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Message from the Organizers 
 
 
Welcome to the Second Workshop on Computer Architecture and Operating System co-
design (CAOS), and thank you for helping us to make this event successful! 
 
This meeting brings together researchers and engineers from academia and industry to 
share ideas and research directions in Computer Architecture and Operating System co-
design and interaction. It is never easy to follow a successful edition, but this year we 
have three high-quality papers, spanning from single machine CMP systems to large data 
centers, and covering topics ranging from performance/power trade offs to memory walls 
and scalability for next generation systems. Power is surely this year's hot topic! 
 
As last year, the second edition of CAOS presents another great keynote: “Reexamining 
TLB Design for Modern Chip Multiprocessors”, from Prof. Margaret Martonosi 
(Princeton University). We hope to make great keynotes one of the CAOS's tradition. 
  
This workshop is intended to be a forum for people working on both hardware and 
software to get together, exchange ideas, initiate collaborations, and design future 
systems. In fact, as multi-core and/or multi-threaded architectures monopolize the market 
from embedded systems to supercomputers, new problems have arisen in terms of 
scheduling, power, temperature, scalability, design complexity, efficiency, throughput, 
heterogeneity, and even device longevity. In order to minimize power consumption and 
cost, more and more cores per chip and hardware threads (contexts) per core share 
internal hardware resources, from the pipeline to the memory controller. Achieving high 
performance with these modern systems becomes increasingly difficult. Moreover, 
performance is no longer the only important metric: newer metrics such as security, 
power, total throughput, and Quality of Service are becoming first-order system design 
constraints. 
 
It seems clear that neither hardware nor software alone can achieve the desired 
performance objectives and, at the same time, comply with the aforementioned 
constraints. The answer to these new challenges must come from hardware-software co-
design. Computer Architectures (CA) and Operating Systems (OS) should interact 
through well-defined interfaces, exchange run-time information, monitor application 
progress and needs, and cooperatively manage resources.  

 
We thank the Program Committee and the additional reviewers for their hard work and 
Omer Khan for his excellent work in putting together the proceedings for this edition. 
 

Lamia Youseff (MIT) 
Roberto Gioiosa (BSC) 

 
        Organizing Committee 
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10.30-11.00 Coffee break 

11.00-11.30 

 
System-level Optimizations for Memory Access in the Execution Migration 
Machine (EM2) 
Keun Sup Shim (MIT), Mieszko Lis (MIT), Myong Hyon Cho (MIT), Omer 
Khan (MIT), Srinivas Devadas (MIT) 

11.30-12.00 

 
Power-Performance Adaptation in Intel Core i7 
Vasileios Spiliopoulos (Uppsala University), Georgios Keramidas (Industrial 
Systems Institute), Stefanos Kaxiras (Uppsala University), Konstantinos 
Efstathiou (University of Patras) 

12.00-12.30 

 
A Sleep-based Communication Mechanism to Save Processor Utilization in 
Distributed Streaming Systems 
Shoaib Akram (FORTH-ICS), Angelos Bilas (FORTH-ICS) 
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 Keynote 
!

Reexamining TLB Design for Modern Chip Multiprocessors 

 

Prof. Margaret Martonosi  (Princeton University)  

 

Abstract: 
The performance of Translation Lookaside Buffers is a very important factor in overall 
program performance, with TLB misses often representing 10% or more of program 
runtime.  Despite this, their design issues remained largely unexamined as the transition 
from single-core to multi-core processors occurred.  This talk will describe my group's 
recent body of work to characterize and optimize TLB behavior for Chip 
Multiprocessors.  Considering both parallel workloads and also multiprogrammed 
workloads of sequential applications, we have proposed a range of techniques that can 
reduce TLB misses by more than 20% on average, with only modest hardware 
requirements.  I will discuss hardware and software tradeoffs in the implementation of 
these ideas, as well as the methodological challenges of quantifying TLB performance 
effects. This talk will include many of our recent PACT '09, ASPLOS '10, and HPCA '11 
results, and represents joint work with Abhishek Bhattacharjee and Dan Lustig. 

 

Bio: 
Margaret Martonosi is Professor of Computer Science at Princeton University, where she 
has been on the faculty since 1994. She also holds an affiliated faculty appointment in 
Princeton EE. Martonosi's research interests are in computer architecture and the 
hardware/software interface, with particular focus on power-efficient systems and mobile 
computing. In the field of processor architecture, she has done extensive work on power 
modeling and management and on memory hierarchy performance and energy. This has 
included the development of the Wattch power modeling tool, the first architecture level 
power modeling infrastructure for superscalar processors.  In the field of mobile 
computing and sensor networks, Martonosi led the Princeton ZebraNet project, which 
included two real-world deployments of tracking collars on Zebras in Central Kenya. In 
addition to numerous publications, she has co-authored a technical reference book on 
Power-Aware Computing and six granted US patents.  Martonosi is a fellow of both 
IEEE and ACM.  In 2010, she received Princeton University's Graduate 
Mentoring Award. 

 



!
!
!
!
!



