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ABSTRACT

This paper explores three-dimensional (3D) interferometric synthetic aperture radar (IFSAR) image reconstruc-
tion when multiple scattering centers and noise are present in a radar resolution cell. We introduce an IFSAR
scattering model that accounts for both multiple scattering centers and noise. The problem of 3D image recon-
struction is then posed as a multiple hypothesis detection and estimation problem; resolution cells containing
a single scattering center are detected and the 3D location of these cells’ pixels are estimated; all other pixels
are rejected from the image. Detection and estimation statistics are derived using the multiple scattering center
IFSAR model. A 3D image reconstruction algorithm using these statistics is then presented, and its performance
is evaluated for a 3D reconstruction of a backhoe from noisy IFSAR data.

Keywords: synthetic aperture radar, radar imaging, interferometric SAR, three-dimensional reconstruction,
detection, estimation

1. INTRODUCTION

Interferometric synthetic aperture radar processing is a method of reconstructing three-dimensional (3D) images
using two-dimensional (2D) synthetic aperture radar (SAR) data from two closely spaced elevation angles. The
phase difference between corresponding pixels from the two elevation angle images encode height information.1–3

3D images can also be formed using other methods, such as 3D SAR. This form of imaging typically utilizes
SAR images at >2 elevation angles.4 IFSAR reconstruction is advantageous from both a processing and data
collection standpoint; less data needs to be processed and data collection is only necessary at two elevations
angles. Furthermore, since these elevations are closely spaced, it is possible to collect both measurements using
two radars on a single aircraft, making single pass data collection possible.

Two sources of error in height estimation from IFSAR imagery are noise and multiple scattering components
in a resolution cell. The traditional IFSAR phase difference height estimator assumes that there is only one
scattering center in a radar resolution cell. When there is more than one strong scattering center in a radar
resolution cell, height estimation may be erroneous. Furthermore, spurious height estimates will result from
resolution cells containing only noise, degrading image quality. Image noise may be attributed to clutter, thermal
noise, layover, or some other unknown parameter in the radar imaging system or scene.

In a recent paper, the authors investigated 3D IFSAR image reconstruction of scenes with two scattering
centers in a resolution cell and no noise.5 Using geometric arguments on a noiseless two scattering center
model, a pixel magnitude ratio statistic for detecting the presence of two scattering centers was proposed. A
threshold test on this statistic together with one on image pixel magnitude was used in a 3D image reconstruction
algorithm. Thresholds on each statistic were tuned to meet a desired level of average scene height error or visual
reconstruction performance.

This paper extends previous 3D IFSAR reconstruction work to image scenes with an arbitrary number of
scattering centers in a resolution cell (not just 1 or 2) and also models image noise. The problem of 3D IFSAR
image reconstruction is posed as a multiple hypothesis detection and estimation problem, and a 3D IFSAR image
reconstruction algorithm is developed in this framework. The proposed algorithm turns out to be very similar
to the algorithm derived for image reconstruction with two scattering centers and no noise,5 although each was
developed under different assumptions and models.



We introduce a ternary hypothesis model for multiple scattering centers in a resolution cell with noise and
classify resolution cells according to the number of scattering centers in the cell. The three hypotheses are zero
(H0) one (H1) and more than one (H2) scattering center in a resolution cell. From this hypothesis model, decision
statistics for detecting each hypothesis are derived. These statistics are used together with a height estimator
to form a multistage detection and estimation algorithm. The first stage of the algorithm detects the number
of scattering centers in a resolution cell and consists of two binary hypothesis detectors, one for distinguishing
between noise and signal (H0 vs. H1∪H2) and the other for distinguishing between >1 scattering center and one
scattering center or noise (H2 vs. H0 ∪H1). The second stage consists of the traditional IFSAR phase difference
height estimator. If the first stage detects one scattering center in a radar resolution cell, the data is retained
and sent to the second stage for height estimation; otherwise it is discarded.

Image reconstruction performance of the proposed IFSAR algorithm is determined by thresholds on each
binary test statistic in the detection stage and on the level of noise in a scene. The performance of each
algorithm is assessed in reconstructing a 3D image of a construction backhoe using SAR data generated from
the XPatchT scattering simulation software under different noise levels.

2. IFSAR RESOLUTION CELL MODEL

First, we present the IFSAR resolution cell multiple scattering center model that is used in subsequent analysis.
We begin by giving an overview of the IFSAR imaging equations and then discuss why a multiple scattering
center model is needed. A multiple scattering center model is then presented and used in a ternary hypothesis
classification of resolution cells with 0, 1, or >1 scattering center in a resolution cell.

