary, but are also sparse in one or more other

domains. The goal is to develop a formulation that recovers parsimonious representations, semantically

interpretable in the case of inverse problems, making use ofsparsity in all domains. Note that in the end,

solutions will still be representations in terms of the atoms of the dictionary.

A. Additional Sparsity Terms

For sparsity in the domain of the dictionary, theℓp relaxation as an objective function is:

J(a) = ‖g −Φa‖22 + α‖a‖pp, p < 1. (13)

Let us assume thatg is also sparse in a transformed domain and that that sparsityis to be exploited as

well. First note that taking an orthonormal transformationof both the signalg and dictionaryΦ does not
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Fig. 12. Glint example: (a) aspect-dependent scattering measurement; (b) conventionally formed image.

change the cost function. Also, the dictionaryΦ is fixed; consequently, we keep the data fidelity term as

is, and append additional sparsity terms.

J(a) = ‖g −Φa‖22 +
∑

i

αi‖Fi(a)‖pp. (14)

The functionsFi(a) return vectors related to the domain in which sparsity is to be favored. For the

domain of the dictionary atoms,Fi is an identity operation. For domains that are transformations of the

original domain,Fi is constructed as follows.

The operationFi is the composition of three simpler operations. First, since the coefficients themselves

have no particular meaning until paired with their corresponding atoms, initiallyFi takes the coefficients

through the atomsφm. Thereafter, the second operation is transformation to another domain. Finally,

further operations in the transformed domain may follow. Ifall Fi(a) are linear, i.e. matrix-vector

products, then the cost function may be optimized using quasi-Newton optimization [19] or the graph-

structured algorithm using quasi-Newton optimization in each iteration. A concrete application given

below constructs suchFi.

B. Parsimonious Representation Recovery of Glint Anisotropy

Scattering behavior known as glint is produced by long, flat metal plates and is not migratory, has very

narrow anisotropy, and corresponds to a line segment in thex-y domain oriented at the same angle as

the center angle of the anisotropy. Fig. 12a shows aspect-dependent scattering of glint anisotropy from

XPatch data and Fig. 12b shows a conventionally formed image. A parsimonious representation ought to

explain scattering with a single scattering center, not with a collection of scatterers located on the line

segment. We apply the formulation (14) both to favor sparsity among atoms and to favor sparsity along

lines [38].
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To favor sparsity among atoms,F1 is the identity. We now find a domain in which sparsity along

a line can be favored. The normal parameter space of the Houghtransform, theρ-θ plane, and image

space, thex-y plane, are related by the property that a set of points lying on the same line in image

space corresponds to a set of sinusoids that intersect at a common point in parameter space [39]. Thus

sparsity among scatterers in individualρ-θ cells achieves the goal of sparsity among points on a line.

In [40], a Hough space sparsifying regularization approachis employed to enhance and detect straight

lines in positive real-valued images by imposing sparsity when taking the image data to theρ-θ plane.

Parameter space cells with small counts are suppressed and cells with large counts are enhanced; thus,

non-line features are suppressed and line features are enhanced in image space. The goals in our work

are different and consequently, the sparsity terms are of a different flavor as well.

The range profile domain in SAR, a one-dimensional inverse Fourier transform of the phase history

measurement domain, is equivalent to the parameter space ofthe Hough transform. It follows that for

sparsity among scatterers in cell(ρk, θn), a sparsity term of the form‖|Lkna|‖
p
p is used, whereLkn is a

linear operator that is a composition of a block-diagonal version of the dictionary to bring the coefficients

to the phase history domain, a discrete Fourier transform operator to go to the range profile domain, and

a selection operator to select cell(ρk, θn). The resulting vectorLkna is of lengthL. Favoring sparsity

in all range profile cells, the overall sparsity cost function is:

J(a) = ‖g −Φa‖22 + α1 ‖a‖
p
p + α2

K
∑

k=1

N
∑

n=1

‖|Lkna|‖
p
p. (15)

The parametersα1 andα2 control the influence of the two sparsity terms. Whenα2 = 0, the cost function

reduces to (13).