System-level Optimizations for Memory Access in the
Execution Migration Machine (EM2)

Keun Sup Shim Mieszko Lis Myong Hyon Cho Omer Khan Srinivas Devadas

Massachusetts Institute of Technology

Abstract. In this paper, we describe system-level optimizations for the Execu-
tion Migration Machine (EM2), a novel shared-memory architecture to address
the memory wall and scalability issues for large-scale multicores. In EM2, data
is never replicated and threads always migrate to the core where data is statically
stored. This enables EM2 not only to provide cache coherence without any com-
plex protocols or expensive directories, but also to better utilize on-chip cache and
thus experience much lower cache miss rate. However, it may incur significant ex-
ecution migrations for shared data, which increases memory latency and network
traffic, and thus, keeping migration rates low is a key under EM2. We present
systematic application optimization techniques to address this problem for EM2

suitable for a compiler/OS implementation. Applying these optimizations man-
ually to parallel benchmarks from the SPLASH-2 suite, we dramatically reduce
the average migration rate for EM2 by 53%, which directly improves parallel
completion time by 34% on average. This allows EM2 to perform competitively
compared to a traditional cache-coherent architecture, on a conventional electri-
cal network.

1 Introduction

The current trends in microprocessor design clearly indicate an era of multicores for the
2010s. As transistor density continues to grow exponentially, processor manufacturers
are able to place a hundred cores (e.g., Tilera’s Tile-Gx 100) on a chip with massive
multicore chips on the horizon. Many industry pundits are predicting 1000 or more
cores by the middle of this decade [5]. Will the current architectures (especially the
memory sub-systems) scale to hundreds of cores, and will these systems be easy to
program? Current memory architecture mechanisms do not scale to hundreds of cores
because multicores are critically constrained by the off-chip memory bandwidth wall [5,
12]: the key constraint is the package pin density, which will not scale with transistor
density [1]. Multicores to date have integrated larger caches on chip to reduce the num-
ber of off-chip memory accesses. Private caches, however, require cache coherence, and
shared caches do not scale beyond a few cores [25].

Exposing the core-to-core communication to software for managing coherence and
consistency between caches has limited applicability; therefore, hardware must provide
some level of shared memory support to ease programming complexity. Snoop-based
cache coherence does not scale beyond hundreds of cores. Directory-based hardware



cache coherence requires complex states and protocols for efficiency; worse, directory-
based protocols can contribute to the already costly delays of accessing off-chip mem-
ory because data replication and directory storage limits the efficient use of cache re-
sources. S-NUCA [18] and its variants reduce off-chip memory access rates by unifying
per-core caches into one large shared cache; accesses to memory cached in a remote
core cross the interconnect and incur the associated round-trip latencies. The Execution
Migration Machine (EM2) [17], a general purpose shared memory architecture, instead
migrates the computation’s execution context to the core where the memory is (or is al-
lowed to be) cached and continues execution there. Although moving execution context
has a higher cost than moving data, EM2 can outperform data migration architectures
not only because memory accesses to a remote core require only one-way latencies in-
stead of round-trip latencies, but also because successive memory accesses to the same
remote cache—a frequent pattern under many modern applications with data locality—
will result in one execution migration followed by a series of inexpensive local memory
accesses.

The possible disadvantage of EM2, however, is that since EM2 restricts caching of
each address to a single core, a large portion of data being shared within an applica-
tion may cause significant migrations, which will increase both memory access latency
and network load. In this paper, we extend the data alignment and replication tech-
niques previously investigated in NUMA context (e.g., [27]) to the temporal dimension
in order to improve migration rates and improve the overall performance under EM2.
Specifically:

1. We propose a limited-scope read-data replication optimization to reduce migra-
tion rates for an EM2 architecture: when a shared address is read many times by
several threads and seldom written, the proposed scheme allows temporary data
copying to reduce the number of migrations. By taking advantage of the program-
mer’s application-level knowledge, our replication can be applied to not only read-
only pages but also read-write pages, and removes the process of page collapse
(eliminating replicas on a write for read-write pages), which is a time-consuming
requirement for page replication in NUMA architectures [27].

2. We show that applying the above mentioned optimizations to a baseline EM2 ar-
chitecture using a first-touch placement policy [21], lowers migration rates by 53%
across the set of selected benchmarks. This improves the application performance,
as measured by parallel completion time, by 34% on average. In contrast, our repli-
cation optimizations provide no benefits for cache-coherent systems because shared
data are blindly replicated under cache coherence protocols.

2 The EM2 architecture

Traditional hardware cache coherence multicore architectures bring data to the locus
of the computation that is to be performed on it: when a memory instruction refers to
an address that is not locally cached, the instruction stalls while the cache coherence
protocol brings the data to the local cache and ensures that the address can be safely
shared or exclusively owned. EM2, on the other hand, brings the computation to the
data: when a memory instruction requests an address not assigned to the current core,



the execution context (architecture state and TLB entries) moves to the core that is home
for that data. The physical address space in the system is divided among the cores, and
each core is responsible for caching its region of the address space; thus, each address
in the system is assigned to a unique core where it may be cached. (This assignment
can, for example, be done by the OS on a first-touch basis, and is independent of the
number of memory controllers). Since an address can be accessed in at most one loca-
tion, ensuring properties that are difficult in traditional cache-coherent systems—such
as sequential consistency and cache coherence—becomes simple. Under the same con-
straints of assigning each address to a unique core and not allowing local caching of
remote data, moving the computation to data instead of bringing data to the computa-
tion has benefits because: (a) the execution migration is a one-way protocol whereas
retrieving data requires round-trip latencies, and (b) for applications with data local-
ity, successive memory accesses to the same remote cache will turn into local accesses
under EM2, whereas they would be repeated remote accesses under a remote-access
design.