2.1. IFSAR Imaging Equations

In the following discussion, we assume that two SAR images are formed at two closely-spaced elevations angles,
Ψ1 and Ψ2, with respect to a common slant plane at elevation angle Ψs. The elevation angles are closely spaced
in the sense that |Ψi −Ψs| ≪ 1 (i = 1, 2) so that sin(Ψi −Ψs) ≈ Ψi −Ψs and cos(Ψi −Ψs) ≈ 1. In the following
discussion, slant plane coordinates are implied unless stated otherwise, and images formed at elevation angle Ψi

for i = 1, 2 are denoted as si(x, y).

SAR processing generates a 2D grid of discrete samples of the object being imaged. In the following discussion,
a discrete sample of the image at location (xk, yl) on the slant plane will be denoted as an image pixel, and a
resolution cell corresponding to an image pixel centered at some point (xk, yl) will be defined as

Ck,l =

{

(x, y, z) : xk −
xres

2
≤ x ≤ xk +

xres

2
, yl −

yres

2
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2
,
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2
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2

}

, (1)

where xres and yres are the resolutions in the x and y dimensions, respectively, and zmax is the maximum height
range of the scene, which is often defined from the beamwidth of the radar.

In traditional IFSAR processing, when there is one scattering center in a resolution cell at height h(x, y), the
image pixel response at elevation angle Ψi, si(x, y), at image location (x, y) is given by1

si(x, y) ≈ sinc∆X,∆Y (x, y) ⊗
[

r(x, y)e−j4π sin(Ψi−Ψs)h(x,y)/λce−j4π cos(Ψi−Ψs)y/λc

]

(2)

sinc∆X,∆Y (x, y) = ∆X∆Y sinc
(

x∆X
2π

)
sinc

(
y∆Y
2π

)

,

where λc is the wavelength of the radar center frequency, ∆X and ∆Y are the width of the support of the data
collection in the crossrange and downrange Fourier dimensions X and Y , and r(x, y) is the reflectivity function
of the scene. A pixel at location (xk, yl) will be denoted as si(xk, yl).

When there is one scattering center in a resolution cell, (2) can be used to derive a z-coordinate height
estimate of this scattering center orthogonal to the slant plane; the height estimate can be calculated as the
phase difference between image pixels1:

ẑ =
1

kI
arg(s2s

∗

1), (3)



where kI = 4π∆Ψ
λc

is the height-to-phase scaling factor and si is used to denote the image pixel value under
consideration, si(xk, yl), for simplicity of notation. The mapping from phase difference to height is ambiguous if
the phase difference exceeds 2π. Hence, we define the unambiguous IFSAR height interval as 2π/kI .

For an imaging scene where the height varies slowly with respect to SAR image resolution, such as in
topographic mapping, the single-pixel height estimator (3) can be modified to provide some averaging over
multiple pixels.1 However, in applications such as 3D target reconstruction, height of the imaging scene may
vary quickly with respect to image resolution; so, we use single pixel height estimates to avoid bias due to
smoothing.

When more than one scattering center lies within a resolution cell or when the cell contains only noise, height
estimation using (3) may result in erroneous height estimates. In the following sections, we propose a SAR
resolution cell model that incorporates the possibility of multiple scattering centers and noise in a resolution cell
and develop an IFSAR reconstruction algorithm based on this model.

2.2. Multiple Scattering Center Model

Using the IFSAR equations from the previous section, we present a scattering center model for resolution cells
with multiple scattering centers in a resolution cell and noise. Before introducing this model, we justify the
need to consider an arbitrary number of scattering centers in a resolution cell. If there is a negligible number
of resolution cells with >1 scattering centers, a model using (2) with the addition of noise should model an
image scene well, and detecting resolution cells with >1 scattering centers would be unnecessary. However, 3D
scattering analysis of ground targets suggests otherwise.

To illustrate that there is in fact a non-negligible number of resolution cells with >1 scattering centers for
a complex target, we present ground truth results from an XPatchT model of a construction backhoe. Ground
truth data is generated by the ray-tracing engine in XPatch and is defined as a list of all of the scattering center
3D locations quantized to high spatial resolution and magnitudes of the object being imaged, regardless of the
image resolution.6 This means that with ground truth data, information about each of the scattering centers
in a resolution cell is available separately.

