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ABSTRACT
In total knee replacement surgery, also known as total knee arthro-
plasty, prosthetics are implanted in the knee joint as treatment for
progressive diseases such as arthritis or trauma. In this paper, we
aim to recover the 3-D shape of bones and prosthetic devices in
patients who have undergone total knee replacement. Such an ob-
jective is addressed using a collection of 2-D X-rays acquired from
multiple viewpoints. Then, both bone and prosthetic shape recov-
ery are formulated as a multi-view reconstruction process through
the minimization of an objective function. The objective function is
designed to recover 3-D surfaces, which once projected to 2-D im-
ages, minimize edge-based and region-based criteria. The calculus
of variations and gradient descent are used to obtain a surface with
minimum cost through a 3-D level set implementation. Promising
results are given for real X-ray data.

Index Terms— orthopedics, X-ray imaging, multi-view stereo
reconstruction, 3-D level set methods

1. INTRODUCTION

Total knee replacement, a surgical procedure also known as total
knee arthroplasty, places prosthetics in the knee joint as treatment
for osteoarthritis most commonly, but also as treatment for other
progressive diseases or for trauma to the joint. A tibial plate with
stem and a curved femoral component make up the prosthetic. Post-
operatively, it is of clinical interest to observe the joint in a non-
invasive manner, both statically and dynamically.

To obtain images of the human skeletal structure, a fast, low-
dose, relatively inexpensive, and effective technique is X-ray radio-
graphy (plain film and fluoroscopic). Statically, a collection of X-ray
images from different viewpoints around the knee may be acquired
using a rotating sensor. Dynamically, a movie sequence of X-rays
from one viewpoint may be acquired while the patient flexes the
joint. Prosthetics used today are able to reproduce a large part of the
very complicated kinematics of the knee, but not fully. By tracking
the three-dimensional (3-D) movement of the bones and prosthetics
dynamically, it is possible to understand the frictions and forces at
work in the post-operative joint.

Such 3-D tracking with the available X-ray data may be decom-
posed into two phases: first, determining a 3-D shape model of the
bones and prosthetics using the collection of two-dimensional (2-
D) X-ray images taken from different viewpoints, and second, per-
forming rigid body 3-D/2-D registration and tracking using the 3-D
model from the first phase and the single viewpoint movie sequence
[1]. The focus of this paper is on the first phase of the problem,
approached as stereoscopic reconstruction from many views using a
surface evolution technique implemented with 3-D level sets.

Fig. 1. X-ray image of a knee joint that has a prosthetic. In the
red rectangle (solid line), one bone behind another does not result in
occlusion. In the green rectangle (dotted line), the prosthetic has no
texture whatsoever. In the blue rectangle (double line), a strong edge
delimits the bone, but in the cyan rounded rectangle (double line),
there is another strong edge in the background. The two magenta
rounded rectangles (solid line), one inside the object of interest and
the other outside have almost identical intensities.

3-D surface reconstruction of bones using 3-D X-ray computed
tomography images is well-studied, but the problem using 2-D X-ray
images from different viewpoints is not so well-studied. The only
methods of which we are aware involve the morphing and deforming
of a fairly accurate prior shape model [2].

The general problem of 3-D shape estimation from a set of 2-
D images, however, has received attention in the computer vision
community. A large body of literature exists focused on the problem
with exactly two images taken from very similar viewpoints (like
the human vision problem). The problem we encounter, with a large
number of images from disparate viewpoints is the multi-view stereo
reconstruction problem. Multi-view stereo reconstruction has tra-
ditionally been posed in the context of optical imaging for objects
such as statuettes in computer vision [3]. Consequently, assump-
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Fig. 2. X-ray images from rotating sensor of knee with prosthetic.

tions relating to radiance, occlusion, etc. have been built in that do
not necessarily apply when dealing with X-ray imaging.

Let us look at a typical X-ray image, shown in Fig. 1. First of
all, getting oriented, the two dark pieces are the femoral and tibial
components of the prosthetic. The other leg can be seen on the pe-
riphery. Many characteristics are apparent that differentiate X-ray
imaging from optical imaging (upon which multi-view stereo recon-
struction techniques are based).

Focusing on the red rectangle (solid line), the tibia would oc-
clude the fibula in an optical image, but the X-ray modality shows
both bones with pixel intensities darkened in the overlap region. The
effect is neither transparency nor shadowing, but can be interpreted
similarly. Another related feature seen in the image is that the bound-
aries of the bones are darker than the centers. This does not change
image to image, so a point on the surface of a bone may appear dark
in one image and light in an image from a different viewpoint.