The cost of memory access within the EM2 architecture is driven by the cost of
memory accesses to the cache or DRAM, and the cost of migrations due to a core miss.
A core miss is determined by computing the home core for a memory address. If the
core that originated the memory access is the home, it is a core hit, otherwise, a core
miss. The core miss cost incurred by the EM2 architecture is dominated by transferring
an execution context to the home core for any given address. Per-migration bandwidth
requirements, although larger than those required by cache-coherent designs, are not
prohibitive by on-chip standards: in a 32-bit x86 processor, the relevant architectural
state amounts to about 1.5Kbits including the TLB [24]. Although on-chip electrical
networks today are not generally designed to carry that much data in parallel, on-chip
communication scales well; further, the network can be optimized because all transfers
have the same size and migrations are independent.

The per-memory-access cost can be expressed in terms of core hit and miss rates as

costaccess = ratecore hit × costmemory + ratecore miss × (costmigration + costmemory)

where costmemory = ratecache hit × costcache + ratecache miss × costdram.

While costdram is relatively constrained, we can optimize performance by improving
the other variables. Assignment of addresses to the cores determines the performance
of an EM2 design by influencing: (a) off-chip memory accesses required, and (b) pauses
in execution due to migrations. On the one hand, spreading frequently used addresses
evenly among the cores ensures that more addresses are cached in total, reducing cache
miss rates and, consequently, off-chip memory access frequency; on the other hand,
keeping addresses accessed by the same thread in the same core cache reduces migra-
tion rate and network traffic.

Prior work [17] shows that EM2 improves ratecache hit when compared to a direc-
tory based cache-coherent configuration. However, reducing costmigration may require a
high-bandwidth network, adding area as well as power to an already power constrained
package. An alternative is to reduce ratecore miss, and that is the focus of this paper.
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Fig. 1. Memory accesses to addresses not assigned to the local core cause the execution context
to be migrated to the core.

2.1 Data placement

Because under EM2 each physical address resides in only one core and any attempt
to access it will result in a migration to that core, the mapping of virtual addresses to
physical addresses directly affects migration rates and cache utilization, and, conse-
quently, memory access performance. The OS performs the mapping using the existing
virtual memory mechanism: when a virtual address is first accessed and thus should be
mapped to a physical page, it chooses where the relevant page should reside by mapping
the virtual page to a physical address range assigned to a specific core.

In this paper, we use the ORIGINAL scheme, a variant of first-touch [21], where
pages are mapped to the accessing thread’s originating core on the first access, and
remain there for the entire duration of the execution. The ORIGINAL scheme performs
well because it aims to keep each thread on its originating core for as much of its run-
ning time as possible by taking advantage of data access locality, effectively reducing
the migration rate while keeping the threads spread among cores.

2.2 Migration Framework

Figure 1 shows a slight variant of the migration framework of [17]. On a core miss (at
say core A), the hardware initiates an execution migration transparent to the operating
system. The execution context traverses the on-chip interconnect and, upon arrival at
the home core (say core B), is loaded into the core B and the execution continues. In a
single-threaded core, the thread running on the core B is evicted and migrated back to
its originating core.

While this ensures that multiple threads are not mapped to the same core and re-
quires no extra hardware resources to store multiple contexts, the context evicted from
core B may well have to migrate back to core B at its next memory access. For this rea-
son, we allow each core to hold multiple execution contexts, and resorting to evictions
only when the number of hardware contexts running at the target core would exceed
available resources. Results from [17] show that a 2-way multithreaded core microar-
chitecture (similar to [2]) provides sufficient performance by hiding the serialization
effects of multiple threads contending for a core.



3 System-level Optimizations for EM2

For non-trivially parallel applications, application optimization for a specific memory
architecture is paramount in achieving the fastest possible performance, since it results
in dramatic improvements in memory access latencies, a critical determinant of overall
application performance. Although any shared-memory application can run on EM2

without any modifications, applications resulting in significant migrations may suffer in
performance since they will both increase the memory access latency and the network
traffic.

In this section, we present OS- and application-level optimization techniques that
significantly improve application performance by dramatically reducing migration rates
for EM2. We then show how these techniques apply in real application code by analyz-
ing example benchmarks from the SPLASH-2 suite.

3.1 Optimization techniques
Per-thread heap memory allocation In most implementations, malloc() uses a shared
heap to allocate memory to any requesting threads without regard to page bound-
aries: consecutive segments are assigned to different threads in the order in which the
malloc() calls were invoked. Under EM2 this can result in a kind of false sharing:
private data used by separate threads are likely to end up on the same physical page and
the threads will unnecessarily contend for that core.

When optimizing applications for EM2, our goal is then to ensure that all thread-
local data allocated using malloc() can be mapped to the thread that allocated them.
With the ORIGINAL data placement scheme (described in Section 2.1), the address-to-
core mapping occurs at a page granularity, and we can guarantee correct thread mapping
by ensuring that malloc() calls in separate threads allocate memory from separate
pages.