A histogram of the number of scattering centers in a SAR image resolution cell for an image formed at
an azimuth angle of 85◦ and elevation angle of 30◦ is shown in Figure 1. The histogram is generated using
XpatchT backhoe ground truth data from resolution cells defined by (1) for an X-band radar with a resolution
of approximately 1.5 in.× 1.5 in. over a scene of approximately 20 m.× 20 m.. The scene consisted of a backhoe
in free space, meaning that the backhoe was the only object in the scene with scattering centers. Most of the
resolution cells in the scene do not contain scattering centers, and are omitted from the histogram in Figure 1,
which only displays resolution cells with ≥1 scattering center. This figure shows that the number of resolution cells
with >1 scattering centers is not negligible compared to resolution cells with one scattering center. Furthermore,
the response of resolution cells with >1 scattering centers are not necessarily dominated by the response of one
strong scattering center, as implied by Figure 2 and the following discussion of interfering scatter centers. This
example suggests that a model that incorporates only one scattering center with noise will not model a complex
image scene, like the backhoe scene, well.

Letting the image formation slant plane elevation be equal to the lowest data collection elevation angle,
Ψ1 = Ψs, and using (2), an image pixel for a resolution cell with one scattering center at elevation Ψi can be
written as1

Aejαej(i−1)kIz, (4)

where A ∈ R
+ is the magnitude of the image pixel, which is constant over small elevation changes; α ∈ [−π, π)

is a constant phase factor; z ∈ R is the height of the pixel in meters above the image formation slant plane, and
kI is the height-to-phase scaling factor defined previously.

The complex image pixel value of a resolution cell with multiple scattering centers is modeled as the coherent
sum of individual scattering center responses in the resolution cell. The multiple scattering center model for a
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Figure 1. Histograms of the number of scattering centers in 1.5 in. × 1.5 in. resolution cells for an image formed at an
azimuth angle of 85◦ and an elevation angle of 30◦. Only resolution cells with ≥1 scattering center are shown.

resolution cell is the resulting complex image pixel value of the resolution cell at each elevation angle Ψi with
additive noise:

S̄N
△
=

[
s̄1

s̄2

]

=

M∑

m=1

Am

[
ejαm

ej(αm+kIzm)

]

︸ ︷︷ ︸

Mm

+

[
n1

n2

]

︸ ︷︷ ︸

N

= A1M1 +

M∑

m=2

AmMm + N

= A1M1 + M̄I + N. (5)

Here, the (xk, yl) coordinates are omitted for brevity. The vector SN ∈ C
2 consists of noisy pixel values, s̄i, at

elevation angle Ψi. The terms Am, αm, and zm are the terms A, α, and z in (4) for the mth scattering center in
the resolution cell. Noise is introduced in the N vector with noise components ni at elevation angle Ψi that are
independent identically distributed (iid) with complex Gaussian distribution CN (0, σ2

nI) and known variance
σ2

n. Magnitude values An are ordered such that An > Am if n < m, making A1 the largest magnitude. The
scattering center associated with the largest magnitude, A1 is denoted as the dominant scattering center in the
resolution cell and all others are denoted as interfering scattering terms. Accordingly, vectors A1M1 and M̄I

are denoted as the dominant scattering and interfering scattering vectors, respectively.

Without loss of generality, we represent the interference vector, which is the coherent sum of interfering
scattering centers, as a vector in C

2 with arbitrary complex components:

M̄I
△
=

[
ĀI1

ejθ̄1

ĀI2
ejθ̄2

]

. (6)

The variables ĀIi
∈ R

+ are interference magnitude values at elevation angle Ψi, and the θ̄i ∈ [−π, π] variables
are interference phase values at elevation angle Ψi.

The multiple scattering center model in (5), with interfering scattering given by (6), is described by the
parameter vector

Θ =
(
A1, ĀI1

, ĀI2
, z1kI , α1, θ̄1, θ̄2

)
, (7)

where the parameters are deterministic and unknown. It is desirable to establish a random interfering scattering
vector, (6), for the purpose of eliminating unknown nuisance parameters from the statistical tests developed in
Section 3.

