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What is needed: An expressive, flexible, and 
powerful framework

Capable of capturing uncertain and complex 
sensor-target relationships

Among a multitude of different observables and objects being 
sensed

Capable of incorporating complex relationships 
about the objects being sensed

Context, behavior patterns
Admitting scalable, distributed fusion algorithms
Admitting effective approaches to learning or 
discovering key relationships
Providing the “glue” from front-end processing to 
sensor management
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Our choice: Graphical Models

Extremely flexible and expressive framework
Allows the possibility of capturing (or learning) 
relationships among features, object parts, objects, object 
behavior, and context

E.g., constraints or relationships among parts, spatial and spatio-
temporal relationships among objects, etc.

Natural framework to consider distributed fusion
While we can’t beat the dealer (NP-Hard is NP-
Hard), 

The flexibility and structure of graphical models provides 
the potential for developing scalable, approximate 
algorithms
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What did we say at the kickoff?
What have we done? - I

Scalable, broadly applicable inference algorithms
Build on the foundation we have
Provide performance bounds/guarantees

Some of the accomplishments this year
Tractable, “low-rank” uncertainty estimation in 
graphical inference
Walk-sum analysis and guaranteed convergence
Lagrangian relaxation methods for tractable inference (in 
progress – tune in next year)
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Low-rank uncertainty estimation - I
Gauss-Markov Random Fields in Information Form

p(x) ∝ exp{-xTJx/2 + hTx}
P = J-1

Jm = h
J is sparse (captures graph structure)

Lots of efficient ways to solve for mean in O(N) comps.
How do we get variances, i.e., diag(P)??

An intractable approach
JP = I = [e1, …,eN]
Solve column by column: JPi = ei, i = 1, …, N
This is O(N2) – infeasible for large problems
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Low-rank uncertainty estimation - II

Let’s create a low-rank approximation to I (!?!?)
B - N × M  (M << N)

Rows bi of B all have unit norm
But they are overcomplete (N of them in M dimensions)

Solve JPa = BBT ≈ I (!?!?)
Actually, solve JR = B   O(MN) complexity (solve column-wise)
Then Pa = RBT       

Here’s the key – there are aliasing/splicing errors
(Pa )ii = Pii + ∑i≠j Pijbi

Tbj

So:  If Pij is significant, we want bi and bj orthogonal
But: If Pij≈ 0, we don’t care

So, we repeat some rows, with random sign flips so that the dot 
product is zero mean, variance = 1
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Low-rank uncertainty estimation - III

So, (Pa )ii is an unbiased estimate of Pii
Variance equals the sum of squares of the Pij for which bi
= +bj

Can reduce variance by averaging several solutions
More importantly, if we know the exponential fall-off in 
correlation structure, we have a graph-coloring 
problem

Different colors mean orthogonal bi
Same color means the bi are equal except for random sign changes

In this case, we have bounds on error variance on (Pa )ii
that decay exponentially with number of colors
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Low-rank uncertainty estimation - IV

1-D examples (N = 256, M = 1)
Conditional variances for stationary processes with sparse 
measurements

Top: Process with short correlation
Bottom: Process with long correlation
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Low-rank uncertainty estimation - V

Wavelets to the rescue: Let’s splice them
Within scale only
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Low-rank uncertainty estimation - VI

This really is low rank: An example with 
N = (1024)2 and M = 448
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Low-rank uncertainty estimation - VII

Extensions
Adapting bases (e.g., wavelet packets, 
curvelets, etc.)
For more general graphs: Diffusion wavelets

With thanks to Greg Arnold
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What did we say at the kickoff?
What have we done? - II

Graphical-model-based methods for sensor 
fusion for tracking, and identification

Graphical models to capture motion patterns
Graphical models to capture relationships among 
features-parts-objects

Some of the accomplishments this year
Hierarchical Dirichlet Processes to learn 
motion patterns and behavior
HDPs for feature-part-object modeling and 
recognition
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HDPs for Learning/tracking motion 
patterns

Objective – learn motion patterns of targets of 
interest

Having such models can assist tracking algorithms
Detecting such coherent behavior may be useful for 
higher-level activity analysis

Our first effort
Learning of maneuver models
Tracking algorithms (e.g., IMM) use such models but 
these are usually assumed to be prespecified
Can we learn them?
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Jump-mean processes

Markov jump-mean process
System “jumps” between finite set 
of acceleration means
Hybrid continuous-discrete state:

Dynamics described by:

System is non-linear due to mode 
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Markov Jump-Mean System (MJMS)

Graph of Markov jump-mean system

modes

controls

observations
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Some questions

How many possible maneuver modes are there?
What are their individual statistics?
What is the probabilistic structure of transitions 
among these modes?
Can we learn these

Without placing an a priori constraint on the number of 
modes
Without having everything declared to be a different 
“mode”

The key to doing this: Dirichlet processes
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Dirichlet Process via Stick Breaking

Corresponds to a draw from DP(α, H).
Mixture components drawn with probabilities π
and with parameters drawn from H

…
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Predictive distribution:

Chinese restaurant process:

Chinese Restaurant Process

Number of current 
assignments to mode k
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Graphical Model of HDP-HMM-KF

“Average" transition density 
which encourages states to 

transition back to a finite subset 
of the infinite state space 

Mode-specific transition density

modes

controls

observations
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Learning and using HDP-based models
Learning models from training data

Gibbs sampling-based methods
Exploit conjugate priors to marginalize out intermediate 
variables
Computations involve both forward filtering and reverse 
smoothing computations on target tracks

Tracking
Use resulting learned model in an IMM-based tracker
Perform learning and tracking together

