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Abstract

Sparse signal representations and approximations froncawplete dictionaries have become an
invaluable tool recently. In this paper, we develop a newyriséic, graph-structured, sparse signal
representation algorithm for overcomplete dictionaribattcan be decomposed into subdictionaries
and whose dictionary elements can be arranged in a hierafaloynd this algorithm, we construct
a methodology for advanced image formation in wide-angletstic aperture radar (SAR), defining an
approach for joint anisotropy characterization and imagmétion. Additionally, we develop a coordinate
descent method for jointly optimizing a parameterizedidiwiry and recovering a sparse representation
using that dictionary. The motivation is to characterizeh@mmenon in wide-angle SAR that has not
been given much attention before: migratory scatteringezeni.e. scatterers whose apparent spatial
location depends on aspect angle. Finally, we address e @b recovering solutions that are sparse in

more than one objective domain by introducing a suitablessfying cost function. We encode geometric
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objectives into SAR image formation through sparsity in thamains, including the normal parameter

space of the Hough transform.

Index Terms

sparse signal representations, overcomplete dictios)aimization methods, tree searching, inverse

problems, synthetic aperture radar, Hough transforms

. INTRODUCTION

Whether for filtering, compression, or higher level taskshsas content understanding, the transfor-
mation of signals to domains and representations with @eigirproperties forms the heart of signal
processing. The last decades have seen overcompletenditti® and sparse representations take a place
in the processing of signals such as those that are mukidnahature or can be traced to physical
phenomena. By sparse, it is explicitty meant that a signallma adequately represented using a small
number of dictionary elements. Sparse signal representatind approximation has proven successful
in solving inverse problems arising in a variety of applicatareas such as array processing [1], time-
delay estimation [2], coherent imaging [3], electroenadpyraphy [4], astronomical image restoration
[5], and others. Inverse problems may be cast as sparsd sigmasentation or approximation problems
in conjunction with dictionaries whose elements have a jglhydterpretation, having been constructed
based on the observation model of a particular application.

Representing a signgl € C"V using an overcomplete dictionafyp,, ¢, ..., ¢}, M > N involves
finding coefficientsa,, such thatg = 2%21 am®,,. Since the dictionary is overcomplete, there is no
unique solution for the coefficients; additional constiaior objectives, e.g. sparsity, are needed to specify
a unique solution. Among other properties, sparsity andamraplete dictionaries have been known to
deal well with undersampled data, and provide superrdsaluparsimony, and robustness to noise.
Traditionally, sparsity is measured using thecriterion, which counts the number of non-zero values.
The problem of finding the optimally sparse representatien,with minimum ||a| wherea is the set
of coefficients taken as a vector @, is a combinatorial optimization problem in general. Duette
difficulty in solving large combinatorial problems, greedigorithms such as matching pursuit [6] and
relaxed formulations such as basis pursuit [7] that are caatipnally tractable have been developed for
general overcomplete dictionaries. Methodologies sucthese have been proven to produce optimally
sparse solutions under certain conditions on the dictiof~[10]. A sparse signal approximation is a

set of coefficients subject to a sparse penalty suchH‘@atZ%zl am®,,||3 is less than a small positive

DRAFT January 21, 2008
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constant.

Oftentimes, the dictionary elemends,,, termedatoms are chosen to have a physical interpretation.
Atoms may correspond to different scales, translatioregjufencies, and rotations or the dictionary may
comprise subdictionaries, often given the namaeculeg11]. Many popular sparse signal representation
methods and algorithms are general and do not exploit Hatl@@ompositions of the dictionary into
molecules or hierarchical structure that may be preserttancollection of atoms. Some approaches do
exist in the literature that take advantage of structuretiadiaries, e.g. [11]-[16]. A main contribution
of this paper is an approximate algorithm for sparse sigeptasentation, related to heuristic search,
that uses graphs, one per molecule, constructed with atemsdes connected according to hierarchical
structure.

In the context of solving inverse problems using sparseasiggpresentation techniques, the design of
atoms based on the observation model is predicated on ctariplewledge of the observation process.
However, it may be the case that the functional form of theeolaion process is known, but there is
dependence on some parameter or parameters that is not kngnori. In this case, it is of interest
to both optimize the dictionary over the unknown parameterd to find sparse solution coefficients.
In overcomplete representation contexts other than isv@reblems, this can be viewed as signal-
dependent dictionary refinement. A second contributionhgf tvork is a coordinate descent approach
that simultaneously refines the dictionary and determinggaase representation.

Notationally, we take® to be a matrix whose columns are atoms from the overcomplet®mhry,
and ®(n) to reflect parametric dependence on the set of paramgterhe matrix for a dictionary with
L molecules is the concatenation bfblocks: [®, --- ®] or [®1(n;) - ®PL(n;)]

A fundamental premise of sparse signal representation ignderlying sparsity in some domain,
but signals may be sparse in more than one complementargpeelly speaking ‘orthogonal,” domain.
Accounting for and imposing simultaneous sparsity in rpigtidomains is important for recovering
parsimonious representations. Representational redagdhat may not be apparent in one domain, but
apparent in some other domain, can be appropriately redticedgh sparsity in that other domain.
We consider this problem of sparsity in more than one domaah as a third contribution, develop a
formulation whose objective function includes a carefbmposed sparsity term for each domain.

Here we develop a general approach for sparse signal repatisa or approximation in which we
exploit both molecular structure in dictionaries and hielnécal structure within molecules. Additionally,
we incorporate dictionary optimization and simultanegpusparsity in multiple domains. While the

methods have wider applicability, we focus on modeling wadgle spotlight-mode synthetic aperture
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radar (SAR) as an illustrative application. As a consegaeme advance the state of the art in radar
imaging as well.

SAR is a technology for producing high quality imagery of tpe@und using a radar mounted on
a moving aircraft. Radar pulses are transmitted and redenean many points along the flight path.
The full collection of measurements is used to form imagesiventional image formation techniques
are based on the inverse Fourier transform. In principley \@ng flight paths—wide-angle synthetic
apertures—which have become possible due to advances sorsethnologies, should allow for the
reconstruction of images with high resolution. Howeverepbmena such as anisotropy and migratory
scattering, described in the sequel, which arise in widgeaimaging scenarios are not accounted for by
conventional image formation techniques and cause inaces in reconstructed images. As we proceed
in the development of novel sparse signal representatiadhade for structured dictionaries, we use the
methods described herein in a way that does account for sumhopenology.