Operating system and library support for this optimization has two components: (a)
ensure that malloc() and friends allocate data for separate threads in different pages,
and (b) optionally allow the programmer to specify the thread to which the memory
should belong. The first part is entirely transparent to the programmer, and consists of
replacing the central dynamic memory management structure (say a free list) by a set
of equivalent per-thread structures, and allocating data for each thread from its own
pool. The second component exposes additional system details to the programmer, but
works well in the common case where memory is first allocated in one thread and later
different, disjoint regions are used in other threads (possibly spawned after memory has
been allocated and initialized). This requires modifying the memory allocation (e.g.,
malloc()) and thread spawning (e.g., pthread create()) library functions to take
an additional parameter to identify the core where the memory should be mapped: for
malloc(), this applies to the allocated memory, while in pthread create() it applies
to the newly created thread stack.

Restructuring data for private sharing In addition to overlapping sections of heap-
allocated memory, data structures allocated contiguously by the programmer contain
swathes of data private to different threads; for example, the WATER benchmark allo-
cates an array of molecules processed separately by different threads:
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MOL 0 MOL 1 MOL 2 MOL 3*VAR

Thread 0 Thread 1

—in this case, unless the molecule boundaries coincide with EM2 page boundaries,
false sharing will occur.

To improve EM2 performance, the relevant data structure must be restructured (in-
deed, this is the same technique used to eradicate cache-line-level false sharing in the
LU CONTIGUOUS version of the LU benchmark). In most cases, this kind of transforma-
tion can only be done by the programmer, as the typical compiler would not, in general,
be able to determine that different sections of the data structure are accessed by separate
threads.
Read sharing and limited replication Some shared application data are written only
once (or very few times) and read many times in multiple threads. In a cache-coherent
architecture, this data will be replicated automatically in all user caches by the co-
herence protocol; under EM2, however, each data element will stay in the core it was
mapped to, and threads not running on that core will have to migrate there for access.

For example, several matrix transformation algorithms contain at their heart the
pattern reflected by the following pseudocode:

barrier();
for (...) {

... D1 = D2 + D3; ...
}
barrier();

where D1 “belongs” to the running thread but D2 and D3 are owned by other threads and
stored on other cores; this induces a pattern where the thread must migrate to load D2,
then migrate to load D3, and then again to write the sum to D1.

This observation suggests an optimization strategy for EM2: during time periods
when shared data is read many times by several threads and not written, make tempo-
rary local copies of the data and compute using the local copies:

barrier();
// copy D2 and D3 to local L2, L3
for (...) {

... D1 = L2 + L3; ...
}
barrier();

While a cache coherence protocol will do this blindly to all data regardless of how often
it is read or written (and thus suffers high write-driven invalidation rates in benchmarks
like RADIX), in EM2 the programmer applies this technique judiciously using our pro-
filing tool. The PIN-based profiler keeps track of the number of execution migrations
for each code line, which tells the programmer which data are causing most migrations,
and thus, better to be replicated. Since these local copies are guaranteed to be only read



within the barriers by the programmer, there is no need to invalidate replicated data
under our replication optimization.

In our proof-of-concept SPLASH-2 benchmark refinements we applied this opti-
mization by hand, and the copy process incurred many back-and-forth migrations. The
number of these migrations can be significantly reduced by adding an architecture-level
memory copy operation. Unlike string instructions present in some architectures (e.g.,
movsb and friends on x86) which are executed by the CPU, however, this operation
would occur at the memory controller and would not involve any network traffic be-
yond the request itself and completion acknowledgement.

Architecturally, such an instruction would result in a message to the relevant DRAM
controller requesting the transfer, and an acknowledgement-wait stall state if an instruc-
tion attempted to access the fresh copy of the data. If both memory ranges resided in
the same memory controller, the copy would be internal to the controller and involve
no traffic; if, on the other hand, the copied address ranges were mapped to two separate
memory controllers, an efficient network-level block transfer would be used directly be-
tween the controllers. Finally, the memory controller would signal the requesting CPU
core that the transfer has completed and accesses to the target memory range may pro-
ceed. In either case, the resulting network traffic would be significantly less than the
many migrations required by “vanilla” EM2 to complete the copy.

Because this architectural extension is not required for EM2 functionality, however,
the results we present here do not assume such an operation, and any data copy opera-
tions incur migrations as the copying threads bounce between the two relevant cores.

Specific benchmarks With these optimizations, we modified a set of SPLASH-2 bench-
marks (FFT, LU, OCEAN, RADIX, RAYTRACE, and WATER) in order to reduce migration
rate under the EM2 architecture. Although we only describe our modifications for LU
and WATER here, we have applied the same techniques for the rest of the benchmarks.

LU : In the original version optimized for cache coherence (LU CONTIGUOUS),
which we used as a starting point for optimization, the matrix to be operated on is
divided into multiple blocks in such a way that all data points in a given block—which
are operated on by the same thread—are allocated contiguously. Each block is also
already page-aligned, as shown below:
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Global matrix  **a *p0 *p1 *p2 *p3

Block 1 Block 3Block 0 Block 2

Blocks are page-aligned

Therefore no data restructuring is required to reduce false sharing.
During each computation phase, however, each thread repeatedly reads blocks owned

by other threads, but writes only its own thread; e.g., in the LU source code snippet

for (k=0; k<dimk; k++) {
for (j=0; j<dimj; j++) {

alpha = -b[k+j*strideb];
for (i=0; i<dimi; i++)



c[i+j*stridec] += alpha*a[i+k*stridea];
}

}

since the other threads’ blocks (a and b) are mapped to different cores than the current
thread’s own block (c), nearly every access triggers a migration.

