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ABSTRACT

We introduce a framework for modeling spatial patterns of
shapes formed by multiple objects in an image. Our approach
is graph-based where each node denotes an object and at-
tributes of a node consist of that object’s shape, position,
orientation, and scale. Neighboring node are connected by
edges, and they are allowed to interact in terms of their at-
tributes/features. Similar to a Markov random field, but now
applied to more sophisticated features space, the interactions
are governed by energy functionals that can be internal or
external. The internal energies, composed entirely of interac-
tions between nodes, may include similarity between shapes
and pose. The external energies, composed of outside influ-
ences, may include the data-likelihood term and the a-priori
information about the shapes and the locations of the objects.

Index Terms— configurations of shapes, spatial shape in-
teraction.

1. INTRODUCTION

Although advanced geometrical tools have been derived for
studying shapes of individual objects, models for studying
collections or spatial configurations of shapes (in the same
image) are lacking. We are interested in building models for
describing configurations of objects in an image, where the
objects are represented by contours of their boundaries. Asa
motivation, consider the problem of analyzing a city terrain,
a building footprint, or a forest region, using a satellite or an
aerial image. We anticipate objects of interest, such as roads,
buildings, trees, and lakes, to occur more often in certain con-
figurations. It is reasonable to expect similar objects to occur
together, with positions and orientations that are defined rela-
tive to each other (see some examples in Figure 1).

What type of models can be used for analyzing such con-
figurations of objects? Two questions are pertinent: How do
we represent the variables of interest in a configuration, and
what kinds of probability models capture the observed vari-
ability? We argue that a convenient approach is to extend
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Fig. 1. Images displaying natural or man-made interactions
of shapes leading to predictable patterns.

ideas from classicalstochastic geometry where one studies
placements and interactions of simple objects as points, lines,
and circles [1]. There is a significant literature on modeling
occurrences of points, labeled or otherwise, in a certain re-
gion, e.g. a Strauss process or an area interaction process [2].
In applications to image analysis, Perrin et al. [3] have mod-
eled locations of simple geometries (ellipses) in aerial images
using Marked point processes. We are interested in studying
more sophisticated objects, such as trees, airplanes or petals,
and we associate more elaborate “features”, such as a shape,
an orientation, and a scale, to each object. Furthermore, the
model we seek shall allow interaction of these features, in
addition to the locations, of neighboring objects. Similarto
stochastic geometry, we use a graph-theoretic approach where
each node denotes an object present in the plane. The at-
tributes of the nodes are set to be the features associated with
the objects: their shapes, position, scale, and orientations.
The main difference from classical stochastic geometry is that
rather than having Euclidean vectors for features, we have
shapes of planar, closed curves that are elements of infinite-
dimensional shape manifolds.

2. SPATIAL PATTERNS OF SHAPES

We are interested in statistically modeling patterns of objects
present in an image, with a focus on their shapes, locations,
and pose. The main hypothesis in our model is that objects
that are close to each other, location wise or shape wise, in-
teract with each other according to their features. To keep
track of such interactions, we propose a graph theoretical rep-



resentation which is described next.

2.1. A Graph-Theoretic Representation

In this representation, a collection of objects is represented
by a graph where each object denotes a node on this graph.
Objects that interact with each other are connected through
edges; others are not. There are several possibilities to decide
this interaction. One possibility is to usepartially-connected
graphs: In this case each node, or object, interacts only with
its nearest neighbors. Together the nodes and the edges form
a connected graph which can be analyzed using standard
Markovian framework. For a given connectivity, the nodes
can be interpreted as a Markov random field (MRF) (assum-
ing that the number of objects is fixed). One can generate
inferences for the whole graph using univariate conditional
densities i.e. the Gibbs’ sampler. The other possibility is
to divide graph intodisjoint clusters. This is a convenient
when objects naturally divide themselves into smaller clus-
ters and there is minimal interaction between elements across
clusters. In this paper we have selected the cluster graphs as
mechanisms for interactions between objects.

2.2. Node Attributes

We want to extend the classical notion of spatial processes,
that models only the random locations of points, by includ-
ing shapes and pose as additional features. Shapes of simple
closed curves have been studied rigorously in recent years by
Klassen, Srivastava, Michor, Mio, their co-authors and sev-
eral others. We choose the latest of these ideas presented in
[4] although any of the other techniques can also be used.