In Section Il we describe a heuristic graph-structured rtlgm for producing sparse representations
in hierarchical overcomplete dictionaries. Section llpards the scope of the algorithm to dictionaries
composed of molecules. The motivating application in ®&cli and Section Il is the characterization of
anisotropy in wide-angle SAR measurements, a hurdle tha oleared, not only relieves inaccuracies in
image reconstruction, but also provides a wealth of infdimnafor understanding and inference tasks such
as automatic target recognition. Section IV discussespetexized dictionaries and the joint optimization
of the expansion coefficients and the atoms themselves. AReBoblem investigated in this section is
of extracting object-level information as part of the imdgemation process from migratory scatterers.
Section V introduces the objective of sparsity in multiptrdhins, focusing primarily on the two domain
case, specifically with the Hough transform domain and th® $#easurement domain. The applications
in Section IV and Section V take steps towards bridging lewel radar signal processing and higher-level
object-based processing in ways not seen in the SAR literdiafore. Section VI provides a summary

of our contributions.

Il. GRAPH-STRUCTUREDALGORITHM FORHIERARCHICAL DICTIONARIES

At the outset, we consider a dictionary that does not decemjiato molecules and is known and
fixed. We look at a particular type of dictionary with a hietfaical arrangement of atoms that permits
the construction of a graph with the atoms as nodes. Then, ageritbe an algorithm based on hill-
climbing search, a heuristic search method also known ageduilepth-first search. The final part of

the section applies the algorithm to the characterizatioanisotropy of a point-scattering center from
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Fig. 1. lllustration of matrix® for N = 5. The solid dots €) indicate a non-zero value and the empty defsifidicate a zero

value.

wide-angle SAR measurements.

A. Graph Structure

Oftentimes in overcomplete dictionaries, including forample wavelet packet dictionaries [17], B-
spline dictionaries [18], and discrete complex Gabor diwries [6], the atoms have a notion of scale and
consequently a coarse-scale to fine-scale hierarchy. [atams or rotations are applied at finer scales
to create sets of atoms that have a common size but are diifsie] in the placement of their region
of support; the regions of support may or may not overlap. &dintionaries are constructed dyadically
such that the support of a coarser atom is twice the size oféhefiner atom or atoms.

In this work, we consider dictionaries in which the size & gupport changes arithmetically rather than
geometrically between scales. The matdixof such a dictionary for one-dimensional signals of length
N is illustrated in Fig. 1; the coarsest atom is the first coluand the finest atoms are tié right-most
columns. A full set of such atoms with all widths and all shiftas large cardinalityM = %NZ + %N
atoms), but is appealing for inverse problems because ogbpdissibility that a superposition of very few
atoms, perhaps just one, corresponds to a physical phemonoérinterest. As discussed in Section 1I-C,
for SAR anisotropy characterization, the siggand atomsp,,, are such thag is non-zero for contiguous
intervals and zero for other parts of the domain, and is vegllesented by few aton,,,.

Due to the regular structure of this type of dictionary, wa take the atoms as nodes and arrange
them in a graph. As shown in Fig. 2, the coarsest atom is thienoae, the finest atoms are leaves, and
the graph hasV levels. Each node has two children (except for those at tlestfilevel). It is a weakly
connected directed acyclic graph, with a topological duat ts exactly the ordering from left to right of
the columns in® illustrated in Fig. 1. As we proceed, we make use of the graplcteire, which we

term themolecular graph treating the sparse signal representation problem aspd gearch.
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Fig. 2. lllustration of graph structure for overcompletetitinary, N = 5. Coarse-scale atoms are at the top and fine-scale

atoms are at the bottom. Different translations are in ofiden left to right.
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Fig. 3. lllustration of search-based algorithm fr= 7, G = 3. The guiding graph, a subgraph of the full molecular graph
indicated by triangular outline, is moved iteratively todia sparse representation. The initialization and first temations are

shown. Molecular graph edges and node labels are omitted.

B. Algorithm Based on Hill-Climbing

As mentioned in Section I, many general methods for obtgisiparse representations give provably
optimal solutions (under certain conditions), but reqdire same computation and memory regardless of
whether the dictionary has structure. As an alternativeagagh for structured dictionaries, we propose
a heuristically-based technique with reduced compleXihe idea to have in mind during the exposition
of the algorithm is of a small subgraph, given the naguéding graph iteratively moving through
an N-level molecular graph, searching for a parsimonious gation. The specifics of the guiding
graph, the search strategy, and search steps are presefded lBig. 3 illustrates the central idea of the
algorithm for a small dictionary; in practice, the dictiopaand therefore molecular graph are of much
larger cardinality.

We assume thag, the signal to be represented or approximated, can be catdpassng a few atoms

whose nodes are close together in the molecular graph undemanon parent node. This assumption
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iS not as restrictive as it may seem: that the signal has &septation with a few atoms is basic for
sparsity. Contributing nodes are close together in thelgralpen the signal is localized in the domain.
Prior knowledge can guide the choice of atom shape and strfiaiailies of atoms may be used. The
assumptions are reasonable for SAR and other applicatltslénd themselves to such hierarchical
structures.

The problem of finding coefficients such that®a equals or well-approximates with few non-zero
a,, may be reformulated as a search for a node or a few nodes in thecatar graph. In addition
to finding nodes, i.e. atomg,,, that contribute to the expansion, the corresponding casffio/alues
an,, must also be determined. Numerous search algorithms existd nodes in a graph. Blind search
algorithms incorporate no prior information to guide tharsh. In contrast, heuristic search algorithms
have some notion of proximity to the goal available during #earch process, allowing the search to
proceed along paths that are likely to lead to the goal andceedverage-case running time.

Hill-climbing search is an algorithm similar to depth-fisgtarch that makes use of a heuristic. In depth-
first search, one path is followed from root to leaf in a predmined way, such as: “always proceed
to the left-most unvisited child.” In contrast, hill-cliniy search will “proceed to the most promising
unvisited child based on a heuristic.” In both algorithnighe goal is not found on the way down and
the bottom is reached, there is back-tracking. The apprpaesented here has hill-climbing search as
its foundation.

In standard graph search problems, nodes are labeled aggahef the search is fixed and specified
with a label, e.g. “find node K.” Thus the stopping criteriar the search is simply whether the label
of the current node matches the goal of the search. Alsoe tiseoften a notion of intrinsic distance
between nodes that leads to simple search heuristics.

When the sparse signal representation problem is refotetllas a search on aN-level molecular
graph, stopping criteria and heuristics are not obviouse €lear desideratum is that calculation of both
should require less memory and computation than solvinguheroblem. The guiding graph, chosen
to be aG-level molecular graphG <« N, with its root at the current node of the search, guides the
search by providing search heuristics and stopping camditi

Intuition about the problem suggests that if the atom or at¢mat would contribute in an optimally
sparse solution are not included in the guiding graph whérirgpfor coefficients in a sparsity enforcing
manner, then the resulting solution will have a non-zeroffment for the atom most ‘similar’ to the
signalg. In terms of theN-level molecular graph, this suggests that if the optimalrsp representation

is far down in the molecular graph, but the problem is solvédith & small dictionary containing atoms
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from a guiding graph near the top of the molecular graph, theefficients in the firstz — 1 levels
will be zero and one or more coefficients in levglnon-zero. In the same vein, if the guiding graph is
rooted below the optimal representation, then the rootfimdeiit may be non-zero and the coefficients
in levels two throughG will be zero. If the guiding graph is such that it contains thimal atoms,
then the corresponding coefficients will be non-zero andréis¢ of the coefficients zero. This intuition
is demonstrated empirically; details are in the appendix.