XPatchT backhoe ground truth data has been used to develop a random interfering scattering model.7 This
data indicates that given the magnitude of the dominant scattering center, A1, the magnitude of the coherent
sum of interfering scattering, ĀIi

, is well-modeled as Rayleigh distributed with a Rayleigh parameter that is
linearly proportional to A1. Figure 2(a) shows an example of the conditional Rayleigh distribution of ĀIi

fit to
the ground truth data using a maximum-likelihood estimate of the Rayleigh parameter, and Figure 2(b) shows



the linear relationship between the magnitude of the dominant scattering center using a least squares fit to the
Rayleigh parameter estimates. The slope of the least squares fit is denoted as σ2

I and is approximately 0.78 for
this data.
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Figure 2. Conditional distribution of interfering scattering magnitude and linear relationship between the Rayleigh
parameter of ĀI1

and A1.

Furthermore, the distribution of the interfering scattering phase θ̄i, conditioned on the dominant scattering
phase, can be approximated as uniform in [−π, π].7 Under the assumption that the interference at elevation
angle Ψi, ĀI1

ejθ̄1 , is random and iid for each i = 1, 2 and that magnitudes of the dominant and interfering
scattering magnitude, A1 and ĀIi

respectively, are statistically independent of each of the dominant and inter-
fering scattering phases, z1kI , α1, θ̄1, and θ̄2, a distribution on the interfering scattering can be derived. We let

M̄I
△
= [mI1

, mI2
]T denote the interference vector when interference is modeled randomly. The terms mIi

for
i = 1, 2 denote the iid complex random interfering scattering at elevation Ψi, and the distribution of M̄I is7

M̄I =

[
mI1

mI2

]

∼ CN (0, σ2
IA2

1I), (8)

given (deterministic) A1, z1kI , and α1.

In the following sections, the multiple scattering center model in (5) is used in classifying resolution cells in
terms of a multiple hypothesis model. This model, using both deterministic unknown interfering scattering in
(6) and the random interfering scattering characterized by (8), is used in developing statistics for 3D IFSAR
image reconstruction.

2.3. Ternary Hypothesis Model

The number of scattering centers in a resolution cell can be classified as 0, 1, or >1, giving a ternary classification
of a resolution cell. In this section, we develop a ternary hypothesis model of the resolution cells in an imaging
scene based on the number of scattering centers in a resolution cell.

Using the multiple scattering center model in (5), the following ternary hypothesis model can be used to
classify resolution cells in an image scene:

H0 : S̄N = N

H1 : S̄N = A1M1 + N

H2 : S̄N = A1M1 + M̄I + N. (9)



Hypothesis H0 classifies a resolution cell with zero scattering centers (only noise). In this case, all magnitude
parameters in the multiple hypothesis model, A1, and ĀIi

, are zero. A resolution cell with one scattering center
is classified as hypothesis H1, where all interference magnitudes in the multiple scattering center model, ĀIi

, are
zero and A1 is non-zero; H2 is the hypothesis that classifies resolution cells with >1 scattering center, and is
represented by the multiple scattering center model with non-zero A1 and at least one non-zero ĀIi

in (6).

Since the noise parameter, N, is distributed as CN (0, σ2
nI) with known variance σ2

n, and the dominant
scattering center parameters, A1, α1, and z1 are deterministic and unknown, the pixel distributions under
hypothesis H0 and H1 are complex Gaussian, since they are affine transformations of Gaussians. The distribution
under H0 is CN (0, σ2

nI) and the distribution under H1 is CN (A1M1, σ
2
nI). If we make no assumptions about

the distribution of the interfering scattering and specifying it as a deterministic and unknown vector given by
(6), the distribution under H2 is

CN (A1M1 + M̄I , σ
2
nI). (10)

On the other hand, if we assume that the interference is random and specified by the distribution in (8), the
distribution under H2 is

CN (A1M1,
(
A2

1σ
2
I + σ2

n

)
I). (11)

3. DETECTION TEST STATISTICS

In this section, we use the ternary hypothesis model (9) to develop binary hypothesis test statistics for distin-
guishing between the number of scattering centers in a resolution cell. These tests are used in the detection stage
of the proposed image reconstruction algorithm. In particular, binary tests for testing noise versus no noise and
≤1 scattering center versus >1 scattering center are discussed. Tests that are invariant or nearly invariant to
the unknown parameters in the ternary hypothesis model and that have constant false alarm rates (CFAR) or
are nearly CFAR are desirable.