Associated with each object, denoted by its contourβ, are
the following physical features. (i)Length: The length ofβ
is denoted byρ ∈ R+. (ii) Position: To represent the lo-
cation of an object in an image, let the center of the curve,
1
2π

∫ 2π

0 β(t)dt, be located atp ∈ R
2. (iii) Orientation : The

average orientation oḟβ(t) with respect to the positivex axis
is called the orientation ofβ; we will denote it byτ . Lastly,
(iv) Shape: For a closed curveβ, we are interested in math-
ematical representations that enable a study of its shape. As
described in [4], we will represent each curve by its square-

root velocity functionq(t) = β̇(t)√
|β̇(t)|

and letC be the set of

all closed curves represented by theirq functions. Several
elements inC can denote the same shape due to different pa-
rameterizations and rotations ofβ. Thus, to obtain a unique
representation of shape, one defines the shape spaceS as the
quotient spaceC/(Γ × SO(2)), whereΓ is the set of all re-
parameterizations of a unit length curve. An important tool
in shape analysis is to construct geodesics between elements
of shape space, to compare and analyze shapes [4]. For later
purposes, letψt(q, v) denote a geodesic path, parameterized
by time t, starting fromq ∈ S in the directionv ∈ Tq(S).

Tq(S) is the tangent space atq. In summary, the attribute of a
node is a quadruple(ρ, p, τ, q) ∈ R+ × R

2 × SO(2) × S.

3. GRAPH ENERGIES

In order to develop statistical models for capturing desired
configurations of objects, we will define probability densities
of the typeπ = 1

Z
e−E , whereE will be the configuration

energy defined according to the application andZ is a nor-
malization constant. This is a density defined with respect to
the Poisson measure on the image domain. Our model uses
two types of energies: internal and external. Internal ener-
gies are used to model interactions between the nodes, while
external energies are used to incorporate outside information,
such as that from image data or a prior on some feature, in
the model. In this section, we give some examples and study
low-energy (or high probability) configurations.

3.1. Interaction Within Clusters

Here we define energies associated with objects within indi-
vidual clusters and demonstrate their role using gradientsto
update configurations. LetC denote a cluster consisting ofn
nodes (objects), each having an associated shapeq, position
p, orientationτ , and scaleρ. We propose a cluster energy to
be:

Ew(C) = Ew
s (q1, . . . , qn)) + Ew

p (p1, . . . , pn)

+Ew
sc(ρ1, . . . , ρn) + Ew

r (τ1, . . . , τn) + Ew
o (C) , (1)

where the superscriptw underscores that these energies cap-
ture interactions within a cluster. Next we suggest some ideas
for these individual terms although different applications will
have different requirements.

1. Shape Term: We can setEw
s to be the variance associ-

ated with the shapes in that cluster. Another possibility, that
is computationally more efficient, is to include only pairwise
interactions between shapes. This can be accomplished using:
Ew

s = 1
n

∑

i,j 6=i ds(qi, qj)
2, whereds denotes the geodesic

distance inS. The gradient ofEs with respect to a shapeqi is
simply 1

n

∑

j vij wherevij is the tangent vector atqi such that
ψ1(qi, vij) = qj . (Recall thatψt is the notation for a geodesic
path on the shape spaceS.) Figure 2 uses some examples
to demonstrate this idea, where single object evolves under
the influence of its neighbors using the termEw

s while the
shapes of the neighbors are held fixed. Also, other parame-
ters such as scale, positions, and orientation are held constant.

2. Position Term: We may emphasize the objects in a cluster
are located as close to each other as possible, and a simple
form of Ew

p that does that is trace(var({p1, . . . , pn})). Note
that this term does not include any overlap penalty between
objects which is studied by a separate term.



Fig. 2. Three examples where the object of focus changes its shape under the influence of its neighbors usingEw
s .

3. Scale Term: We may choose to force similar sizes of
objects with in the same cluster by choosing the energy
Ew

sc = var(ρ1, . . . , ρn).

4. Rotation Term: Seeking a rotational alignment of objects
in a cluster we may setEw

r = argminτ∈S1

∑n

1= dc(τ, τi)
2,

whereτis are the individual orientations anddc denotes the
shorter arc-length between two points onS

1. This term de-
notes the variance of orientation angles inS

1, and will force
similar orientations of objects in a cluster. In case where
exactly the opposite is preferred we can use−Ew

r .

