

Optimal, Robust Information Fusion in Uncertain Environments

MURI Review Meeting

Integrated Fusion, Performance Prediction, and Sensor Management for Automatic Target Exploitation

Alan S. Willsky

September 14, 2007

MURI: Integrated Fusion, Performance Prediction, and Sensor Management for Automatic Target Exploitation

What is needed: An expressive, flexible, and powerful framework

- Capable of capturing uncertain and complex sensor-target relationships
 - Among a multitude of different observables and objects being sensed
- Capable of incorporating complex relationships about the objects being sensed
 - Context, behavior patterns
- Admitting scalable, distributed fusion algorithms
- Admitting effective approaches to learning or discovering key relationships
- Providing the "glue" from front-end processing to sensor management

Our choice: Graphical Models

- Extremely flexible and expressive framework
 - Allows the possibility of capturing (or learning) relationships among features, object parts, objects, object behavior, and context
 - E.g., constraints or relationships among parts, spatial and spatiotemporal relationships among objects, etc.
 - Natural framework to consider distributed fusion
- While we can't beat the dealer (NP-Hard is NP-Hard),
 - The flexibility and structure of graphical models provides the potential for developing scalable, approximate algorithms

What did we say at the kickoff? What have we done? - I

- Scalable, broadly applicable inference algorithms
 - Build on the foundation we have
 - Provide performance bounds/guarantees
- Some of the accomplishments this year
 - Tractable, "low-rank" uncertainty estimation in graphical inference
 - Walk-sum analysis and guaranteed convergence
 - Lagrangian relaxation methods for tractable inference (in progress tune in next year)

Low-rank uncertainty estimation - I

- Gauss-Markov Random Fields in Information Form
 - $p(x) \propto exp\{-x^TJx/2 + h^Tx\}$
 - $\bullet P = J^{-1}$
 - *Jm* = *h*
- J is sparse (captures graph structure)
 - Lots of efficient ways to solve for mean in O(N) comps.
 - How do we get variances, i.e., diag(P)??
- An intractable approach
 - $JP = I = [e_1, ..., e_N]$
 - Solve column by column: $JP_i = e_{i'}$, i = 1, ..., N
 - This is O(N²) infeasible for large problems

Low-rank uncertainty estimation - II

- Let's create a low-rank approximation to / (!?!?)
 - $B N \times M (M < < N)$
 - **Rows** *b_i* of *B* all have unit norm
 - But they are overcomplete (*N* of them in *M* dimensions)
 - Solve $JP^a = BB^T \approx I$ (!?!?)
 - Actually, solve JR = B O(MN) complexity (solve column-wise)
 - Then $P^a = RB^T$
 - Here's the key there are *aliasing/splicing errors*
 - $(P^{a})_{ii} = P_{ii} + \sum_{i \neq j} P_{ij} b_{i}^{T} b_{j}$
 - So: If P_{ij} is significant, we want b_i and b_j orthogonal
 - But: If $\vec{P}_{ij} \approx 0$, we don't care
 - So, we repeat some rows, with random sign flips so that the dot product is zero mean, variance = 1

Low-rank uncertainty estimation - III

- So, $(P^a)_{ii}$ is an unbiased estimate of P_{ii}
 - Variance equals the sum of squares of the P_{ij} for which $b_i = \pm b_j$
 - Can reduce variance by averaging several solutions
 - More importantly, if we know the exponential fall-off in correlation structure, we have a *graph-coloring problem*
 - Different colors mean orthogonal *b_i*
 - Same color means the b_i are equal except for random sign changes
 - In this case, we have bounds on error variance on (P^a)_{ii} that decay exponentially with number of colors

Restored and a second

Low-rank uncertainty estimation - IV

- 1-D examples (N = 256, M = 1)
 - Conditional variances for stationary processes with sparse measurements
 - Top: Process with short correlation
 - Bottom: Process with long correlation

MURI: Integrated Fusion, Performance Prediction, and Sensor Management for Automatic Target Exploitation

Low-rank uncertainty estimation - V

Wavelets to the rescue: Let's splice *them*Within scale only

MURI: Integrated Fusion, Performance Prediction, and Sensor Management for Automatic Target Exploitation

Low-rank uncertainty estimation - VI

This really is low rank: An example with

• $N = (1024)^2$ and M = 448

MURI: Integrated Fusion, Performance Prediction, and Sensor Management for Automatic Target Exploitation

Low-rank uncertainty estimation - VII

- Extensions
 - Adapting bases (e.g., wavelet packets, curvelets, etc.)
 - For more general graphs: Diffusion wavelets
 With thanks to Greg Arnold

What did we say at the kickoff? What have we done? - II

- Graphical-model-based methods for sensor fusion for tracking, and identification
 - Graphical models to capture motion patterns
 - Graphical models to capture relationships among features-parts-objects
- Some of the accomplishments this year
 - Hierarchical Dirichlet Processes to learn motion patterns and behavior
 - HDPs for feature-part-object modeling and recognition

HDPs for Learning/tracking motion patterns

- Objective learn motion patterns of targets of interest
 - Having such models can assist tracking algorithms
 - Detecting such coherent behavior may be useful for higher-level activity analysis
- Our first effort
 - Learning of maneuver models
 - Tracking algorithms (e.g., IMM) use such models but these are usually assumed to be prespecified
 - Can we learn them?