3.1. Generalized Likelihood Ratio Test (GLRT) for Noise Detection

A GLRT is a likelihood ratio test with unknown deterministic parameters replaced by their maximum-likelihood
(ML) ratio estimates. From the ternary hypothesis model, the noise only hypothesis is H0, and the scattering
center plus noise case is that of ≥1 scattering centers in a resolution cell, H1∪H2. In deriving a statistic for noise
detection, the interfering scattering vector, M̄I , is modeled with deterministic and unknown parameters and is
given by (6); No distributions are imposed on the parameters. Since hypothesis H1 is nested in H2, meaning
that H1 is a particular case of H2 with the interference magnitudes, ĀIi

= 0, we use a GLRT of H0 versus H2

for testing noise-only resolution cells versus resolution cells with ≥1 scattering center.

Finding the ML estimate of the parameters Θ in (7), substituting these values into the distribution of H2

given by (10) and taking the likelihood ratio of the resulting function and the distribution of H0, gives a binary
hypothesis test for testing H0 versus H2. This test is7

m1(S̄N )
△
= ‖s̄1‖

2 + ‖s̄2‖
2

H2

≷
H0

τ1, (12)

where τ1 is a threshold set to meet a desired false alarm level of falsely rejecting H0. Choosing H2 in this test
is understood to mean choosing H1 ∪ H2 because of hypothesis nesting. The m1 test itself is invariant to the
unknown model parameters, and is a CFAR test, since the distribution of m1 under H0 is not a function of
unknown parameters. This test can be interpreted as an energy detector, which measures the energy in the
pixels, s̄i, to determine if the resolution cell contains a scattering signal or only noise.

3.2. Near Uniformly Most Powerful Invariant (UMPI) Test for Multiple Scattering
Center Detection

In this section, we introduce a statistic for discriminating between resolution cells with ≤ 1 scattering center
or >1 scattering center. A binary hypothesis test for discriminating between these two cases is one that tests
H0 ∪H1 versus H2. The hypothesis H0 is a special case of H1 with A1 = 0; hence, it is nested in the hypothesis
H1. Thus, we use a binary test for testing H1 versus H2 as a test of ≤1 versus >1 scattering center.



A GLRT-based test using the ternary hypothesis scattering center model (7) and deterministic unknown
interference parameters results in a test statistic that is free of unknown parameters, but the false alarm, which
is defined as the probability of falsely rejecting H2, will be a function of unknown model parameters, and the
test will not be CFAR or even nearly CFAR.7

Instead, we derive a near UMPI test. A UMPI test is a binary hypothesis test that is the most powerful
test out of all tests that are invariant to a group of transformations on the data. Invariance to a group of
transformations G means that if m(·) is the binary test statistic and T (·) is from G, then m(T (x)) = m(x). This
test is invariant to unknown model parameters and is CFAR. Finding a UMPI test consists of first defining a
group of data transformations G that operate on the distribution of the data only through the parameters of the
distribution, preserving the family of the distribution, and defining a maximal invariant statistic with respect to
the group G. A maximal invariant statistic m is one that is invariant to G and also is maximal in the sense that
if m(x1) = M(x2) then ∃ T (x) ∈ G such that T (x1) = x2. A test is defined as the likelihood ratio of m under
two competing hypotheses; the test is UMPI if the false alarm is not a function of unknown parameters, meaning
it is CFAR. A more detailed discussion of maximal invariant statistics can be found in the literature.7–9

We use the ternary hypothesis model (7) and assume random interfering scattering characterized by (8) for
purposes of a near UMPI test for testing H1 versus H2. The group of transformations used in UMPI development
is

G
△
=

{

cR
△
= c

[
ejφ1 0
0 ejφ2

]

: c > 0, φi ∈ [−π, π)

}

. (13)

This transformation operates on the data distribution through the unknown parameters A1, α1, and z1 and
preserves the distribution family.7 The statistic

m2(S̄N )
△
=

‖s̄1‖
2 − ‖s̄2‖

2

‖s̄1‖2 + ‖s̄2‖2
(14)

is a maximal invariant statistic with respect to the group of data transformations G in (13). Using m2, the near
UMPI test of H1 versus H2 with false alarm defined as the probability of falsely rejecting H2 is7

m3(S̄N )
△
=

∣
∣
∣
∣

‖s̄1‖
2 − ‖s̄2‖

2

‖s̄1‖2 + ‖s̄2‖2

∣
∣
∣
∣

H2

≷
H1

τ3, (15)

where τ3 is a threshold set to meet a desired false alarm level of falsely rejecting H2. This test is called near
UMPI because, while it is not strictly UMPI because the false alarm of m3 is a function of unknown model
parameters A1, α1, and z1, it is a weak function of these parameters and is nearly CFAR for H1 resolution cells
with moderate to high SNR. The signal to noise ratio (SNR) for resolution cells classified under H1 is defined

as
A2

1

σ2
n

. For example, in the backhoe imaging scene, with σ2
I ≈ 0.6 as in Figure 2(b), a SNR ≥ 1.67 is sufficiently

large to meet the moderate to large SNR requirement.7 The threshold τ3 can be set to attain a false alarm
bound on this test, which is nearly constant over parameter values, given the nearly CFAR nature of the test.7

This false alarm bound will simply be called the false alarm of the test in the following discussion.