Since blocks a and b are read-only data within this function and the contents are
not updated by other threads in the scope, we can apply the method of limited local
replication as described in Section 3.1. In the modified version, a thread copies the
necessary blocks—a and b in the example above—to local variables (which are also
page-aligned to avoid false-sharing); the computation then only accesses local copies,
eliminating migrations once the replication is done. We similarly replicate global read-
only data such as the number of threads, matrix size, and the number of blocks per
thread.

WATER : In the original code, the main data structure (VAR) is a 1D array of molecules
to be simulated, and each thread is assigned a portion of this array to work on:
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MOL 0 MOL 1 MOL 2 MOL 3*VAR

Thread 0 Thread 1

The problem with this data structure is that, as all molecules are allocated contiguously,
molecules processed by different threads can share the same page and this false sharing
can induce unnecessary migrations.

To address this, we modify the VAR data structure as follows:
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**VAR *p0 *p1 *p2 *p3

MOL 1 MOL 3MOL 0 MOL 2

Molecules are page-aligned

By recasting VAR as an array of pointers, we can page-align all of the molecules, entirely
eliminating false-sharing among them; this guarantees that, under EM2, a thread never
needs to migrate to access a molecule assigned to it.

In addition, WATER can also be optimized by locally replicating read-only data. For
each molecule, the thread computes some intermolecular distances to other molecules,
which requires read accesses to the molecules owned by other threads:

CSHIFT() {
XL[0] = XMA-XMB; XL[1] = XMA-XB[0]; XL[2] = XMA-XB[2];
XL[3] = XA[0]-XMB; XL[4] = XA[2]-XMB; XL[5] = XA[0]-XB[0];
XL[6] = XA[0]-XB[2]; XL[7] = XA[2]-XB[0]; ...

}

Here, XMB and XB are parts of molecules owned by other threads, while XMA, XA, and XL
belong to the thread that calls this function. Since all threads are synchronized before
and after this step, and the other threads’ molecules are not updated, we can safely make



a read-only copy in the local memory of the caller thread. Thus, after initially copying
XMB and XB to thread-local data, the remainder of the computation induces no further
migrations.

4 Methods

We use Pin [4] and Graphite [23] to model the EM2 architecture. Pin enables runtime
binary instrumentation of parallel programs, including the SPLASH-2 [28] benchmark
sets we use for evaluation, while Graphite models a tile-based core, memory subsystem,
and network, as well as ensures functional correctness.

The settings used for the various system configuration parameters are summarized
in Table 1. In experiments comparing EM2 against cache coherence, the parameters for
both were identical, except for (a) the memory directories which are not needed for EM2

and were set to sizes recommended by Graphite on basis of the total cache capacity in
the simulated system, and (b) the 2-way multithreaded cores which are not needed for
cache coherent system.

Parameter Settings

Number of cores 256, each with 2 threads, 1 issue-slot
L1/L2 data cache per core 16KB/64KB
Network Mesh, 1 cycle per hop, 128 bit flits, XY Routing
Data placement scheme ORIGINAL, VM page size 4KB
Coherence protocol Directory-based full-map MSI
Memory 30GB/s bandwidth, 75ns latency

Table 1. System configurations used

4.1 On-chip interconnect
Experiments were performed using Graphite’s model of an electrical mesh network
with XY routing. Each packet on the network is partitioned into fixed size flits, and we
use the flit size of 128-bits for the electrical network. Since modern network-on-chip
routers are pipelined [10], we argue that modeling a 1-cycle per hop router latency [20]
is reasonable for the on-chip network; we account for the appropriate pipeline latencies
associated with delivering a packet. In addition to the fixed per-hop latency, contention
delays are modeled; the queuing delays at the router are estimated using a probabilistic
model similar to the one proposed in [19].

4.2 Measurements
Our experiments used a set of SPLASH-2 benchmarks: FFT, LU, OCEAN, RADIX, RAY-
TRACE, and WATER. Each application was run to completion and used the recom-
mended input set for the number of cores used, except as otherwise noted. For each
simulation run, we tracked the total application completion time, the parallel work
completion time, the percentage of memory accesses causing cache hierarchy misses,
and the percentage of memory accesses causing migrations. While the total applica-
tion completion time (wall clock time from application start to finish) and parallel work



completion time (wall clock time from the time the second thread is spawned until the
time all threads re-join into one) show the same general trends, we focused on the paral-
lel work completion time as a more accurate metric of average performance in a realistic
multicore system with many applications.

5 Evaluation
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Fig. 2. EM2 migration rates before and after the proposed optimizations. Because of better data
distribution and judicious replication, migration rates drop significantly.

Figure 2 shows the effects of applying the optimizations described in Section 3.
Distributing data on page boundaries to avoid false sharing, combined with judicious
local replication of frequently used read-only data, combine to improve the average
migration rate from 32% to 15% for the benchmarks we optimized for EM2—a ca. 2×
improvement.

