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ABSTRACT

We introduce a framework for modeling spatial patterns of
shapes formed by multiple objects in an image. Our approactH§
is graph-based where each node denotes an object and a
tributes of a node consist of that object’s shape, position,
orientation, and scale. Neighboring node are connected b
edges, and they are allowed to interact in terms of their at- . ) ) .
tributes/features. Similar to a Markov random field, but now 9 1. Images displaying natural or man-made interactions
applied to more sophisticated features space, the intenact of shapes leading to predictable patterns.

are governed by energy functionals that can be internal or

external. The internal energies, composed entirely oféate

tions between nodes, may include similarity between shapggeas from classicadtochastic geometry where one studies
and pose. The external energies, composed of outside inflytacements and interactions of simple objects as pointssi

ences, may include the data-likelihood term and the aipriorand circles [1]. There is a significant literature on modglin
information about the shapes and the locations of the abjectoccurrences of points, labeled or otherwise, in a certain re

Index Terms— configurations of shapes, spatial shape in-gion, €.g. a Strauss process or an area interaction prdgjess [
teraction. In applications to image analysis, Perrin et al. [3] have mod

eled locations of simple geometries (ellipses) in aeriagas
using Marked point processes. We are interested in studying
more sophisticated objects, such as trees, airplanesalspet
#And we associate more elaborate “features”, such as a shape,

studying shapes of individual objects, models for studying®" Oriéntation, and a scale, to each object. Furthermoee, th
collections or spatial configurations of shapes (in the samB'0del we seek shall allow interaction of these features, in
image) are lacking. We are interested in building models foRddition to the locations, of neighboring objects. Simitar

describing configurations of objects in an image, where th§tochastic geometry, we use agraph-the_orenc approaatewhe
objects are represented by contours of their boundaries. Ase‘_'“:h node denotes an object present in the plane._ The "?‘t'
motivation, consider the problem of analyzing a city tetrai tributes of the nodes are set to be the features associatted wi
a building footprint, or a forest region, using a satellitaa (€ Objects: their shapes, position, scale, and oriemtio
aerial image. We anticipate objects of interest, such agsroa The main difference from classical stochastic geometiyas t
buildings, trees, and lakes, to occur more often in certain ¢ rather than having Euclidean vectors for features, we have
figurations. It is reasonable to expect similar objects uoc shapes of planar, closed curves that are elements of infinite

together, with positions and orientations that are defietsr dimensional shape manifolds.
tive to each other (see some examples in Figure 1).
What type of models can be used for analyzing such con- 2. SPATIAL PATTERNS OF SHAPES

figurations of objects? Two questions are pertinent: How do
we represent the variables of interest in a configuratiod, anWe are interested in statistically modeling patterns oéots
what kinds of probability models capture the observed varipresent in an image, with a focus on their shapes, locations,
ability? We argue that a convenient approach is to extendnd pose. The main hypothesis in our model is that objects

*THIS RESEARCH WAS ALSO SUPPORTED IN PART BY THE that are close to each other, location wise or shape wise, in-

GRANTS ARO WO11NF-04-1-0268, ARO WOI11NF-04-1-0113, AND teract with each other according to their features. To keep
AFOSR FA9550-06-10324. track of such interactions, we propose a graph theoretgal r

1. INTRODUCTION

Although advanced geometrical tools have been derived f




resentation which is described next. T,(S) is the tangent space @tIn summary, the attribute of a
node is a quadrupl@, p, 7, q) € Ry x R? x SO(2) x S.

2.1. A Graph-Theoretic Representation
3. GRAPH ENERGIES

In this representation, a collection of objects is represn
by a graph where each object denotes a node on this graijn_ order to develop statistical models for capturing dekire
Objects that interact with each other are connected througgpnfigurations of objects, we will define probability deiest
edges; others are not. There are several possibilitiescidele of the typer = e~ ¥, where E will be the configuration

this interaction. One possibility is to upartially-connected ~ energy defined according to the application a@ds a nor-
graphs: In this case each node, or object, interacts only withmnalization constant. This is a density defined with respect t
its nearest neighbors. Together the nodes and the edges foth¢ Poisson measure on the image domain. Our model uses
a connected graph which can be analyzed using standab®o types of energies: internal and external. Internal ener
Markovian framework. For a given connectivity, the nodesgies are used to model interactions between the nodes, while
can be interpreted as a Markov random field (MRF) (assumexternal energies are used to incorporate outside infeomat

ing that the number of objects is fixed). One can generatguch as that from image data or a prior on some feature, in
inferences for the whole graph using univariate conditionathe model. In this section, we give some examples and study
densities i.e. the Gibbs’ sampler. The other possibility igow-energy (or high probability) configurations.