Currently that is accomplished in batch mode
Recursive methods are TBD
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Numerical Experiment II
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HDPs – where from here

On-line, recursive algorithms
HDPs for multi-target tracking and data 
association
Learning coordinated motion models for multiple 
objects and for activities
Use these for fusion of low-level object features 
for object recognition
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What did we say at the kickoff?
What have we done? - III

Learning model structure
Discovering links (e.g., detecting coordination)
Exploiting and extending advances in learning (e.g., 
information-theoretic and manifold-learning 
methods) to build robust models for fusion
Direct ties to integrating signal processing products 
and to directing both signal processing and search

Some of the accomplishments this year
Maximum entropy relaxation methods for learning 
sparse graphical models
Learning graphical models directly for 
discrimination
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Learning sparse graphical models - I

An alternative to learning via dimensionality reduction
Instead we seek complexity reduction

The setting
We have a possibly limited number of samples of a high-
dimensional random phenomenon

E.g., multispectral images, multisensor observations, sets of 
multisensor features, etc.

From these we wish to construct a graphical model that
Is sparse (and tractable)
Is reasonably faithful to the observed data

We’re working on two alternatives
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Maximum Entropy Relaxation (MER) - I

The basic ME problem
Build a model for a (high-dim.) random phenomenon x based on 
knowledge of some “local” statistics

E[φE(xE)] = ηE
E ∈ E, a set of subsets of components of x

Find the probabilistic model, p(x), that maximizes entropy h(p) 
among all models that match these moments
Fact: If an optimal distribution exists, it is an element of the
exponential family with features φE

p(x) ∝ exp{ ∑E ∈ E θE 
TφE(xE)}

This distribution is Markov with respect to the graph with cliques 
given by E – Hence there is some intrinsic sparsification in ME
Note that the moments and features are dual parameters, so we can 
equally well refer to entropy as a function of the vector η
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Maximum Entropy Relaxation (MER) - II
MER: Why require exact matching of what are usually 
noisy estimates of statistics?
Maximize entropy h(η) subject to bounds on accuracy in 
matching specified moments, η* – e.g,. In terms of KL-
divergence, i.e., subject to inequality constraints:

dE( η, η*) ≤δE E ∈ E

MER does model thinning, yielding a model that is 
Markov with respect to the thinned graph corresponding 
to the active constraints
How do we set δE ?

One approach, set these proportional to the cardinality of E (with 
proportionality constant γ )
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Maximum Entropy Relaxation (MER) - III

Efficient iterative algorithms are under 
development

Primal-dual interior point method
Search directions involve solving linear system based on Fisher 
information matrix with respect to moment parameters
For thin chordal graphs, computing the Fisher information 
matrix and solving equations can be accomplished efficiently
Leads to an incremental approach, starting with disconnected 
graph and successfully computing chordal supergraphs

Solve reduced MER problem on each graph and check to see if 
constraints not yet included in this graph are satisfied or not
If satisfied, we’re done
If not, need to find supergraph that includes still-violated 
constraints
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Maximum Entropy Relaxation (MER) - IV
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Maximum Entropy Relaxation (MER) - V
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Maximum Entropy Relaxation (MER) - VI

The way forward
The approach applies equally well to non-Gaussian data 
and models
Developing efficient algorithms for more general graphs

Tractable entropy approximations
Efficient algorithms a la Max-entropy for incremental 
construction of models as additional moments are included 

Introducing latent variables 
Ties to link discovery

Dealing with inconsistent measurement data
Blending of manifold learning and graphical modeling
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Learning graphical models directly for 
discrimination - I

If the ultimate objective of model construction is 
to use models for discrimination, why don’t we 
design these models to optimize discrimination 
performance?

If there is an abundance of data, this really doesn’t 
matter
However, for high-dimensional data and relatively 
sparse sets of data, there can be a substantial 
difference between learning a model for its own sake 
and learning one to optimize discrimination
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Learning Graphical Models for Hypothesis 
Testing - II

p and q not known, instead given iid labeled training sets &      

Traditionally: 1) learn from , from

2) do likelihood ratio test (LRT) with  

We propose: learning jointly, each from both

- sparse, testing via LRT

Low Complexity: learning structures of jointly, then projecting

Higher Complexity: learning parameters as well.
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Learning Graphical Models for Hypothesis 
Testing - III

Structure Learning

-Idea: would like to be large for
small for

Method: let          be projections of onto graphs chosen

to maximize

Decouples into two problems:
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Learning Graphical Models for Hypothesis 
Testing - IV

Example:

True have same tree,
different parameters

Trees of models NOT same as original

Traditional Pr(err) = 0.2000
Our Pr(err) = 0.1585
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Learning Graphical Models for Hypothesis 
Testing - V

• Generally, our method has noticeably lower 
Pr(err) for large models with few training samples.

• Parameter learning by minimization of an upper 
bound on Pr(err)

- convex programming

• On the horizon:  Marriage of this approach with 
discriminative manifold learning work
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What else is there?

Informing resource management
Using informational structure of a graphical 
model to decide what evidence to gather

What nodes in discriminative graphical models should 
be sampled first?  
What messages should be sent to perform 
discriminative inference efficiently?

Some other accomplishments this year
Walk-sum analysis to optimize messaging in 
graphical inference
See other presentations
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What’s next

More on scalable algorithms
Lagrangian relaxation, for example

More on learning behavioral models and tracking
More on learning tractable models for fusion and 
discrimination

Ties to low-level signal processing and feature extraction
E.g., to over-complete bases for wide-aperture SAR

Introducing hidden variables to capture hidden causes
More on informing resource management

Which data should be gathered and fused
How to do this efficiently