Although migration rate is not the only determinant of overall performance under
EM2, reducing the number of memory accesses that trigger migrations lowers the over-
all memory access time and significantly improves parallel completion times (Figure 3).

Figure 3 shows the overall parallel completion times for all benchmarks before and
after our optimization. Before specifically optimizing the applications for EM2, the EM2

architecture was on the average outperformed by the cache coherence system; this is
not very surprising, as most of these benchmarks have been specifically written with
cache coherence systems in mind, and our choice of a network with 128 bit flit size.
(Increasing network bandwidth beyond 128 bits benefits EM2 much more than cache
coherence [17].) After applying our optimizations, however, EM2 on average performs
competitively compared to the cache coherence system due to the significant drops in
migration rates.

6 Related Work

Implicitly moving data to computation has been explored in great depth with many
years of research on cache coherence protocols, and has become textbook material [13].
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Fig. 3. In comparison to the directory-based, MSI cache-coherent system (CC), EM2 performed
2× worse on average before optimizations. After optimizations, EM2 performs competitively
on average due to the significant drops in migration rates. The CC runs and the pre-optimization
EM2 runs used the original, cache-coherence-optimized SPLASH-2 benchmarks, while the post-
optimization EM2 runs used EM2-optimized benchmark versions. EM2 optimizations may
worsen performance under CC and hence we used the original benchmarks for all CC simula-
tions.

Meanwhile, page replication and migration have been extensively evaluated in the con-
text of multiprocessor NUMA architectures. Verghese et al [27] propose OS supported
dynamic page migration and replication to alleviate the problem of large remote ac-
cess latencies in CC-NUMA architectures. In these NUMA systems, both interconnect
and memory latencies were high and an OS-level approach provided sufficient perfor-
mance; with today’s fast on-chip interconnects, however, operating system interrupts
are relatively much slower, and quick, low-overhead mechanisms are needed for good
performance. Moreover, our replication optimization differs from prior NUMA research
in that, using our profiling tool, we choose data to replicate by the access pattern that
causes significant migrations and not by the number of sharers, because our focus is to
reduce migration rates under EM2. In addition, while the page replication in CC-NUMA
requires the page collapse process to eliminate replicas on a write, the optimizations we
present do not require this invalidation process since the replicated data are guaranteed
to be only read in a limited scope by the programmer.

More recent research has explored data distribution and migration among on-chip
NUCA caches [18] with traditional and hybrid cache coherence schemes. OS-level and
OS-assisted software approaches [9, 12, 3, 6] leverage the operating system to map data
to caches near where threads using it are scheduled (on the same core for private ad-
dresses and geographically close for shared data) and optionally replicate read-only
pages. Other schemes add hardware support for page migration support [8, 26] or repli-
cation of recently used cache lines [29]. In general, only read-only pages are shared;
in contrast, the optimizations we present here take advantage of the programmer’s
application-level knowledge to allow replication of read-write shared data during pe-
riods when it is not being written.

The idea of computation migration was originally considered in the context of dis-
tributed multiprocessor architectures [11], and has recently re-emerged in single-chip
multicores for threads [22, 16] as well as thread segments [7]; compiler transformations



for migration support have also been considered [15]. EM2 [17] differs from these in
that data sharing is completely abandoned (and therefore cache coherence protocols
are not needed), and migration is required to provide memory coherence rather than
employed to speed up access to cached data.

Finally, because of the complexity of coherence protocols and unscalable directory
memory requirement, many recent many-core architectures (e.g., Intel’s Single-chip
Cloud Computer (SCC) [14]) rely on the message passing programming model instead
of the shared memory model and give up on providing coherence support beyond soft-
ware cache coherence. Message passing models, however, present the programmer with
very low-level abstractions and, as they are relatively difficult to program, have his-
torically been limited to specialized niche applications like scientific computing and
telecommunications. In this paper, therefore, we have focused our optimization efforts
on EM2, a simple and scalable shared-memory architecture.

7 Conclusions and future work

In this manuscript, we have introduced a set of system-level optimizations to improve
memory access latency for an EM2 architecture: we chose a page-to-core mapping strat-
egy, outlined several optimization techniques, and evaluated their effects on benchmarks
from the SPLASH-2 suite. Our results show that these optimizations significantly reduce
migration rates, which effectively improves the performance, enabling an EM2 archi-
tecture to perform competitively compared to a traditional cache coherent system.