Multi-view stereo techniques based on local correspondence rely
on the assumption that a point on the surface appears the same in all
of the images in which it is visible and that radiance is locally com-
putable. The idea is to find the shape such that the local correspon-
dence error is minimized [4, 5]. Due to the phenomena exhibited by
the X-ray modality, local correspondence is not a reliable feature for
3-D reconstruction of bone.

Now, looking at the prosthetic components and specifically the
region outlined in green (dotted line), it can be seen that there is
no texture at all; consequently, local correspondence is ill-posed for
reconstructing the shape of prosthetics. The prosthetics are homoge-
neous in image intensity, but the bones are not. The background is
full of clutter — in some places, for example within the two magenta
rounded rectangles (solid line), the image intensities inside and out-
side the bone are very similar.

Variational methods with a region-based flavor have been ap-
plied to multi-view stereo reconstruction as an alternative to local
correspondence [6]. In this formulation, a key ingredient is that the
background is treated like ‘blue sky,’ i.e. it is homogeneous, behind
everything, far away, and different from the object. Also, the surface
of the object is assumed to be homogenous in some respect. Unlike
local correspondence, there is no comparison of points between pairs
of images for consistency, but instead the comparison is integrated
over regions. Inhomogeneity in the bones, but more significantly,
the background clutter and lack of occlusion are barriers to the di-
rect application of such techniques to X-ray imaging.

Another method for multi-view stereo, given the name ‘shape
from silhouette,’ is well matched to the prosthetics and can be ap-
plied readily. In this technique, the silhouette of the object is pro-
jected back in 3-D for each image as a cylinder with the silhouette

as its cross-section; the intersection of all of the cylinders — the vi-
sual hull — is then the estimated 3-D shape [7]. The estimate of
the shape is conservative because it is the largest shape that meets
the constraints set by the images. It takes no prior information, for
example regarding smoothness or geometry, into account.

Edges, such as seen inside the blue rectangle (double line), stand
out in X-ray images. Edges have not been exploited enough in pre-
vious work on multi-view reconstruction. Unfortunately, the edges
of bones and prosthetics are not the only edges in the image; the
edge inside the cyan rounded rectangle (double line) is caused by the
boundary of the overlapping region of soft tissue from the two legs.
Nevertheless, the use of edge features is an avenue that we pursue
for this challenging application, combined with some region-based
features and an approach inspired by shape from silhouette.

2. MULTI-VIEW STEREO FROM X-RAYS

We now present an approach for 3-D shape reconstruction moti-
vated specifically by the appearance of bones and prosthetics in X-
rays. Our variational method extends the 2-D geodesic active re-
gions (GAR) functional to three dimensions by projecting cylinders
in a manner similar to the visual hull calculation. Optimization is by
surface evolution implemented using 3-D level sets.

2.1. Notation

A set of 2-D images I = {I1, I2, . . . , IN} with corresponding 2-D
domains Ω1, Ω2, . . . , ΩN is given in the problem as input. Each Ωi

has local image coordinates (ui, vi). The goal is to determine the
3-D solid enclosed by a surface S that is depicted in the images of I.
The surface S is in R

3 with global Cartesian coordinates (x, y, z),
or alternatively global cylindrical coordinates (r, θ, z).

The relationship between the global coordinates (x, y, z) and
the local image coordinates (ui, vi) is assumed known or known
approximately, i.e. the views or cameras are calibrated. These rela-
tionships are given by projections πi : R

3 → Ωi. The mappings are
not invertible in general because many different points in R

3 project
onto the same point in Ωi. The coordinate axis in 3-D perpendicular
to the plane Ωi is taken to be wi. Within a 2-D plane Ωi, a curve Ci

is parameterized by a variable si ∈ [0, 1] and has a line element dsi.
If the context requires only one 2-D plane, then the subscript i may
be dropped.

We have already seen one data image in Fig. 1; two more im-
ages are shown in Fig. 2. The images, acquired using a rotating
sensor, have viewpoints that are in a ring outside the leg. Each Ωi

plane is parallel to the global z-axis and forms an angle θi to the
x-z plane, which is known approximately. Parallel projection is a
valid assumption in X-ray images; hence, we take πi to be such that
ui = x cos θi + y sin θi and vi = z.