Jump-mean processes

- Markov jump-mean process
 - System "jumps" between finite set of acceleration means
 - Hybrid continuous-discrete state:

$$ar{x}_t = \left[egin{array}{c} x_t \ z_t \end{array}
ight]$$

• Dynamics described by:

$$x_t = Ax_{t-1} + Bu_t(z_t) + v_t$$

$$= Ax_{t-1} + \tilde{u}_t(z_t)$$

$$u_t|z_t \sim \mathcal{N}(\mu_{z_t}, \Sigma_{z_t})$$

 System is non-linear due to mode uncertainty

Constant Acceleration (CA)

MURI: Integrated Fusion, Performance Prediction, and Sensor Management for Automatic Target Exploitation

Markov Jump-Mean System (MJMS)

MURI: Integrated Fusion, Performance Prediction, and Sensor Management for Automatic Target Exploitation

Some questions

- How many possible maneuver modes are there?
- What are their individual statistics?
- What is the probabilistic structure of transitions among these modes?
- Can we learn these
 - Without placing an *a priori* constraint on the number of modes
 - Without having *everything* declared to be a different "mode"
- The key to doing this: Dirichlet processes

Dirichlet Process via Stick Breaking

- Corresponds to a draw from $DP(\alpha, H)$.
 - Mixture components drawn with probabilities π and with parameters drawn from H

MURI: Integrated Fusion, Performance Prediction, and Sensor Management for Automatic Target Exploitation

Predictive distribution:

$$p(z_{t} = z | z_{\backslash t}, \alpha, H) = \frac{\alpha}{\alpha + T} \delta(z, K + 1) + \frac{1}{\alpha + T} \sum_{k=1}^{K} T_{k} \delta(z, k)$$

Number of current
assignments to mode

Chinese restaurant process:

MURI: Integrated Fusion, Performance Prediction, and Sensor Management for Automatic Target Exploitation

k

MURI: Integrated Fusion, Performance Prediction, and Sensor Management for Automatic Target Exploitation

Learning and using HDP-based models

Learning models from training data

- Gibbs sampling-based methods
- Exploit conjugate priors to marginalize out intermediate variables
- Computations involve both forward filtering and reverse smoothing computations on target tracks
- Tracking
 - Use resulting learned model in an IMM-based tracker
 - Perform learning and tracking together
 - Currently that is accomplished in batch mode
 - Recursive methods are TBD

Numerical Experiment I

Numerical Experiment II

HDPs – where from here

- On-line, recursive algorithms
- HDPs for multi-target tracking and data association
- Learning coordinated motion models for multiple objects and for activities
- Use these for fusion of low-level object features for object recognition

What did we say at the kickoff? What have we done? - III

Learning model structure

- Discovering links (e.g., detecting coordination)
- Exploiting and extending advances in learning (e.g., information-theoretic and manifold-learning methods) to build robust models for fusion
- Direct ties to integrating signal processing products
 and to directing both signal processing and search
- Some of the accomplishments this year
 - Maximum entropy relaxation methods for learning sparse graphical models
 - Learning graphical models directly for discrimination

Learning sparse graphical models - I

- An alternative to learning via dimensionality reduction
 - Instead we seek complexity reduction
- The setting
 - We have a possibly limited number of samples of a highdimensional random phenomenon
 - E.g., multispectral images, multisensor observations, sets of multisensor features, etc.
 - From these we wish to construct a graphical model that
 - Is sparse (and tractable)
 - Is reasonably faithful to the observed data
 - We're working on two alternatives

Maximum Entropy Relaxation (MER) - I

- The basic ME problem
 - Build a model for a (high-dim.) random phenomenon *x* based on knowledge of some "local" statistics
 - $\mathsf{E}[\phi_{E}(\boldsymbol{x}_{E})] = \eta_{E}$
 - $E \in \mathcal{E}$, a set of subsets of components of **x**
 - Find the probabilistic model, p(x), that maximizes entropy h(p) among all models that match these moments
 - Fact: If an optimal distribution exists, it is an element of the exponential family with features ϕ_E

• $\rho(x) \propto \exp\{\sum_{E \in \mathcal{E}} \theta_E^T \phi_E(x_E)\}$

- This distribution is Markov with respect to the graph with cliques given by \mathcal{E} Hence there is some intrinsic sparsification in ME
- Note that the moments and features are dual parameters, so we can equally well refer to entropy as a function of the vector η