Our future research directions include automating the techniques presented here via
a combination of low-overhead compiler, operating system, and/or architecture imple-
mentations; we believe a combination of the three will be critical in overcoming the
limitations of previously explored migration/replication techniques. Furthermore, we
will also consider how these optimizations can be applied to other application domains
with different memory access patterns (e.g., streaming applications).
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Abstract. In this paper, we describe our experiences in building a framework
for power/performance run-time management for the Intel core family. Our
underlying methodology (in contrast to previous work which relied on em-
pirical models) is based on a simple processor performance model in which
frequency scaling is expressed as a change (in cycles) of the main memory
latency. Based on this model and utilizing performance monitoring hardware,
the proposed model is shown to be powerful enough to i) describe and ex-
plain how Intel processors are affected by frequency scaling with respect to
workload behavior, ii) predict with reasonable accuracy the effect of frequen-
cy scaling (in terms of performance loss), and iii) predict the energy con-
sumed by the core under different V/f combinations by directly measuring
from the off-chip voltage regulator the power consumed by the core. Our
long-term plans include integrating in the proposed framework various pow-
er-aware OS/application-driven DVFS policies. As a first step towards this
direction, we show our experimental methodology to justify the power/per-
formance measurements and verify the correctness of our framework in
which any target DVFS policy can be embedded as kernel module.
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The power-aware architecture landscape has been dominated by techniques based on
supply voltage and clock frequency scaling. Dynamic Voltage and Frequency Scaling
(DVFS) offers great opportunities to dramatically reduce energy/power consumption
by adjusting both voltage and frequency levels of a system according to the changing
characteristics of its workloads. The great potential of DVFS in energy/power savings
has been widely studied in a variety of research communities (from circuit to system
designers) and has been extensively used in commercial systems as well. Intel XScale,
AMD Mobile K6, and Intel Pentium M are typical low-power processors that feature
DVFS management capabilities. Example processors from the high-performance area
are the AMD Opteron quad-core and the Intel core i7 processor.

In general, the heart of DVFS techniques is the exploitation of the system slack or
“idleness.” Their objective is to take advantage of slack so that performance is affected
little by frequency scaling while at the same time a cubic benefit in power consumption
—with the help of voltage scaling— is achieved [8]. Slack can appear at different levels
and various approaches have been proposed for each level. According to [8], DVFS de-
cisions can be taken at: i) the system level based on system slack, ii) the program level
based on instruction slack, and iii) the hardware level based on hardware slack. More
details about the criteria used to devise this categorization can be found in [8]. In this



work, we are concerned with the instruction slack due to the long latency memory op-
erations (off-chip memory accesses).

In our previous work [9], we developed two simple analytical models that are able
to drive run-time DFVS decisions for aggressive superscalar OoO processors. These
models work at the microarchitectural level and their target is to exploit the slack due
to the long-latency, off-chip memory operations. The realization that inspired the de-
velopment of these models was that core frequency is nothing more than changing the
memory latency in cycles. This conceptual view of frequency scaling significantly sim-
plifies the DVFS management decisions even for highly-aggressive, highly-pipelined,
dynamic processors (e.g. the Intel core i7 [3]).

Previous approaches [4][5][6][11][12] in the area rely on empirical models requir-
ing large profiling, training and trial-and-error steps or significant compiler assistance
[10]. For example, the model proposed in [6] is prohibitively costly for run-time power
estimation and optimization. It requires four complete program executions with differ-
ent counter configurations, in order to collect the necessary information. In contrast, our
models require minimal input and calculations [9]. The reason for this is that our models
are able to acknowledge and isolate the processor events that directly correlate to DVFS
processor behavior. Consider for example, the penalty of a branch misprediction. This
penalty (measured in cycles) will remain intact no matter what the frequency is, because
a branch misprediction involves only in-core operations. The penalty of in-core opera-
tions is always the same (measured in cycles) during frequency scaling [9].

The simple nature (minimal input and calculations) and the high accuracy of our
models [9], inspired us to move one step forward. While our previous work was con-
ducted in a cycle accurate simulator (equipped with the appropriate power models), in
this work we provide our experiences and application results in applying those models
in a real-life processor: the i7 Intel Nehalem core [3]. Testing research ideas in real
processors was motivated by the integration of a rich set of performance monitoring
counters which resides in almost all modern processors. It is well known that cycle-ac-
curate simulations are very time consuming and their accuracy is a subject of consider-
able debate. Consider for example thermal studies where it takes a long time for proc-
essors to reach equilibrium thermal operation points. Live measurements allow a com-
plete view of operating system and I/O effects and many other aspects of “real-world”
behavior, often omitted in simulation. However, measuring live, running complex sys-
tems (i7 920 is a quad core SMT CMP) and relating measured results to overall system
hardware and software behavior is not so straightforward as in a simulator, because
many details are omitted from the computer vendors. As a result a systematic approach
is required to reverse-engineer the hardware details of the target processors.

In this work, we provide a framework for power and performance run-time manage-
ment for the Intel processors. Our framework can be formed as a basis for future power-
aware research. As a first step towards this direction, we provide our experimental
methodology to justify the power/performance measurement and verify the correctness
of our framework in which any target DVFS policy can be embedded in the OS as ker-
nel module. Some of the points, we try to shed light on, are: i) How much power (static
and dynamic) is consumed by the core and the uncore areas of the processors? ii) How
Intel processors are affected by frequency scaling with respect to the behavior of the ap-
plications? iii) Is the performance monitoring hardware appropriate for power-oriented
optimizations? iv) How much clock-gated is the i7 core?