We solve the inverse problem withL = 24 pixels of interest identified by having large magnitude in the

conventional image Fig. 12b. These24 pixels are along a diagonal line more or less. The measurements

are atN = 20 aspect angles over a19◦ aperture with the glint at5.5◦.

Let us define two counts related to the sparsity of the solution and look at their behavior asα1 andα2

are varied. We defineLA as the number of molecules out of the possibleL = 24 that have at least one

non-zero coefficient in the solution. Also,MA is defined as the average number of non-zero coefficients

per molecule in those molecules that have at least one non-zero coefficient. The maximum possible value

of MA is M , which is 210 for N = 20. When LA is zero,MA is defined to be zero. Solutions are

obtained using the quasi-Newton method to minimize (15).

The two countsLA and MA are given in Table I for different values ofα1 and α2. First, it should

be noted that whenα1 andα2 get too large, all of the coefficients go to zero. The main thing to take
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TABLE I

LA AND MA AS A FUNCTION OF THE PARAMETERSα1 AND α2 .

(LA , MA) α1 = 0 α1 = 10 α1 = 20 α1 = 30 α1 = 40

α2 = 0 (24, 39) (24, 1) (24, 1) (24, 1) (0, 0)

α2 = 5 (2, 39) (3, 1) (3, 1) (3, 1) (0, 0)

α2 = 10 (1, 39) (2, 1) (4, 1) (2, 1) (0, 0)

α2 = 15 (1, 39) (4, 1) (3, 1) (1, 1)∗ (0, 0)

α2 = 20 (1, 39) (4, 1) (3, 1) (1, 1)∗ (0, 0)

α2 = 25 (1, 39) (4, 1) (2, 1) (0, 0) (0, 0)

α2 = 30 (1, 39) (2, 1) (1, 1)∗ (0, 0) (0, 0)

α2 = 35 (1, 39) (1, 1)∗ (1, 1)∗ (0, 0) (0, 0)

α2 = 40 (1, 39) (1, 1)∗ (1, 1)∗ (0, 0) (0, 0)

note of is that whenα2 = 0, LA = 24, i.e. all spatial locations provide contributions to the solution,

but asα2 increases, sparsity along a line is a greater influence and the number of contributing spatial

locations decreases to one. Sparsity among atoms is not enough for the solution on XPatch data to be

parsimonious in the number of spatial locations, sparsity along a line is also required.

It can be seen that whenα1 = 0, 39 atoms per spatial location contribute, not very sparse. Forlarger

α1, just one atom per spatial location contributes. Considering the behavior ofLA andMA together, we

note that the two sparsity terms are fairly orthogonal; the main effect of sparsity among atoms is on the

number of atoms per spatial location and the main effect of sparsity along a line is on the number of

spatial locations, as per the design objective.

A sparse and physically interpretable approximation oughtto assign all of the scattering to the leaf

atom at5.5◦ of a single spatial location. Such a solution with one non-zero coefficient is recovered for

the (α1, α2) pairs marked with an asterisk in Table I.

Through the example it has been seen that both types of sparsity are necessary to recover a solution

that represents the scattering as coming from a single pointand with very thin anisotropy explained by a

single atom. With this representation, spatial propertiesabout the object being imaged, such as orientation

and physical extent, may be inferred. Although the same object-level inferences could have been made

with α2 = 0, in that case,L such objects would be indicated rather than one, which does not make

physical sense. Points have more meaning than just pixels with aspect-dependent amplitudes.
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VI. CONCLUSION

We looked at methods of obtaining sparse signal representations and approximations from overcomplete

dictionaries with hierarchical structures within subdictionaries, focusing on the context of coherent inverse

problems with physically interpretable dictionary elements. We developed a heuristic method of solution

for such problems that takes advantage of the structure by relating the problem to search on graphs.

We also took a step back from the classic sparse signal representation problem to consider dictionary

refinement as well as obtaining solutions simultaneously sparse in multiple domains. Under dictionary

refinement, a coordinate descent approach was developed to jointly optimize parameterized atoms and

coefficients, whereas under simultaneous sparsity, an extended sparsifying cost function was minimized.