Choosing H1 in this test is understood to mean choosing H1 ∪ H0 because of hypothesis nesting, and hence
m3 is a test for discriminating between resolution cells ≤1 scattering center or >1 scattering center. Lastly, we
note that the assumption of at least small to moderate SNR for H1 resolution cells be should be valid most of
the time for the image reconstruction algorithm proposed in the next section. In the algorithm, H1 resolution
cells with small SNR will be discarded as noise and will not be processed by m3.

4. DETECTION AND ESTIMATION ALGORITHM

In the previous section, we derived binary detection tests for distinguishing between the number of scattering
centers in a resolution cell. In this section, we discuss the use of these tests together with the traditional IFSAR
phase difference height estimator in an IFSAR 3D reconstruction algorithm. The algorithm we propose is a
two stage detection and estimation algorithm. The first stage detects the number of scattering centers and the
second stage estimates the height of the pixel in a resolution cell based on the decision of the detection stage.



The objective is to improve IFSAR image reconstruction by only estimating the height of pixels from resolution
cells with one scattering center. The height estimate of pixels from resolution cells with zero or >1 scattering
center are assumed to be erroneous and are discarded by the algorithm.

The binary tests given by (12) and (15) form the detection stage of the 3D reconstruction algorithm, and
the tests will be denoted by the name of their test statistics, m1, and m3 respectively. Thresholds are set on
each test so that each achieves a desired false alarm rate. IFSAR data from a resolution cell, SN , is evaluated
by the the m1 noise test first. If the test declares noise (H0), the data from the resolution cell is discarded; if
not, it is evaluated by the m3 multiple scattering center test. If the m3 test declares that the data is from a
resolution cell with >1 scattering center (H2), the data is discarded. A resolution cell whose data is retained
by both tests is declared as H1, a resolution cell with exactly one scattering center, and the height of the pixel
in the resolution cell is estimated by the IFSAR phase difference estimator given in (3). Pixels not discarded
by the algorithm have magnitude values and location coordinates in R

3; these pixels can be used to form a 3D
reconstruction of the imaged scene. We note that the IFSAR phase difference estimator is the ML estimator of
the dominant scattering center height under H1 and also under H2 for the interfering scattering model where
the interference is distributed according to (8).7

Figure 3 shows an example of the rejection and acceptance regions of the IFSAR reconstruction algorithm
detection stage as a function of measured pixel magnitudes at elevation angle Ψi, si. In this example the threshold
on m1 and m3 are set to τ1 = 0.3 and τ3 = 0.5 respectively. IFSAR data, S̄N in (5), that falls within the shaded
region is retained by the detector and used to estimate the height of the corresponding resolution cell. Any data
outside of this region is discarded by one of the binary tests, m1 or m3, and hence by the detector.

Figure 3. Acceptance and rejection regions of IFSAR reconstruction algorithm detection stage.

The quality of a 3D reconstructed image is a function of the height estimation accuracy. Figure 4 shows
example IFSAR height estimation error histograms for each hypothesis of the ternary hypothesis model with
height estimated by the IFSAR phase difference estimator given in (3). Height error is the difference between
the actual height of the dominant scattering center in a resolution cell and the estimated height. The true height
of resolution cells with no scattering centers (H0) is taken to be zero. Each histogram is generated using the
random interference model in (8) with σ2

I = 0.6, σ2
n = 0.072, and dominant scattering parameters distributed

as A1 ∼ Ray(σs), with σs = 0.7, kIz1 ∼ U [−π, π], and α ∼ U [−π, π), where U [−π, π) denotes a uniform
distribution on the interval [−π, π) and Ray(σs) denotes a Rayleigh distribution with parameter σs. The
parameter σ2

I is set to 0.6 because this is approximately the value of the backhoe scene (see Figure 2(b)); the

remaining parameters are set to achieve a signal to noise ratio,
σ2

s

σ2
n

, of 20dB. Figure 4 shows that H1 resolution

cells have much lower probability of large height error than resolution cells under other hypotheses. It is because
of this property that the IFSAR reconstruction algorithm is designed to only use H1 resolution cell pixels.