A simple heuristic for the search based on the coefficientegabf theG nodes in levelz is apparent
from the intuition and experimental validation. Due to tleisture of the molecular graph, each node has
two children, so the heuristic is used to determine whethgroceed to the left child or the right child.
We find the center of mass of the bottom level coefficient magieis—the search is guided towards
the side that contains the center of mass. A stopping @itds also apparent: stopping when all of the
nodes in levelG are zero during the search.

Hill-climbing search finds a single node—a single atom. Hesvethe algorithm that we propose
is able to find a small subset of atoms due to the guiding gréyien the stopping criterion is met,
i.e. when the finest-scale coefficients are all zero in thesgpaolution of the representation problem
with atoms from the current guiding graph, then that spacdetien is taken as the solution to the full
problem. Consequently, the guiding graph allows a subsatarfis rather than a single atom to be used
in the representation.

In summary, the algorithm based on the molecular graph adhidlinibing search is as follows.

(1) Initialization: Let i—1 and &% — atonms fromthe top G |levels of the nolecul ar
gr aph.

(2) Find a sparse a® such that ®®a(® approximates g.

(3) Calculate weighted sum of bottomrow coefficient magnitudes: p«— Zi:1m|agg2_%c+m .

(4) If p=0 then stop. O herwise, i «—i+1. |If bottomrow nodes are | eaves of
t he nol ecul ar graph or both children of the guiding graph have been visited before,
then &% — atoms fromthe highest unvisited guiding graph.

Else, &% — (p< &y |“(£)G2—§G+m| and left child unvisited ? atoms fromthe
left child guiding graph : atons fromthe right child guiding graph). Iterate to
step (2).

The graph-structured algorithm that we propose is able édlyre representations in which there are
contributions from atoms that lie within the span of a guidigraph. The approximate nature of the

approach is controlled byr; by increasing the size of the guiding graph we may, at thezesp of
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Fig. 4. Comparison of graph-structured algorithm and matcipursuit: (a) the signag; (b) atoms scaled by coefficients in

solution obtained with graph-structured algorithm; (@ras scaled by coefficients in solution obtained with matgtporsuit.

increased complexity, draw from a larger subset of atomshé dolution. The smaller problem with
®Wa(” js more tractable than the large problem wiba.
While any of a number of formulations and techniques may legl tis solve the smaller problem, here

we use a non-convex,, p < 1, relaxation, minimizing the cost function:

P (a) = e~ w0

p
, p<l, 1)
p

by a quasi-Newton technique detailed in [19] to obtain a spaector of coefficientalY). Each step of
the quasi-Newton minimization involves solving a setid§; linear equations, wher#/ is the number
of atoms in the guiding graph. Direct solution requi@$A/2) computations. However, the particular
matrix involved is Hermitian, positive semidefinite, ancualy sparse, so the equations may be solved
efficiently via iterative algorithms. We use the conjugatadient method and terminate it when the
residual becomes smaller than a threshold.

The parameten trades data fidelity, the first term, and sparsity, the sed¢erd. The choice ok is
important practically and is an open area of research. Witho small, the solution coefficient vectaf
is not sparse and the heuristic is not meaningful; the ggidimph strays away from good search paths.
With « too large, the algorithm incorrectly terminates early wathzero coefficients in the solution. In
this work, we choose the parameter subjectively and canllysed it once for a given problem size. We
keepa constant for all iterations of the graph-structured aldon. Generally, solutions in step (2) of the
algorithm are not very sensitive to small perturbationsvoit is possible, however, for a small change
in « to cause the number of non-zero elements in the solutionaag® but such a change in solution
is not necessarily accompanied by a change in the heuristicstopping criterion. In all examples in
this paper, the of the ¢, relaxation is0.1; for the highly redundant dictionary that is employed, a kma

value of p results in suitable sparsity.
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The search-based procedure we have presented is greedytbatthe same way as matching pursuit
and related algorithms [6], [14]-[16]. A commitment is noade to include an atom in the representation
until the final iteration when the stopping criterion is mand also, atoms within a guiding graph are
considered jointly. As the guiding graph slides downwarasy subset of fine-scale atoms can start
contributing to the representation. This behavior disagas the assignment of a coarse-scale atom to
represent what would be better represented using a few Gilsecale atoms. In some later iteration,
a matching pursuit-like algorithm includes a fine-scaleratsith a negative coefficient to cancel extra
energy from the coarse-scale atom included earlier. An el@wf this behavior is given in Fig. 4. For a
particular signalg and an overcomplete dictionary of boxcar-shaped atomatign are obtained using
both the graph-structured algorithm presented in thisi@@@nd the basic matching pursuit algorithm
[6], and compared. Both the graph-structured algorithmmatching pursuit produce solutions that sum
to approximateg, but the decomposition of the graph-structured algoritarmore atomic.

The algorithm for dictionaries without molecular decomifion is straightforward; its operation in
dictionaries withL > 1 molecules, which we discuss in Section Ill, is more intengstBefore reaching

that point however, we illustrate the application of thistihmel to anisotropy characterization in SAR.

C. Application to Wide-Angle SAR

Spotlight-mode SAR has an interpretation as a tomograpbéemation process [20]. As mentioned
in Section |, SAR uses a radar mounted on an aircraft to doffeasurements. From one point along
the aircraft's flight path, the radar transmits a modulatepha in a certain direction, illuminating a
portion of the ground known as the ground patch, and recdieek scattered energy, which depends
on the characteristics of the ground patch. Radar signassamilarly transmitted and received at
many points along the flight path. The radar antenna contineaanges its look direction to always
illuminate the same ground patch. The geometry of data aale in spotlight-mode SAR is illustrated
in Fig. 5. Coordinates on the ground planerange, and,, cross-range, are centered in the ground patch.
Measurements are taken at equally spaced aspect ahgleshe aircraft traverses the flight path. The
ground patch, with radiu®, is shaded.