The methods were demonstrated on various facets of wide-angle SAR, but are general enough to

transfer to other applications with appropriate dictionaries. In the SAR context, starting from the same

low-level measurements used by conventional image formation techniques, we have taken a step farther in

scene understanding while also taking into account phenomena such as anisotropy that cause inaccuracies

in conventional methods. We have started to move away from a pixel representation to more of an object-

level representation through the use of a physically meaningful dictionary.

APPENDIX

Two experimental results are given as empirical validationfor the search heuristic and stopping

criterion described in Section II-B. We show that solutionsfrom subdictionaries do in fact have non-

zero coefficients for atoms most ‘similar’ to the signalg, particularly wheng is not contained in the

subdictionary. For the experiments, the molecular graph has N = 400 levels and the guiding graph has

G = 8 levels. Keeping the guiding graph fixed within the moleculargraph, the behavior of the solution

a is observed as the signalg is varied. Quasi-Newton optimization is used to obtain the sparse solution

coefficientsa.

In the first experiment, with results in Fig. 13, the guiding graph is fixed with root at the left-most

node of level 200 in the molecular graph. The true signalg is varied from coarse to fine support. In

terms of the molecular graph, the true coefficient is varied,starting at the root node, through all nodes

along the left edge of the graph, to the left-most node of level 400. In the plot, the row in the molecular

graph which containsg is plotted on the horizontal axis. The magnitudes of the 36 coefficients ina are

indicated by shading (white is zero); each horizontal stripis for one of the coefficients. Most coefficients

are zero for allg due to sparsity. In the regime where the guiding graph is below the true coefficient, the

coefficient of the guiding graph root node is non-zero. In theregime where the guiding graph covers the
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Fig. 13. Coefficient magnitudes in 8-level guiding graph as signal g is varied from coarse to fine.
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Fig. 14. Coefficient magnitudes in 8-level guiding graph as signal g is shifted from left to right.

true coefficient, the correct coefficient is non-zero. When the guiding graph is above the true coefficient,

the coefficient of the bottom left node, the node in the last level closest to the truth, is non-zero and

others are zero. It should be noted that the influence of the finest signals does not reach up to make any

guiding graph node coefficients non-zero (a consequence of regularization).

In the experiment yielding the results of Fig. 14, the guiding graph is fixed with root at the center node

of level 200 instead of the left-most node. The true node is varied from left to right across the molecular

graph at level 210, three levels below the bottom of the guiding graph. This figure is organized in the

same manner as Fig. 13, but the horizontal axis indicates thecolumn ofg in the molecular graph. From

these results, first it is apparent that only coefficients in the last level of the guiding graph are non-zero,

reconfirming results from the previous experiment. Second,it can be seen that when the truth is to the

left of the guiding graph, the left-most node of levelG is non-zero. Similarly, when the truth is to the

right, the right node is non-zero; when the truth is underneath the 8-level graph, nodes in the interior of

the last level are non-zero.
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[3] M. Çetin, W. C. Karl, and A. S. Willsky, “Feature-preserving regularization method for complex-valued inverse problems

with application to coherent imaging,”Optical Engineering, vol. 45, no. 1, p. 017003, Jan. 2006.

[4] I. F. Gorodnitsky and B. D. Rao, “Sparse signal reconstruction from limited data using FOCUSS: A re-weighted minimum

norm algorithm,”IEEE Trans. Signal Processing, vol. 48, no. 3, pp. 600–616, Mar. 1997.

[5] B. D. Jeffs and M. Gunsay, “Restoration of blurred star field images by maximally sparse optimization,”IEEE Trans.

Image Processing, vol. 2, no. 2, pp. 202–211, Apr. 1993.

[6] S. G. Mallat and Z. Zhang, “Matching pursuits with time-frequency dictionaries,”IEEE Trans. Signal Processing, vol. 41,

no. 12, pp. 3397–3415, Dec. 1993.

[7] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition by basis pursuit,”SIAM J. Scientific Computing,

vol. 20, no. 1, pp. 33–61, Aug. 1998.

[8] D. L. Donoho and M. Elad, “Optimally sparse representation in general (nonorthogonal) dictionaries viaℓ
1 minimization,”

Proc. National Acad. Sciences, vol. 100, no. 5, pp. 2197–2202, Mar. 4 2003.
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