The false alarm rate of each binary hypothesis test in the IFSAR reconstruction algorithm detector is set by
choosing an appropriate threshold on each test. Ideally, the detector would reject all resolution cells under H0 or
H2. By lowering the false alarm rate of each binary test, the number of H0 or H2 resolution cells not rejected by



−4 −2 0 2 4
0

200

400

600

800

1000

1200

Height Error (Radians)

N
um

be
r 

of
 R

ea
liz

at
io

ns

(a) Height error under H0 for σ2
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(b) Height error under H1 for σ2

n =
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(c) Height error under H2 for σ2

n =
0.072, σ2
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Figure 4. Histograms of height error using the ẑ estimator under each hypothesis in the ternary hypothesis model and
100000 realizations.

the algorithm will decrease. However, decreasing the false alarm also decreases the power of the detector, and it
will reject more H1 pixels. Very low false alarm rates will result in low-quality reconstructed images because of
a sparse number of pixels, and is not desirable; there is intrinsically a trade-off between image pixel sparsity and
pixel height error. Figure 4 suggests that it may be appropriate to set a lower false alarm rate on m1 than on
m3, since the probability of large height error is higher under H0 than under H2. Lastly, we note that the tests
used in the 3D IFSAR reconstruction algorithm presented here are similar to the pixel magnitude threshold test
and m̃ tests previously developed for two scattering centers and no noise.5

5. ALGORITHM PERFORMANCE

In this section, we evaluate the performance of the IFSAR 3D reconstruction detection and estimation algorithm.
Performance is evaluated through 3D image reconstruction of a backhoe using XPatchT IFSAR data. We
examine the 3D IFSAR reconstruction performance on a backhoe image scene under different noise levels. All
backhoe IFSAR data is generated using XPatchT scattering simulation software for an X-Band radar with center
frequency, fc = 10GHz, and bandwidth of 4GHz; noise is added to each of the images synthetically, and VV
polarization is used in image reconstruction processing.

A facet model of the backhoe that will be reconstructed is shown in Figure 5. Figures 6 and 7 show 2D SAR
reconstructions, 3D IFSAR reconstructions using the proposed algorithm, and 3D pixel rejection images of the
backhoe under different noise levels. 3D Images are reconstructed using data for the entire “upper hemisphere”
of the backhoe image scene, with IFSAR image pairs spaced at 0.05◦ in elevation angle. “Upper hemisphere”
means all IFSAR image data centered every 5◦ in azimuth angle from 0◦ to 355◦ and at elevation angles of 5n◦

and (5n◦ + 0.05)◦ for n = 0, . . . 17. Noise variances, σ2
n are set so that they are a certain decibel level below the

power of the strongest pixel in the set of pixels formed by taking all pixels from SAR images formed at each
aspect angle of the upper hemisphere and removing the strongest 0.01% of pixels. Removing this 0.01% of pixels
removes strong outliers from the set. Figure 6 and 7 shows images formed with noise variance 30dB and 20dB
below the strongest 0.01% of pixels respectively.

Figures 6(a) and 7(a) are 2D reconstructions of the backhoe at an azimuth and elevation angle pair,
(azimuth, elevation), of (0◦, 0◦) for noise variances 30 and 20dB below the strongest 0.01% of pixels respectively,
and Figures 6(b) and 7(b) are 2D reconstructions at azimuth and elevation angle pair (45◦, 45◦) for noise variances
30 and 20dB below the strongest 0.01% of pixels respectively. The bar next to each figure encodes the magnitude
of each pixel in decibels with respect to the maximum pixel magnitude of the SAR images formed at azimuth
and elevation aspect angles of (0◦, 0◦) and (45◦, 45◦). These images show how the level of noise compares with
image pixel strength; images formed with a higher noise level, 20dB below the top 0.01% of scattering magnitude,
blend into the background more than images at 30dB below.



Figure 5. Facet model of backhoe.