The scattering from the ground patch under observation isifested as an amplitude scaling and
phase shift that can be expressed as a complex number at esthThus, scattering from the entire
ground patch can be characterized by a complex-valuedifumof two spatial variables(x, y), which
is referred to as the scattering function. Due to the desigth® radar signal and the physics of the

observation process, the collection of received signalsotss(x,y) directly. Procedures for obtaining
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—————>

flight path

ground patch

Fig. 5. Ground plane geometry in spotlight-mode SAR.

s(z,y) from the measurements are known as image formation. In esndge SAR, measurements come
from vastly different viewpoints and consequently, saattebehavior shows dependencetyneferred to

as anisotropy, as well as dm, y) [21]. For example, a mirror-like flat metal sheet reflectersgly when
viewed straight on, but barely reflects from an oblique anghe relationship between the measurements
g, obtained over a finite bandwidth of frequencies and ovemngeaf aspect angles, and the anisotropic

scattering functiors(z,y, ) is given by:

g(f,0) = // s(x,y,@)e‘j%(“‘)wﬂsme)dﬂcdy, 2

z?+y*<R?
where ¢ is the speed at which electromagnetic radiation propagdies set of aspect anglgs is
inherently discrete, because pulses are transmitted frdiscaete set of points along the flight path. The
measurements are sampled in frequelfidp allow digital processing. The collection of measuremment
g(f,0) is known as the phase history.
The scattering response of objects such as vehicles on thendjris well-approximated by the su-

perposition of responses from point scattering centersnwinging frequencies and aperture lengths
commonly employed in SAR [22]. The anisotropic scatteringnf a single point-scatterer takes the

form s(x,y,0) = so(0) - d(x — zo,y — yo) and the measurement model is:

arf

g(f,0) = So(g)e—yT(mo cos 0-+yo sin ) .

The phenomenon of anisotropy often manifests as large matmgcattering in a contiguous interval
of 8 and small, close to zero magnitude scattering elsewheresd&cpiently, the dictionary described

in Section II-A containing all widths and all shifts of cogiious intervals is well-suited for obtaining
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Fig. 6. Single point-scatterer example: (a) aspect-degr@nscattering magnitude measurement (gray line) andigol(black

line); (b) search path of graph-structured algorithm.

parsimonious representations of anisotropic scattedmgovercomplete expansion is as follows:

g(f,@) _ f: ambm(e)e—j%(xocose+y0sin9). (4)
m=1
Atoms arep,, () = bm(e)e‘j%(xo cos0+yosinf) '\hereb,, (9) are dilations and translations of a common
pulse shape. We can use boxcar pulses, Hamming pulses, ear sthpes that we expect to encounter.
Anisotropy of narrow angular extent comes from physicakoty distributed in space and anisotropy of
wide angular extent comes from physical objects localizedpace; hence the atoms provide a directly
meaningful physical interpretation. Appropriately stiackthe measurements at different frequencies, we
have the sparse signal representation problem with a ndeemar hierarchical dictionary and can obtain

solutions using the graph-structured algorithm descrifigalve.

D. Anisotropy Characterization of Single Point-Scatterer

We now show anisotropy characterization on SAR phase Kistmasurements from XPatch, a state-
of-the-art electromagnetic prediction package, usinggitaph-structured heuristic method described in
this section. A scene containing a single scatterer is medsat N = 140 aspect angles spaced one
degree apart. The scattering magnitude as a function otchapgle is the gray line plotted in Fig. 6a.
(The line shows the measurements at one particular fregqueiticin the frequency band covered by the
radar pulse; frequency dependence is minimal and scatenagnitude at all frequencies is nearly the
same.)

Using boxcar pulses for atoms in the overcomplete dictipreard a guiding graph of siz& = 32,
we obtain a sparse approximation for the aspect-dependatiesng given by the black line in Fig. 6a.
The search path of the graph-structured algorithm is showFig. 6b. The line indicates the location of

the root node of the guiding graph within the full moleculaagh. When the stopping criterion is met,
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the atom at the root of the guiding graph is of width samples. The finest atoms that contribute to the
approximation have widtlh samples. The sparse solution Hasnon-zero coefficients out of a possible
M = 9870 coefficients forN = 140.

From the solution, it is possible to infer physical propestiabout the object being imaged because
thin anisotropy corresponds to objects of large physica sind wide anisotropy to objects of small
physical size. Sparsity and the particular overcompletéatiary are important because they allow this

characterization directly by identifying the coarsest+zeno coefficient.

1. ALGORITHM FORMOLECULAR DICTIONARIES

In the previous section, we described a search-based thigofor dictionaries whose atoms have a
hierarchy, but did not consider dictionaries that have aeawlr decomposition into subdictionaries. In
this section, the heuristic algorithm is extended by amgyit to dictionaries with, > 1 molecules,
each individually having a hierarchical structure of atoM& havel coexisting molecular graphs and
thus not just one search, biitsimultaneous searches. As we shall see, these searchest performed
independently, but rather interact and influence each dHoerjoint anisotropy characterization and image
formation, theL molecules correspond tb different point-scatterers or spatial locations in theugr

patch being imaged.

A. Molecular Dictionaries

Overcomplete dictionaries composed of molecules areyfaiommon, arising in one of two ways.
The first is as the union of two or more orthogonal bases andehend, through dependence on some
parameter that takes the same value for one subset of atoptbea value for a subset disjoint from the
first, and so on.

An example of the first instance is a dictionary made up of thiemuof an orthogonal basis of lapped
cosines and an orthogonal basis of discrete wavelets thaidas atoms to represent tonal and transient
components in audio signals [11]; the same idea is used fagés as well, taking two different bases
together as an overcomplete dictionary, one for perioditutes and one for edges [23]. An example in
audio of the second instance is molecules whose atoms stam@mon fundamental frequency [12]. In
the radar imaging example in Section IlI-D, atoms within emlles share a commdn, y) location and
different molecules correspond to different spatial |arad.

The two types of decompositions into molecules presengmdifft properties. In the first type, different

molecules aim to represent very different phenomena andnaoherent from each other, whereas in
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the second, the molecules correspond to different instaotthe same phenomenon and may be highly
coherent. In this work, we consider dictionaries whose ks all have hierarchical structure that
permits the construction of molecular graphs, regardléssecomposition type. We use simultaneous
searches on all molecular graphs; the difficulty of the pgoblincreases as the coherence between

molecules increases.

B. Interacting Searches on Multiple Graphs

The general framework for the graph-structured algorithith wictionaries containing more than one
molecule is the same as for dictionaries without molecubes,with a few key differences. Here the
dictionary is of the form[q,1 P, --- @L] with each moleculep; having a molecular graph. We
assume that all atoms in the dictionary are distinct andrtfudécules do not share atonisguiding graphs

iterate through thd, molecular graphs, one guiding graph per molecular graph.vEctor of coefficients

T
a also partitions as{a’{ al ... a’ﬂ . L searches are performed simultaneously, as follows.

(1) Initialization: Let i«—1 and for all nolecules I=1,...,L, <I>l<i) — atoms from
the top G levels of nolecular graph [. & — [@Y) @(LZ)}.

(2) Find a sparse a®” such that ®®al® approxi mates g.

(3) For all I=1,...,L, calculate weighted sum of bottomrow coefficient nagnitudes:
I me:l m|al(7i)%G2_%G+m|.