to divide graph intadisjoint clusters. This is a convenient

when objects naturally divide themselves into smallerclus3.1. Interaction Within Clusters

ters and there is minimal interaction between elementssacro
clusters. In this paper we have selected the cluster graphs
mechanisms for interactions between objects.

Ié!ere we define energies associated with objects within indi-
vidual clusters and demonstrate their role using gradignts
update configurations. L&t denote a cluster consisting of
nodes (objects), each having an associated shapesition

2.2. Node Attributes p, orientationr, and scalep. We propose a cluster energy to
be:

We want to extend the classical notion of spatial processes,

that models only the random locations of points, by includ-  E“(C) = Ef(q,---,qn)) + E)(P1,---,Pn)

ing shapes and pose as additi_onal_ features._ Shapes of simple +EY (p1,--ypn) + EX (11, .. .,m) + EX(C), (1)

closed curves have been studied rigorously in recent ygars b

Klassen, Srivastava, Michor, Mio, their co-authors and sevwhere the superscript underscores that these energies cap-

eral others. We choose the latest of these ideas presentedtirie interactions within a cluster. Next we suggest somasde

[4] although any of the other techniques can also be used. for these individual terms although different applicatiamill
Associated with each object, denoted by its conttware  have different requirements.

the following physical features. (Dength: The length ofg

is denoted byp € R,. (i) Position: To represent the lo- 1. Shape Term We can set£;” to be the variance associ-

cation of an object in an image, let the center of the curveated with the shapes in that cluster. Another possibilitgt t

% 02,, AB(t)dt, be located ap € R2. (iii) Orientation: The !s computationally more efficient,. is to include onlyl paisei _
average orientation Q’i‘(t) with respect to the positive axis mfractllons between shag)es. This can be accomplishet usin
is called the orientation of; we will denote it byr. Lastly, EP = 522 4s(4i,4;)", whered, denotes the geodesic
(iv) Shape For a closed curvg, we are interested in math- d_|stancle inS. The gradlen_t of, with respect to a shapg is
ematical representations that enable a study of its shape. imply ;; 32 vij where;; is the tangent vector gf such that
1(¢:,vi5) = g;. (Recall that), is the notation for a geodesic

described in [4], we will represent each curve by its square .

) , AW path on the shape spa¢e) Figure 2 uses some examples
root velocity functiony(f) = VBl and letC be the set of  y, yemonstrate this idea, where single object evolves under
all closed curves represented by theifunctions. Several the influence of its neighbors using the tefff while the
elements irC can denote the same shape due to different pashapes of the neighbors are held fixed. Also, other parame-
rameterizations and rotations 8f Thus, to obtain a unique ters such as scale, positions, and orientation are heldayans
representation of shape, one defines the shape gpasé¢he
quotient spac€/(I' x SO(2)), wherel is the set of all re- 2. Position Term: We may emphasize the objects in a cluster
parameterizations of a unit length curve. An important toolare located as close to each other as possible, and a simple
in shape analysis is to construct geodesics between elsmefiorm of £’ that does that is trace(Mdps, - . ., p, })). Note
of shape space, to compare and analyze shapes [4]. For latBat this term does not include any overlap penalty between
purposes, let);(q,v) denote a geodesic path, parameterizedbjects which is studied by a separate term.
by timet, starting fromg € S in the directionv € T,(S).
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Fig. 2. Three examples where the object of focus changes its shmajee the influence of its neighbors usiag .

3. Scale Term We may choose to force similar sizes of
objects with in the same cluster by choosing the energy

EY =var(pi,...,pn). <]
4
4. Rotation Term: Seeking a rotational alignment of objects

in a cluster we may seE” = argmin_ g > ,_ de(T,7)?,

wherer;s are the individual orientations amld denotes the

shorter arc-length between two points ®h This term de-

notes the variance of orientation anglessin and will force

similar orientations of objects in a cluster. In case where ﬁ ﬁ
exactly the opposite is preferred we can uséy. “ .