Examples of 3D IFSAR image reconstructions using the IFSAR detection and estimation algorithm proposed
in Section 4 are shown in Figures 6(c) and 7(c) for noise variances 30 and 20dB below the strongest 0.01% of
pixels respectively. In the following discussion, we specify detector settings in terms of the binary hypothesis
thresholds τ1 and τ3, each of which correspond to false alarm rates on m1 and m3. A discussion of false alarm
rate calculation from thresholds can be found in the reference by Austin.7
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(a) 2D backhoe reconstruction at azimuth =
0◦, elevation = 0◦.
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(b) 2D backhoe reconstruction at azimuth =
45◦, elevation = 45◦.

(c) 3D reconstruction of backhoe using “upper
hemisphere” of IFSAR data, τ1 = 0.11 and
τ3 = 0.1.

(d) Rejection image of 3D reconstructed back-
hoe. Only pixels rejected by m3 are plotted.

Figure 6. 2D and 3D IFSAR algorithm based reconstructed backhoe images with a noise variance of σ2

n = 0.00039 (30
dB below the strongest 0.01% of pixels in the scene)
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(a) 2D backhoe reconstruction at azimuth =
0◦, elevation = 0◦.
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(b) 2D backhoe reconstruction at azimuth =
45◦, elevation = 45◦.

(c) 3D reconstruction of backhoe using “upper
hemisphere” of IFSAR data, τ1 = 0.15 and
τ3 = 0.4.

(d) Rejection image of 3D reconstructed back-
hoe. Only pixels rejected by m3 are plotted.

Figure 7. 2D and 3D IFSAR algorithm based reconstructed backhoe images with a noise variance of σ2

n = 0.0039 (20
dB below the strongest 0.01% of pixels in the scene)

The image in Figure 6(c) is generated using detector threshold settings of τ1 = 0.11 and τ3 = 0.1, and the
image in Figure 7(c) is generated with threshold settings of τ1 = 0.15 and τ3 = 0.4. Larger darker pixels (dark
green) in the image correspond to pixels with larger magnitude; smaller magnitude pixels are smaller in size and
become lighter ( light yellow). Threshold settings were chosen manually to achieve a trade-off between images
with a large number of pixels that do not lie close to the backhoe surface and sparse images. Different threshold
settings will result in different “quality” images, where “quality” depends on the application. Figure 6(c) appears
visually sharper than Figure 7(c); as may be expected, this can be attributed to the larger noise variance in the
latter figure. Rejection images of the 3D reconstructed backhoe images in Figures 6(c) and 6(c) are presented in
Figures 6(d) and 7(d) respectively. These images are the pixels rejected by the m3 test in the detector, meaning
that the m3 detector classified them as originating from resolution cells with >1 scattering center. Many pixels
that do not lay close to surface of the backhoe, clouding the image, are shown in the rejection images. Rejection
images of the m1 test are not shown because there are a large number of pixels in these images, and the pixels
appear as a cloud around the backhoe with no structure.

6. CONCLUSION

A detection and estimation based 3D IFSAR reconstruction algorithm for resolution cells with an arbitrary
number of scattering centers and noise was developed in this paper. We argued, using XPatchT backhoe data,
that for complex image scenes, such as the backhoe scene, there are many resolution cells with >1 scattering



center. Furthermore, we showed that it is not, in general, valid to assume only one dominant scattering center in
these resolution cells. A resolution cell model with noise was proposed to account for multiple scattering centers.
This model was used to develop a ternary hypothesis model which classifies resolution cells in an image scene
by the number of scattering centers they contain; XPatchT data was also used in conjunction with the multiple
scattering model to describe interfering scattering randomly. Using the ternary hypothesis model, two binary
hypothesis tests were developed: a GLRT test for detecting resolution cells with only noise and a near UMPI test
for detecting resolution cells with >1 scattering center. We then proposed the two stage detection and estimation
3D IFSAR reconstruction algorithm. The GLRT and near UMPI binary tests were used in the detection stage,
which detects resolution cells with only 1 scattering center; the estimation stage uses the standard IFSAR phase
difference estimator to estimate the heights of resolution cells declared to have one scattering center by the
detection stage.

Performance of the 3D IFSAR reconstruction algorithm was evaluated on XPatchT generated IFSAR data.
Reconstructed backhoe images were formed at different noise levels, a low to moderate and higher noise level.
In both cases, the structure of the backhoe was visible in reconstructed images, but the lower noise level image
was sharper. The IFSAR reconstruction algorithm appears to eliminate may pixels that are not close to the
surface of the backhoe and visually appears to be effective in 3D reconstruction of image scenes with an arbitrary
number of scattering centers and noise.
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