(4) If ZzL:MLl =0 then stop. Oherwise, i «—i+1. For all [ =1,...,L, if p =0,
then & — &Y. Else if bottomrow nodes are | eaves of nolecular graph [ or both
children of guiding graph [ have been visited before, then <I>l(i) — atoms fromthe
hi ghest unvi sited guidi ng graph. Else, <I>l(i) — (< %Zizl |al(.,i)%G27%G+m| and left
child unvisited ? atons fromthe left child guiding graph : atons fromthe right
child guiding graph). Iterate to step (2).

Let us emphasize that although thesearches are performed simultaneously, they are not pestbr
independently. The searches are coupled because thedruerslem is solved jointly for all molecules
on every iteration; contributions to the reconstructiorgdfom all of the molecules interact. There is no
notion of molecules when solving the smaller inverse pnobde~ ®®a(?). The molecular structure only
comes into play aftea” has been solved, and the heuristics, stopping criteria,QEt(Hdupdates are to
be calculated. Since we consider all molecules jointlygathan one at a time as matching pursuit-like
algorithms would do, we see similar advantages of the foatian presented here to those seen in Fig. 4

for the single molecule case.
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The dictionary used in calculating the heuristic and stoggiriterion has?(G?) atoms per molecule
andO(G?L) atoms forL molecules, instead aP(N2L) atoms used if one were to solve the full inverse
problem. However, the graph-structured algorithm requi®éN?) iterations, whereas solving the full
inverse problem at once requires just one iteratiGnis a small constant that is fairly independent of
N. For joint anisotropy characterization and image formgtib and N may be in the thousands. The
realistic example given in Section llI-E would have eighipe million atoms if the full problem were
solved at once, but the graph-structured approach allowts wsly consider a small fraction of them.
In the following section, we discuss variations to the alfpon presented thus far that further reduce

computation or memory requirements.

C. Algorithmic Variations

The graph-structured algorithm described thus far useduthdill-climbing search including back-
tracking, taking steps of single levels per iteration based heuristic employing guiding graphs taking
the form of G-level molecular graphs. A number of variations to the badgorithm may be made; we
present a few here, but many others are also possible. figwsithat use one variation or use a few
variations together can be used to solve the sparse sigor@sentation problem. Depending on the size
of the problem and the requirements of the application, dgerithm can be selected from this suite of
possible algorithms.

1) Hill-climbing without back-tracking:Hill-climbing search always finds the goal node because of
back-tracking. In a first variation, we limit the search tealiow back-tracking. This reduces the iterations
from O(N?) to O(N), but results in a greedier method. If, on a particular exambpill-climbing with
back-tracking were to terminate on the first pass down mtdegraphs before reaching leaves, then the
same operation would be achieved whether the original ilhgoror the variation were used. In practice,
we often observe termination on the first downward seardatiuding in the example seen in Section
II-D and an example presented below in Section 1lI-D.

2) Madified molecular graphMolecular graphs are structured such that in hill-climbivithout back-
tracking, one wrong step eliminates many nearby nodes attts ggecause each node has only two
children. The graph may be modified to increase the numbehitdren per node to four for interior
nodes and three for nodes on the edges of the graph, conslggueindisallowing as many nodes and
paths per search step.

A modified heuristic to go along with this modified graph is ®euheG coefficients in levelG of

the guiding graph as before, but instead of determining drethe center of mass of the coefficient
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magnitudes is in the left half or the right half, determinimlgich quarter it is in. If the left-most quadrant,
then the search proceeds to the node in the next level thabida the left of the current node. If the
middle left quadrant, then the next node is one to the lefthiem mext level, and so on. With these
additional edges, search without back-tracking is lesedyevith no additional cost, since calculating

this modified heuristic is no more costly than calculating triginal heuristic.

3) Modified guiding graph and larger stepsthe guiding graph need not be G-level molecular
graph; for example, the graph may be thinned and includedpenbde, nodes in level, and nodes
in a few intermediate levels rather than all intermediatelg further reducing the number of atoms in
&), These atoms are sufficient for calculating the heuristit stopping condition. Also, searches may

take larger steps than moving guiding graphs down just ove [eer iteration.

4) Removal of stopped moleculeghe graph-structured algorithm reduces the number of ajmens
molecule fromO(N?) to O(G?), but does nothing to reduce the number of moleculesA further
variation to the hill-climbing search without back-traegimay be introduced that reduces the average-
case dependence of the number of atomé ol is observed that, despite interactions among conighst
from different molecules, once the search on a particulalecute stops it does not restart in general,
but may occasionally restart after a few iterations. It igstimatural to consider fixing the contribution
from a molecule upon finding its coefficients.

In the algorithm, this implies that once the stopping cidtieris met at moleculd, the signalg is
updated to beg’ = g — ®;a;, and ®; is removed from®, thereby reducing the number of atomsdn
We perform the removal some iterations after the stoppittgrazn is met and maintained to allow for

a possible restart. This variation, though distinct, hasesgimilarity to matching pursuit.

D. Joint Anisotropy Characterization and Image Formation

The problem of joint anisotropy characterization and imégenation in wide-angle SAR takes the
problem of characterizing anisotropy of a single pointtisrar seen in Section Il and extends it to doing
so for all points in the ground patch. In other words, whers@asdard image formation attempts to

recovers(z,y) assuming no dependence 6nwe aim to recoves(x,y, ).

The observation model from more than one point is a supdipnsif terms like (3):

g(f,0) = Zsl(e)e—j%(m cos f+y; sin6) )
=1
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Fig. 7. Scattering magnitude at each spatial location.

The observation model (5) lends itself to an overcomplefgmagion of the form:

L M
—jirf € COS 1 Sin
9(F:0) =D by (9)e7 7 (rreostusind) (6)

=1 m=1

in a similar manner to the single point-scatterer case. leFadictionary is naturally decomposed into
molecules, with each molecule corresponding to a diffespatial location(z;,y;). We can thus use the
methods described above for joint anisotropy charact@vizaand image formation [24].

When performing joint anisotropy characterization andgmé&ormation, a grid of pixels in the image
to be reconstructed or points of interest identified thropgdprocessing may be used as the spatial
locations(z;,y;). We now present an example with= 25 spatial locations in a five by five grid, with
rows and columns spaced one meter apart. Unlike Sectionvhizh uses XPatch data, the synthetic
data in this example is matched to the dictionary for illatwe purposes.

This example hasV = 160 aspect angles equally spaced ovetld° aperture. Fig. 7 shows the
scattering magnitude at each of the 25 spatial locatiorsnged as in an image; five of the spatial
locations contain boxcar-shaped scattering and the otfety do not have scatterers. The coherent sum
of the scatterers is the phase history measuremeht), plotted in Fig. 8 for one frequency.

We recover a signal representation from the phase histogsatements using the basic algorithm for
molecular dictionaries with guiding graphs of size= 8 and boxcar-shaped atoms. The search paths
for the different locations are shown in Fig. 9. The overctatgdictionary forN = 160, L = 25 has

322,000 atoms. In the solution of the sparse signal representatioblgm, contributions come from
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Fig. 8. Phase history measurement magnitude.