5. Overlap Term: We useEw
o to penalize the amount

of overlap between the regions occupied by objects. Let
Rβ ⊂ R

2 denote the region occupied by the curveβ, then
Ew

o (C) =
⋃

i,j

(

|Rβi
∩Rβj

|
)

, where| · | denotes the area of
a set.

We present some examples of energy minimization using
a combination of these energies. In Figure 3 we present an
evolution usingEw

p + Ew
o + Ew

sc + Ew
r , while keeping the

shapes fixed. In view of our choices for these energies, it is
easy to understand the alignment of similar objects in place-
ments, scales, and orientations.

We will denote all the interactions within the same cluster
byEw, i.e.Ew = Ew

p + Ew
s + Ew

sc + Ew
r + Ew

o .

3.2. Interaction Across Clusters

The next level of interaction between objects can occur across
clusters. For example, it may be useful to penalize the amount
of regional overlap between any two clusters. Or, perhaps we
may want to rotationally align two clusters. Mathematically,
one way we can formulate this problem is by defining terms
similar to the previous section but using averages values of
location, shapes, scales, and orientations from each cluster.
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Fig. 3. Evolution of clusters according to gradient ofEw
p +

Ew
o +Ew

sc+Ew
r , and the bottom right show the corresponding

changes in the total energy.

4. GLOBAL PRIORS ON OBJECT FEATURES

An important strength of this framework is to be able to
drive shape configurations using energies beyond simple in-
teractions. We will call themexternal energies. One source
of external energies is the prior knowledge that may favor
a certain placements, orientations, or scalings of objects.
Or, it may prefer a certain shapes of objects in given con-
texts. For example, an aerial view of an urban environment
will favor cars and buildings while that of a rural environ-
ment will favor farms, plantations and forests. We introduce
external energies terms to enforce such considerations: (i)
Spatial Intensities for Object Placement: The locations
of objects may be governed by a spatial process with an
underlying intensity functionλ(p). Densities of objects in
a region will therefore be dictated by the values ofλ in
that region. This factor contributes to the energy term as:
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Fig. 4. Evolution of positions, initialized randomly, following
the gradient ofEg

p . The level curves oflog(λ) are drawn to
help understand this evolution. The converging positions are
the final locations of points.

Fig. 5. Evolution of clusters according to gradient ofEw +
Eg

p .

Eg
p(p1, . . . ) = −∑

i log(λ(pi)). Shown in Figure 4 is an
example of changing object positions using the gradient of
Eg

p , for an arbitrary chosenλ. The level curves of the func-
tionλ are also shown. This procedure requires computing the
gradient∇pE

g
p ; we compute it using a numerical technique

that involves computinglog(λ) at points that are not on the
grid, and we use bilinear interpolation. To demonstrate the
role ofEg

p in a larger system, Figure 5 shows the evolution of
a configuration according to gradient ofEw + Eg

p . (ii) Pre-
ferred Rotational Alignment : In some cases it is possible
to have preferred orientation for objects present in the scene.
For example, in images of humans walking on a road their
contours are, with high probability, aligned vertically. (iii)
Preferred Shape As A Prior: In case we are looking for ob-
jects of a specific shape class in an image, we can use a prior
model on the shapes extracted from that image. One prior
energy is to simply useEg

s (q1, . . . , qn) =
∑n

i=1 ds(qi, µ)2,
whereµ is the mean shape under the prior.

Using the energies defined above, we can demonstrate
some low-energy configurations. Shown in Figure 6 are two
examples of evolution of objects according to an appropriate
energy term. For instance, in the first case we useEw

p +Ew
o +

Ew
sc − Ew

r + Eg
s . Note the−Ew

r is being used to maximally
separate the orientations. We have used a petal shape asµ in
the global shape priorEg

s to generate the flower configuration.

Fig. 6. In each case the top left shows an image of a con-
figuration that we want to model, the next panel shows the
prior meansµ, and the remaining panels show evolution of a
random configuration under specifically designed energies.

5. SUMMARY

We have described a stochastic model for studying spatial pat-
terns of multiple objects in an image, with regards to their
shapes and other variables. Using a graph-theoretic frame-
work, the objects configurations are governed by Gibbsian en-
ergies. Internal energies model interactions between the ob-
jects while external energies incorporate data likelihoodand
global priors.
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