2.2. Geodesic Active Regions

We first describe segmentation into regionsR, the inside, andRc, the
outside, using GAR in 2-D before taking the leap to 3-D. The GAR
functional is the convex combination of two terms, the geodesic ac-
tive contours (GAC) functional and a region-based functional [8]:

EGAR (C) = αEGAC (C) + (1− α)ER (C) . (1)

The GAC functional has minima where the curve C falls along
strong edges in an image I [9]:

EGAC (C) =

I
C

g (C(s)) ds, g(I) =
1

1 + |∇I|p , (2)

1149



Fig. 3. Two views of the reconstructed 3-D shape of the prosthetic
(femoral component and tibial plate with stem).

with p ∈ [1, 2]. To prevent local minima and fractally solutions,
oftentimes a curve length penalty is also included in the GAC func-
tional:

EGAC (C) =

I
C

g (C(s)) ds + c

I
C

ds. (3)

The region-based portion assumes some prior knowledge re-
garding the image intensities of R and Rc. It is assumed that pixel
values are independent given the region label and have probability
distribution function pR(I(u, v)) or pRc(I(u, v)). The functional is
essentially a log likelihood ratio:

ER (C) =

−
ZZ
R

log (pR(I(u, v))) du dv−
ZZ
Rc

log (pRc(I(u, v))) du dv.

Starting from an initial curve, a curve evolution approach is
taken to flow towards a minimum of the functional. Using a level-
set implementation with the signed distance function ϕ(u, v; t), the
level-set update equation is ϕt = F |∇ϕ|, with:

F (u, v) =

α

„
κ (g(I(u, v)) + c)−

fi
∇g(I(u, v)),

∇ϕ(u, v)

|∇ϕ(u, v)|
fl«

+ (1− α) (− log (pR(I(u, v))) + log (pRc(I(u, v)))) ,

where κ is the curvature of C, and 〈·, ·〉 indicates the inner product.

2.3. Multi-View GAR Surface Evolution

Now we come back to the problem at hand in 3-D. The idea is to
have one surface in 3-D and evolve that surface based on information
provided by all of the images. All points on a line in 3-D map to
a point (ui, vi) in Ωi. Our approach is to apply the GAR flow at
(ui, vi) to all points (x, y, z) that project to it. The overall force
applied to a point (x, y, z) is the superposition of forces from all N
images.

We construct a multi-view geodesic active regions functional
with a GAC term and a region-based term. The GAC portion of
the functional is:

EGAC-MV (S) =

NX
i=1

I
Ci

g (Ci(si)) dsi + c

I
Ci

dsi. (4)

Making the assumption that the shape S has a pixel intensity distri-
bution pR when seen in an image, and the background has a distri-
bution pRc , the region-based portion is:

ER-MV (S) = −
NX

i=1

ZZ
πi(S)

log (pR(Ii(ui, vi))) duidvi

−
NX

i=1

ZZ
Ωi−πi(S)

log (pRc(Ii(ui, vi))) duidvi. (5)

Using a 3-D signed distance function ϕ(x, y, z; t) the 3-D level set
update equation takes the form ϕt = F |∇ϕ|, with:

F (x, y, z) =

α
NX

i=1

κ (g(Ii(ui, vi)) + c)−
fi
∇ig(Ii(ui, vi)),

∇iϕ(x, y, z)

|∇iϕ(x, y, z)|
fl

+ (1− α)

NX
i=1

− log (pR(Ii(ui, vi))) + log (pRc(Ii(ui, vi))) .

(6)

By ∇i, we mean a gradient with respect to the ui and vi axes of
Ωi. The force has effect only in the direction normal to S in 3-
D. Explicitly, ∂ϕ(x,y,z)

∂ui
= ∂ϕ(x,y,z)

∂x
cos θi + ∂ϕ(x,y,z)

∂y
sin θi, and

∂ϕ(x,y,z)
∂vi

= ∂ϕ(x,y,z)
∂z

.
The surface evolution couples information provided by each im-

age in I. Individual 2-D functionals for each image in I extend back
along the wi axis in a cylinder of influence in 3-D. It is in this way
that the approach relates to visual hull calculation. Occlusions are
not modeled for the reasons discussed in Sec. 1.

2.4. Prosthetic Reconstruction

We have described our surface evolution procedure for multi-view
stereo reconstruction from X-rays above. We now apply it to the
problem of recovering the 3-D shape of the femoral component and
tibial plate of the prosthetic, treating soft tissue, bone, and air as
background. Our data isN = 16 X-ray images with an approximate
spacing of 0.038 radians in θ; the images are as in Fig. 1 and Fig. 2.