/N

A
AN

AN

/N

Fig. 9. Search paths of basic algorithm for molecular ditiges.

exactly the five atoms used to generate the synthetic daaabfficient values are also recovered. If the
solution were to be overlaid on Fig. 7 and Fig. 8, it would netdistinguishable. Looking at the search
paths, despite not containing scatterers, a couple of migsdanitially iterate nonetheless, but in the end
correctly give all zero coefficients. This effect is a resflthe interaction between different molecules.
The algorithm operates correctly on this synthetic examali&arger example on XPatch data is given

below and others may be found in [24], [25].

E. Approaches to Wide-Angle SAR and a Realistic Example

To conclude this section, a large, realistic example witrat¢R data is presented. The scene being
imaged contains a backhoe-loader, illustrated in Fig. T8, [measurements are taken sit= 1541
equally-spaced angles over an aperture ranging frd@f to 100°. L = 75 spatial locations are identified
from a composite subaperture image using the method of far]which anisotropy is then jointly

characterized. The full dictionary for this example hes= 89,108,325 atoms. We apply the graph-
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Fig. 10. Backhoe-loader example: (a) illustration of therss L = 75 spatial locations of interest shaded according to (b)
maximum magnitude, (c) center angle of anisotropy (degreesl (d) angular extent of anisotropy (degrees) in satit{e)-(f)

aspect-dependent scattering solution for two spatialtioes.

structured algorithm with all of the variations listed inc8en 11I-C to the problem and obtain seventy-five
functions of aspect angle.

The magnitudes of two of these functions are plotted in Figc &nd Fig. 10f. In order to provide spatial
visualization of the scattering behavior, the magnitudmter angle of anisotropy, and angular extent of

anisotropy for each of the spatial locations is indicatedh®y shading of the markers in Fig. 10b-d.

In the magnitude visualization, light gray is small magdé&uand black is high magnitude. Points
corresponding to the front bucket of the backhoe-loadeeHagh magnitude. In the visualization of
center angle, the left side of the front bucket has respoaeser to—10° (light gray) and the right
side of the front bucket has responses closes-100° (black). In the angular extent visualization, it
can be seen that narrow and wide anisotropy is distributedthie points on the front bucket with high

magnitude also have narrow extent. Overall, one can nota the visualizations that the front bucket

January 21, 2008 DRAFT



20 IEEE TRANSACTIONS ON SIGNAL PROCESSING, ACCEPTED

flashes on its two sides and the other parts of the backhaeideve scattering with smaller magnitude
and wider anisotropy.

Through joint anisotropy characterization and image fdioma we obtain much more information than
a simple image would provide, namely an entire dimensionspleat-dependence. The reflectivities of
scatterers with narrow angular persistence, which ardrdsourier-based image formation, are obtained.
The formulation presented here solves for the anisotropgllo$patial locations within one system of
equations, taking interactions among scattering centgosaccount.

The formulation is more flexible than parametric methodsafoisotropy characterization such as [28],
[29]. Also, solutions have more detail in aspect angle thalmaperture methods such as [30]-[33], in
which the measurements are divided into smaller segmewu&siog only parts of the wide-angle aperture.
Consequently, using the method presented here, angulsisigeice information can be extracted as in
Fig. 10d, which is not possible from subaperture methodsoAsince data from the full wide-angle

aperture is used here throughout, cross-range resolioatireduced as it is with subaperture methods.

IV. DICTIONARY REFINEMENT

In Section Il and Section lll, the dictionar@ is known and fixed, but this need not always be the
case. A more ambitious goal is to find the best dictionary ursdene criteria and an optimally sparse
representation jointly. The idea of learning overcompHiitdionaries has been applied in the case that
one has many examples of signglsmuch more than the number of atomsdn and a dictionary is
to be determined that is able to most sparsely represent #iecsignals, usually for compression tasks
[34], [35]. In inverse problems, where the interest is inrasting physical meaning from the obtained
sparse representation for each input siggniatather than compression of an entire signal class, it is of
interest to look at the best dictionary for each input rathen the best dictionary to represent an entire
set of training signals. At this point, one could concludatta dictionary with¢p; = g is optimal and
stop. However, we would like to consider dictionaries dedifrom a parameterized observation model
and only consider parameterized atoms, not arbitrary attmthis section we propose and demonstrate
a formulation for joint optimization to achieve a sparsefficient vector and optimal parameter settings

for a dictionary with parameterized atoms or molecules.

A. Joint Dictionary and Sparse Coefficient Optimization

We begin with a dictionary whose atoms depend on a set of pessm; each parameter may or

may not be shared by atoms or molecules. Furthermore, wedesrthe ¢, relaxation to the sparse
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signal representation problem mentioned in Section II-8.[The optimization problem at hand then is

to minimize the following cost function:

J(a,n) = llg — ®(mal3 +allallp, p<1, (7)

jointly determining a dictionary®(n) and coefficients.
To carry out the joint minimization, we take a coordinateadss approach, alternately optimizing over

the coefficients and dictionary parameters. The two op#tions are:

alttl) = argmain g—® (n(t)> aHz +alally. (8)

n*+) = argmin ||g — ® (1) a®+V Hz +aatn|”

n p

2
— argmin ||g — ® (n) al*Y H2 . 9

n

The application will guide the particular initializatioorfn. The non-convex minimization (8) may be
performed using the graph-structured algorithms of Saclicand Section lll, or using quasi-Newton
optimization [19].

The minimization (9) may be recognized as nonlinear legsages; many techniques exist in the
literature including the trust-region reflective Newtorg@ithm that we use [36]. Linear inequality
constraints on the parameter vectomay be handled within this framework. Termination of theqardure

is upon the change ip falling below a small constant.

B. Characterization of Migratory Scattering Centers

We demonstrate joint dictionary parameter and sparse septation optimization on the charac-
terization of a phenomenon in wide-angle SAR imaging déferfrom anisotropy. Certain scattering
mechanisms migrate as a function of aspect afigle wide-angle imaging [37], [38]. Migration occurs
when radar signals bounce back from the closest surface bysigal object, but the closest surface of
the object is different from different viewing angles; theypical object is not really moving, but appears
to move in the measurement domain. By accounting for thiscefin solving the inverse problem, a
physically meaningful, parsimonious description can beagted.

For example, considering a circular cylinder, the pointeffaction on the surface closest to the radar
can be parameterized as a functionfoéround the center of the cylindéx., y.) using the radius of

the cylindern. When# = 0, the scatterer appears to be(at — 7, y.), which we define a$z,y). The
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Fig. 11. Tophat example: (a) aspect-dependent scattergasmmement (gray line) and solution (black line); (b) cotiemally
formed image with migration solution overlaid.

observation model for migratory point scatterers is:

L
g(f,0) = Z Sl(g)e—j%((fﬁm)cosewl sin6—n;) (10)
=1
A dictionary expansion for the observation model is:

L M
g(f.0) = Z Z almbm(e)e—j4:f((fz+771)Cos@—i—gjz sin §—m) (11)

=1 m=1
In this instance, the atoms are parameterized by the ragliasd moreover, all atoms in moleculshare

a common radiug;; hencen is an L-vector of parameters. The inverse problem is to jointiyower the
anisotropy and radius of migration of all scatterers in theugd patch.