I ]
Heratons.

5. Overlap Term: We useEY to penalize the amount
of overlap between the regions occupied by objects. Letig. 3. Evolution of clusters according to gradientBf’ +
Rs C R? denote the region occupied by the cugéethen  pv i pw 4 Ew and the bottom right show the corresponding

EY(C) = U, (IRs; N Rg,|), where] - | denotes the area of changes in the total energy.
a set.

We present some examples of energy minimization using
a combination of these energies. In Figure 3 we present an 4. GLOBAL PRIORS ON OBJECT FEATURES
evolution usingE)’ + Ey + B, + E°, while keeping the
shapes fixed. In view of our choices for these energies, it ia jmportant strength of this framework is to be able to
easy to understand the alignment of similar objects in plac&yyjye shape configurations using energies beyond simple in-
ments, scales, and orientations. teractions. We will call thenexternal energies. One source
We will denote all the interactions within the same clustergs external energies is the prior knowledge that may favor

by E*,i.e. EY = Ef + EY + E{. + E)Y + Ep. a certain placements, orientations, or scalings of ohjects
Or, it may prefer a certain shapes of objects in given con-
3.2 Interaction Across Clusters texts. For example, an aerial view of an urban environment

will favor cars and buildings while that of a rural environ-
The next level of interaction between objects can occursacro ment will favor farms, plantations and forests. We introgluc
clusters. For example, it may be useful to penalize the atouexternal energies terms to enforce such consideratiofs: (i
of regional overlap between any two clusters. Or, perhaps wBpatial Intensities for Object Placement The locations
may want to rotationally align two clusters. Mathematigall of objects may be governed by a spatial process with an
one way we can formulate this problem is by defining termainderlying intensity functiom\(p). Densities of objects in
similar to the previous section but using averages values @ region will therefore be dictated by the values Jofin
location, shapes, scales, and orientations from eacleclust that region. This factor contributes to the energy term as:



Fig. 4. Evolution of positions, initialized randomly, following
the gradient of£’J. The level curves ofog(\) are drawn to
help understand this evolution. The converging positiars a
the final locations of points.
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Fig. 6. In each case the top left shows an image of a con-

Fig. 5. Evolution of clusters according to gradientBf’ +  figuration that we want to model, the next panel shows the
E3. prior means:, and the remaining panels show evolution of a
random configuration under specifically designed energies.
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5. SUMMARY
ES(p1,...) = —>_;log(A(pi)). Shown in Figure 4 is an
example of changing object positions using the gradient ofVe have described a stochastic model for studying spatial pa
EY, for an arbitrary chosen. The level curves of the func- terns of multiple objects in an image, with regards to their
tion \ are also shown. This procedure requires computing thehapes and other variables. Using a graph-theoretic frame-
gradientV, E9; we compute it using a numerical technique work, the objects configurations are governed by Gibbsian en
that involves computingog(\) at points that are not on the ergies. Internal energies model interactions betweenthe o
grid, and we use bilinear interpolation. To demonstrate th¢ects while external energies incorporate data likelihaod
role of £ in a larger system, Figure 5 shows the evolution ofglobal priors.
a configuration according to gradient®t’ + E. (ii) Pre-
ferred Rotational Alignment: In some cases it is possible
to have preferred orientation for objects present in theasce
For example, in images of humans walking on a road theifl] D. Stoyan, W. S. Kendall, and J. Meck&ochastic Ge-
contours are, with high probability, aligned verticallyiii)( ometry and Its Applications, 2nd Ed., John Wiley & Sons,
Preferred Shape As A Prior. In case we are looking for ob- 1995.
jects of a specific shape class in an image, we can use a prior ) ]
model on the shapes extracted from that image. One pridf] A- J- Baddeley and M. N. M. Van Lieshout, "Area in-
energy is to simply us&?(qy, ..., qn) = S, da(gi, )2, teraction point processesinnals of Inst. of Sat. Math.,

wherey is the mean shape under the prior. vol. 47, pp. 601-619, 1995.
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