Maximum Entropy Relaxation (MER) - II

- MER: Why require exact matching of what are usually noisy estimates of statistics?
- Maximize entropy $h(\eta)$ subject to bounds on accuracy in matching specified moments, $\eta^* e.g_{,.}$ In terms of KL-divergence, i.e., subject to inequality constraints:
 - $d_E(\eta,\eta^*) \leq \delta_E$ $E \in \mathcal{E}$
- MER does *model thinning*, yielding a model that is Markov with respect to the thinned graph corresponding to the active constraints
- How do we set δ_{E} ?
 - One approach, set these proportional to the cardinality of E (with proportionality constant γ)

Maximum Entropy Relaxation (MER) - III

- Efficient iterative algorithms are under development
 - Primal-dual interior point method
 - Search directions involve solving linear system based on Fisher information matrix with respect to moment parameters
 - For thin chordal graphs, computing the Fisher information matrix and solving equations can be accomplished efficiently
 - Leads to an incremental approach, starting with disconnected graph and successfully computing chordal supergraphs
 - Solve reduced MER problem on each graph and check to see if constraints not yet included in this graph are satisfied or not
 - If satisfied, we're done
 - If not, need to find supergraph that includes still-violated constraints

Maximum Entropy Relaxation (MER) - IV

Maximum Entropy Relaxation (MER) - V

MURI: Integrated Fusion, Performance Prediction, and Sensor Management for Automatic Target Exploitation

Maximum Entropy Relaxation (MER) - VI

- The way forward
 - The approach applies equally well to non-Gaussian data and models
 - Developing efficient algorithms for more general graphs
 - Tractable entropy approximations
 - Efficient algorithms a la Max-entropy for incremental construction of models as additional moments are included
 - Introducing latent variables
 - Ties to link discovery
 - Dealing with inconsistent measurement data
 - Blending of manifold learning and graphical modeling

Learning graphical models directly for discrimination - I

- If the ultimate objective of model construction is to use models for discrimination, why don't we *design* these models to optimize discrimination performance?
 - If there is an abundance of data, this really doesn't matter
 - However, for high-dimensional data and relatively sparse sets of data, there can be a substantial difference between learning a model for its own sake and learning one to optimize discrimination

Learning Graphical Models for Hypothesis Testing - II

$$H_0: X \sim p \qquad \qquad H_1: X \sim q$$

p and q not known, instead given iid labeled training sets $T_0~\&~T_1$ Traditionally: 1) learn \widehat{p} from T_0 , $~\widehat{q}~$ from T_1

2) do likelihood ratio test (LRT) with \widehat{p},\widehat{q}

We propose: learning \widehat{p}, \widehat{q} jointly, each from both T_0, T_1

- \widehat{p}, \widehat{q} sparse, testing via LRT

Low Complexity: learning structures of $\widehat{p}, \widehat{q}\,$ jointly, then projecting $p, q\,$

Higher Complexity: learning parameters as well.

Structure Learning

-Idea: would like $\log \frac{\widehat{p}(x)}{\widehat{q}(x)}$ to be large for $x \in T_0$ small for $x \in T_1$

Method: let \hat{p}, \hat{q} be projections of p, q onto graphs chosen to maximize $\sum_{x \in T_0} \log \frac{\hat{p}(x)}{\hat{q}(x)} - \sum_{x \in T_1} \log \frac{\hat{p}(x)}{\hat{q}(x)}$

Decouples into two problems:

 $\min_{\widehat{p}} D(p_e || \widehat{p}) - D(q_e || \widehat{p})$

 $\min_{\widehat{q}} D(q_e || \widehat{q}) - D(p_e || \widehat{q})$

MURI: Integrated Fusion, Performance Prediction, and Sensor Management for Automatic Target Exploitation

Example:

True p, q have same tree, different parameters

Traditional Pr(err) = 0.2000Our Pr(err) = 0.1585

Trees of models NOT same as original

MURI: Integrated Fusion, Performance Prediction, and Sensor Management for Automatic Target Exploitation

Learning Graphical Models for Hypothesis Testing - V

• Generally, our method has noticeably lower Pr(err) for large models with few training samples.

- Parameter learning by minimization of an upper bound on Pr(err)
 - convex programming
- On the horizon: Marriage of this approach with discriminative manifold learning work

What else is there?

- Informing resource management
 - Using informational structure of a graphical model to decide what evidence to gather
 - What nodes in discriminative graphical models should be sampled first?
 - What messages should be sent to perform discriminative inference efficiently?
- Some other accomplishments this year
 - Walk-sum analysis to optimize messaging in graphical inference
 - See other presentations

What's next

- More on scalable algorithms
 - Lagrangian relaxation, for example
- More on learning behavioral models and tracking
- More on learning tractable models for fusion and discrimination
 - Ties to low-level signal processing and feature extraction
 - E.g., to over-complete bases for wide-aperture SAR
 - Introducing hidden variables to capture hidden causes
- More on informing resource management
 - Which data should be gathered and fused
 - How to do this efficiently