The radius is constrained to be non-negative,n.€x 0. Most scatterers are not migratory, and thus
we initialize n with all zeroes. Often in practice, the coefficient veciaretains its sparsity structure on
every iteration because even fgr= 0, characterized anisotropy may be close to correct, or at leave
the correct support. The procedure may be envisioned adtaimeously inflatingZ. balloons.

As an example, we look at data from XPatch of a scene contpiaitophat that exhibits circular
migratory scattering. In the aperture with = 15 aspect angles spaced one degree apart, the tophat also
has anisotropy, as shown in Fig. 11a. The magnitudes as weahereal and imaginary parts of the
measurements are shown, as migratory scattering affeasepimot magnitude. An image of the scene
formed using the polar format algorithm, a conventionalhmdtbased on the inverse Fourier transform,
is shown in Fig. 11b.

After identifying the spatial location with largest magrde in the conventionally formed image, the
coordinate descent described in this section is applied Ivit= 1. A raised triangle shape is used for the

atoms. The solution has radius 5.314 meters and anisot®piotied in Fig. 11a. The circular migration
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of radius 5.314 meters is overlaid on and matches well wighrctimventional image in Fig. 11b. Coordinate
descent to jointly optimize over radius and anisotropy feaive with realistic data seen here, and with
several scatterers in a scerdeX¥ 1), see [25]. By allowing for a non-zero radius, image formatis not
simply pixel-based but more region-based. Although podatiterers can be equated to spatial locations,
if information about migration is considered, the scattésemore of an object-level construct.

We have looked at characterizing the migration of scatsendren the migration is circular in shape.
Circles are an important subset of migratory scatteringqubse many man-made objects contain scatterers
with circular migration. However, any shape defined by auadunctionn(0) around a center is easily

expressed in the observation model:

L
g(f,0) = Z 81(9)€_j4zf((jl+nl (0)) cos 0+ sin 60— () (12)
I=1
Under this modely; is not constant across all angles, so a lengthector of parameters is not sufficient.

One option is to take a functional form fay(#) with more degrees of freedom than just a constant
function, such as a polynomial, and lengthen the parametetovr. Another option is to locally,

i.e. in small segments df, approximatey; (#) with pieces of circles [25]. The phenomenon of migratory
scattering, which has rarely been explored in the liteggtigr a source of information that can be mined

for details about object shape and size.

V. SIMULTANEOUS SPARSITY IN MULTIPLE DOMAINS

In the previous sections, we use an overcomplete dictiodaty represent a signg, assuming that
a sparse representation exists and then finding it. Our gggmin those sections is thgtis sparse in
the domain of the atoms. In this section, reverting to a knawd fixed dictionary, we look at signals
that are sparse in the domain of that known and fixed dictiormut are also sparse in one or more other
domains. The goal is to develop a formulation that recovarsiponious representations, semantically
interpretable in the case of inverse problems, making uspaifsity in all domains. Note that in the end,

solutions will still be representations in terms of the asoof the dictionary.

A. Additional Sparsity Terms

For sparsity in the domain of the dictionary, thgrelaxation as an objective function is:
J(a) = |lg — ®al3 +allalp, »<1. (13)

Let us assume that is also sparse in a transformed domain and that that spasditybe exploited as

well. First note that taking an orthonormal transformatidrboth the signag and dictionary® does not
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Fig. 12. Glint example: (a) aspect-dependent scatteringsorement; (b) conventionally formed image.

change the cost function. Also, the dictionabyis fixed; consequently, we keep the data fidelity term as

is, and append additional sparsity terms.
J(a) = llg — @al + Y ailFi(a)lls. (14)

The functionsF;(a) return vectors related to the domain in which sparsity is ¢ofdvored. For the
domain of the dictionary atom&;; is an identity operation. For domains that are transforomatiof the
original domain,F; is constructed as follows.

The operatiorF; is the composition of three simpler operations. First, sithe coefficients themselves
have no particular meaning until paired with their corresing atoms, initiallyF'; takes the coefficients
through the atomsp,,,. Thereafter, the second operation is transformation tahemadomain. Finally,
further operations in the transformed domain may follow.alf F;(a) are linear, i.e. matrix-vector
products, then the cost function may be optimized using igNeaton optimization [19] or the graph-
structured algorithm using quasi-Newton optimization acle iteration. A concrete application given

below constructs such;.

B. Parsimonious Representation Recovery of Glint Aniggtro

Scattering behavior known as glint is produced by long, flatahplates and is not migratory, has very
narrow anisotropy, and corresponds to a line segment incthiedomain oriented at the same angle as
the center angle of the anisotropy. Fig. 12a shows asp@eardkent scattering of glint anisotropy from
XPatch data and Fig. 12b shows a conventionally formed imAg®arsimonious representation ought to
explain scattering with a single scattering center, nohwitcollection of scatterers located on the line
segment. We apply the formulation (14) both to favor spam@ihong atoms and to favor sparsity along
lines [38].
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To favor sparsity among atom§); is the identity. We now find a domain in which sparsity along
a line can be favored. The normal parameter space of the Hwwaghkform, thep-6 plane, and image
space, ther-y plane, are related by the property that a set of points lyinghe same line in image
space corresponds to a set of sinusoids that intersect anmao point in parameter space [39]. Thus
sparsity among scatterers in individyab cells achieves the goal of sparsity among points on a line.

In [40], a Hough space sparsifying regularization appraaamployed to enhance and detect straight
lines in positive real-valued images by imposing sparsibemw taking the image data to thed plane.
Parameter space cells with small counts are suppressedeiadvith large counts are enhanced; thus,
non-line features are suppressed and line features areeathan image space. The goals in our work
are different and consequently, the sparsity terms are dffereht flavor as well.

The range profile domain in SAR, a one-dimensional inversgrieotransform of the phase history
measurement domain, is equivalent to the parameter spaite dflough transform. It follows that for
sparsity among scatterers in cél, 6,,), a sparsity term of the form|Ly,a|||b is used, wherd.y,, is a
linear operator that is a composition of a block-diagonasiam of the dictionary to bring the coefficients
to the phase history domain, a discrete Fourier transforeratpr to go to the range profile domain, and
a selection operator to select céfly, 6,,). The resulting vectoLy,a is of length L. Favoring sparsity

in all range profile cells, the overall sparsity cost funetie:

K N

J(a) = |lg — ®all3 + a1 [lalh + a2 > > ||[Linalll5. (15)
k=1n=1

The parameters; andasy control the influence of the two sparsity terms. When= 0, the cost function
reduces to (13).