We do not require any special initialization — we use a centered
cube that projects to cover about half of an image as an initial sur-
face. The probabilities pR and pRc must also be specified. Although
not completely accurate, we take the pixels to be i.i.d. Gaussian with
prespecified mean μR for the prosthetics and i.i.d. Gaussian with
prespecified mean μRc for the background.

Two views of the prosthetic from the surface estimate using our
procedure are shown in Fig. 3. The figure shows a triangulated sur-
face obtained from the implicit level set representation by the march-
ing cubes method. In the final 3-D reconstruction, the two pieces of
the prosthetic have been recovered; they are correct visually. By
lifting the geodesic active regions functional to the multi-view 3-D
context, the homogeneous prosthetics are reconstructed successfully.

2.5. Bone Reconstruction

The pixel intensity in X-ray images of bones is not homogeneous
throughout the bone, but follows a predictable pattern. The boundary
is dark and the shading gets lighter as the distance away from the
boundary increases. In other words, pixel intensity values generally
increase as a function of signed distance.
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(a) (b)

Fig. 4. Reconstructed shape of the (a) tibia and fibula, and (b) femur.

When reconstructing the 3-D shape of bones, we set pR to ac-
count for this phenomenon. We once again take pR to be Gaus-
sian and independent among different pixels, but not identically dis-
tributed. We put in a spatially varying mean μR(ϕi) that is a function
of signed distance.

The signed distance function ϕ(x, y, z) of the surface evolution
is in 3-D, but we need distances in the Ωi domains. Thus, the 3-D
signed distance is projected down to the plane Ωi as ϕi(x, y, z) for
each i. Specifically:

ϕi(x, y, z) =

ϕ(x, y, z) sin

 
∂ϕ(x,y,z)

∂x
cos θi + ∂ϕ(x,y,z)

∂y
sin θi

|∇ϕ(x, y, z)|

!
.

In this work, we use a simple predetermined functional form for
μR(ϕi) that approximates the pixel intensity values in the images.

Treating the bone and prosthetic as the object of interest and
everything else as background, we obtain 3-D shapes such as those
in Fig. 4. The image on the left shows the tibia and fibula, whereas
the image on the right shows the femur. The circular fields of view
in the images leave an artifact of a thin layer along the boundary as
part of the surface. The tibia and fibula are not completely separated
because they cannot be distinguished in X-rays from certain angles.
Obtaining the shape of the bones is more difficult than obtaining the
shape of the prosthetic; the results show promise however.

3. CONCLUSION

In this paper, we have looked at a challenging problem in computer
vision with an important clinical application. Reconstructing the 3-D
shape of metal prosthetics, but even more so of bones from multiple
X-ray images is not straightforward due to the fact that radiance is
not locally computable, the prosthetics exhibit no texture, the bones
are not homogeneous, and the background is cluttered. We have pro-
posed an approach using active contours, 3-D surfaces in particular,
that uses edge and region information in the 2-D data images to di-
rect surface evolution.

The procedure can be considered similar to constructing the vi-
sual hull from silhouettes, but has a coupling effect among images,
has regularization built in, and offers an opportunity to incorporate
prior information in both 2-D and 3-D. To account for the lack of ho-
mogeneity in the bones, a distribution of image intensity as a func-
tion of distance from the surface has been incorporated.

The results shown in Fig. 3 and Fig. 4 indicate that the approach
is promising. The method may be enhanced by including separate

partitions for three classes: prosthetic, bone, and background, via
multi-phase segmentation, i.e. segmentation with more than two cat-
egories. It may also be enhanced by including shape priors and by
improving the pixel intensity models pR and pRc via learning from
data [10] or using a generative model based on X-ray absorption.
Instead of using the 2-D GAR functional as a foundation for the 3-
D problem, an approach that jointly optimizes pixel intensity could
also be used [11].

As mentioned in Sec. 1, the work in this paper may be viewed
as a first stage of a larger system that tracks the dynamics of the
knee joint in 3-D, allowing inference of the velocities, accelerations,
and other mechanical properties affecting it. 3-D/2-D tracking is a
difficult problemwhich will be complicated by the same peculiarities
of X-ray imaging discussed, as well as others such as motion blur.

X-ray imaging is an exciting, clinically important, and challeng-
ing domain that brings forth issues for computer vision methods not
encountered with other types of imaging. We have started to attack
the issues here, and hope to continue doing so in future work.
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