We solve the inverse problem with = 24 pixels of interest identified by having large magnitude ia th
conventional image Fig. 12b. The8¢ pixels are along a diagonal line more or less. The measursmen
are atN = 20 aspect angles over ° aperture with the glint a%.5°.

Let us define two counts related to the sparsity of the saluiod look at their behavior as; andas,
are varied. We definé , as the number of molecules out of the possible- 24 that have at least one
non-zero coefficient in the solution. Alsd/, is defined as the average number of non-zero coefficients
per molecule in those molecules that have at least one nanepefficient. The maximum possible value
of My is M, which is 210 for N = 20. When L, is zero, M, is defined to be zero. Solutions are
obtained using the quasi-Newton method to minimize (15).

The two countsL, and M, are given in Table | for different values af; and as. First, it should

be noted that whem; anday get too large, all of the coefficients go to zero. The mainghio take
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TABLE |

La AND Ma AS A FUNCTION OF THE PARAMETERSY; AND 2.

(LA, Ma) a1 =0 | a1 =10 | 1 =20 | 1 =30 | a1 =40
az =0 || (24,39) | (24,1) | (24,1) | (241) | (0,0)
az=5 || (2,39) | (3,1) (3,1) (3,1) (0,0)
az =10 || (1,39) | (1) (4,1) (2,1) (0,0)
az =15 || (1,39) | (4,1) 3,1 | Ly* | (0,0
a2 =20 || (1,39) | (4,1) (3,1) (1,1)* (0,0)
ax=25 || (1,39) | (4,1) (2,1) (0,0) (0,0)
az=30 || 1,39) | @1 | @, | (00 (0,0)
az =35 || (1,39) | (1,1)* | (1,1)* | (0,0 (0,0)
az =40 || (1,39) | (L,1)* | (1,1)* (0,0) (0,0)

note of is that wherv, = 0, Ly = 24, i.e. all spatial locations provide contributions to thdusion,
but asas increases, sparsity along a line is a greater influence amchdimber of contributing spatial
locations decreases to one. Sparsity among atoms is noglkeriouthe solution on XPatch data to be

parsimonious in the number of spatial locations, spardiap@a line is also required.

It can be seen that whem, = 0, 39 atoms per spatial location contribute, not very sparse.ld&ger
a1, just one atom per spatial location contributes. Considetine behavior of.a and M, together, we
note that the two sparsity terms are fairly orthogonal; treemeffect of sparsity among atoms is on the
number of atoms per spatial location and the main effect afsfy along a line is on the number of

spatial locations, as per the design objective.

A sparse and physically interpretable approximation oughassign all of the scattering to the leaf
atom at5.5° of a single spatial location. Such a solution with one noroz®efficient is recovered for

the (aq, a2) pairs marked with an asterisk in Table I.

Through the example it has been seen that both types of gparsi necessary to recover a solution
that represents the scattering as coming from a single paithtwith very thin anisotropy explained by a
single atom. With this representation, spatial propestasut the object being imaged, such as orientation
and physical extent, may be inferred. Although the samecbigeel inferences could have been made
with ap = 0, in that case,L such objects would be indicated rather than one, which do¢snake

physical sense. Points have more meaning than just pixétsaspect-dependent amplitudes.
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VI. CONCLUSION

We looked at methods of obtaining sparse signal represemsaand approximations from overcomplete
dictionaries with hierarchical structures within subingaries, focusing on the context of coherent inverse
problems with physically interpretable dictionary elefseWe developed a heuristic method of solution
for such problems that takes advantage of the structure laying the problem to search on graphs.
We also took a step back from the classic sparse signal esgegon problem to consider dictionary
refinement as well as obtaining solutions simultaneousirsapin multiple domains. Under dictionary
refinement, a coordinate descent approach was developaihtty joptimize parameterized atoms and
coefficients, whereas under simultaneous sparsity, am@stesparsifying cost function was minimized.

The methods were demonstrated on various facets of widke-é8@R, but are general enough to
transfer to other applications with appropriate dictioesrIn the SAR context, starting from the same
low-level measurements used by conventional image foanaéchniques, we have taken a step farther in
scene understanding while also taking into account phenarsech as anisotropy that cause inaccuracies
in conventional methods. We have started to move away froired gepresentation to more of an object-

level representation through the use of a physically megduirdictionary.

APPENDIX

Two experimental results are given as empirical validation the search heuristic and stopping
criterion described in Section 1I-B. We show that solutidram subdictionaries do in fact have non-
zero coefficients for atoms most ‘similar’ to the signgl particularly wheng is not contained in the
subdictionary. For the experiments, the molecular graghMa= 400 levels and the guiding graph has
G = 8 levels. Keeping the guiding graph fixed within the molecweaph, the behavior of the solution
a is observed as the signglis varied. Quasi-Newton optimization is used to obtain tharse solution
coefficientsa.

In the first experiment, with results in Fig. 13, the guidingygh is fixed with root at the left-most
node of level 200 in the molecular graph. The true siggas varied from coarse to fine support. In
terms of the molecular graph, the true coefficient is vargdrting at the root node, through all nodes
along the left edge of the graph, to the left-most node oflld@@. In the plot, the row in the molecular
graph which containg is plotted on the horizontal axis. The magnitudes of the 3&fwients ina are
indicated by shading (white is zero); each horizontal s&ifor one of the coefficients. Most coefficients
are zero for allg due to sparsity. In the regime where the guiding graph isvbéthe true coefficient, the

coefficient of the guiding graph root node is non-zero. Inrégime where the guiding graph covers the
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Fig. 13. Coefficient magnitudes in 8-level guiding graph iasa g is varied from coarse to fine.
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Fig. 14. Coefficient magnitudes in 8-level guiding graph igea g is shifted from left to right.

true coefficient, the correct coefficient is non-zero. Whaes quiding graph is above the true coefficient,

the coefficient of the bottom left node, the node in the lasélle€losest to the truth, is non-zero and

others are zero. It should be noted that the influence of tlestfisignals does not reach up to make any
guiding graph node coefficients non-zero (a consequencegoflarization).

In the experiment yielding the results of Fig. 14, the guidimaph is fixed with root at the center node
of level 200 instead of the left-most node. The true node igedarom left to right across the molecular
graph at level 210, three levels below the bottom of the ggidjraph. This figure is organized in the
same manner as Fig. 13, but the horizontal axis indicatesdahamn ofg in the molecular graph. From
these results, first it is apparent that only coefficientdhim last level of the guiding graph are non-zero,
reconfirming results from the previous experiment. Secitncin be seen that when the truth is to the
left of the guiding graph, the left-most node of lev&lis non-zero. Similarly, when the truth is to the
right, the right node is non-zero; when the truth is undetmétae 8-level graph, nodes in the interior of

the last level are non-zero.
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