To quantify the robustness of the proposed framework, in this work we investigate
the following scenario: we run an application in a specific V/f point collecting perform-



ance and power measurements (see Section 4 and 5). Based on those measures, we eval-
uate our methodology in predicting the performance and energy characteristics of the
application in any given frequency/voltage combination (specified for example by the
user or the OS).
80%7+07%$,"',09$,/)/$%:Section 2 provides an overview of our previous
work [9]. Section 3 discusses power-related details of the i7 core and presents our
measurement methodology. Section 4 analyses the effect of frequency scaling in i7
core with respect to power “behavior” of the applications. Section 5 provides our
experiences in predicting the energy under different V/f points. Section 6 outlines the
presented methodology and discusses our future work. Section 7 concludes the paper.
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In our previous work [9], we showed that a successful way to model DVFS
management in an OoO, dynamic processor is to account only for the stall cycles
introduced in the machine due to off-chip non-overlapping misses (Last-Level Cache
or LLC misses). The idea is that only these misses directly correspond to the stall
cycles that are affected by the processor’s frequency. Based on this, we introduced a
model, called miss-based model, which takes as input the number of stalls introduced
in the machine due to LLC misses and outputs the execution time —and the energy—
under different frequencies with less than 1% (avg.) error. We also introduced a more
simplified model, called stall-based model, which is not able to distinguish pipelining
of the LLC misses (i.e., it accounts for stalls for both isolated and overlapping misses).
The stall-based model still yields acceptable results (5% on avg.). A deeper
examination of this model shows that the extra error is introduced because the model
disregards useful work performed by the processor when a LLC miss occurs (i.e. from
the occurrence of the miss until no more instructions can enter the execution window
or all the instructions in the execution window are dependent on the pending miss).
However, the latter model offers a great potential: it can be used in real-life processors
(e.g. the i7 core), in contrast to the miss-based model (the current hardware monitoring
events are not able to distinguish between overlapping and isolated misses [2]).

Our modelling methodology is inspired by the interval-based performance model
[1][7]. Intervals are marked by miss-events that upset the “steady state” execution of the
program. A miss-interval starts with a miss-event (LLC misses in our case) and lasts un-
til the IPC reaches again a steady state (a period related to the memory latency). Periods
between miss-intervals are steady–state intervals. The realization that drives this work
is that core frequency scaling in these models is nothing more than changing the mem-
ory latency in cycles. Figure 1.a shows the different areas of a LLC miss interval. The
stall-based model takes as input the cycles which correspond to the full stall+IQ Drain
areas and assumes that this quantity is equal to memory latency measured in cycles —
it disregards the ROB fill area. Note that this area, measured in cycles, remains intact in
all frequencies. The error of the stall-based model can be seen in the following formula:

The sum of stalls in overlapping misses (Figure 1.b) is also approximated to memory
latency:

The conclusion is that the sum of stall cycles is proportional to memory latency and
thus proportional to frequency scaling. On the other hand, non-stall cycles remain

Stallcycles Memlat ROBfill Memlat–=

ST1 ST2+ y Memlat ROBfill– x Memlat–+=



intact. With these observations in mind, extracting the formula for predicting
execution time is straightforward (more details can be found in [9]).

The miss-based model acknowledges that the miss interval equals memory latency
and thus scales proportionally to frequency. Furthermore, it is able to recognize that
only the miss interval of the first miss in a cluster of misses scales with frequency, while
the miss intervals of overlapping misses remain intact with frequency scaling. Another
way to express this is that if a miss occurs y cycles (Figure 1.b) after the initial miss it
will also be serviced y cycles after the first miss is serviced so the extra stall cycles in-
troduced by the overlapping miss do not change with frequency. When the miss that
headed a cluster of overlapping misses is serviced, the next miss in line starts a new
cluster even if it overlaps with an outstanding miss from the previous cluster. The meth-
odology followed by the miss-based model is similar to the stall-based model, but in-
stead of stall cycles, the quantity that scales proportionally to the frequency is the
number of clusters of misses multiplied by the memory latency. More information can
be found in [9].
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Intel core i7 is a quad-core CMP. Each core supports hyperthreading execution. i7
Core family is enhanced with a special power-aware characteristic, called Speedstep
technology [3] which allows run-time voltage and frequency scaling between 9
different steps, from 1.6 to 2.66GHz (i7 920). i7 supports also various idle states,
called C-states, in which it is possible to completely deactivate the clock and cut-off
the power supply for a combination of cores to reduce static and dynamic power
consumption.

EH; !$%'"%()*+$,4"7*0$%>,1*,15

i7 core offers a wide range of hardware monitoring event counters. Table 1 shows the
performance counters used in this work. One of our main problems in this work was

Figure 1 Useful instructions issued in the case of (a) an isolated and (b) 
overlapping LLC load misses.
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that there is no performance counter in i7 core to account for the stalls introduced in
the machine due to LLC non-overlapping misses (Section 2). In other words, there are
no specific performance counters to measure the Memory-Level Parallelism of the
LLC misses (also pointed out in [2]). As a result, we could not use our highly accurate
miss-based model. Therefore, we used an approximation of the stall-based model in
order to predict the performance under different f points using the counter event
mentioned in line 1 in Table 1. Finally, all the other performance counters listed in
Table 1 are used only for cross-checking our results (not to predict the effect of
frequency scaling) and to gain a better understanding of the behavior of the running
applications.
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i7 core comprises of two main voltage islands: core (exec. and fetch units, OoO and
paging logic, L1/L2 caches and branch prediction) and the uncore (L3 caches, memory
controller and QPI). In order to isolate the core and the uncore power, we compute
core power dissipation by directly measuring voltage and current from the off-chip
voltage regulator (ADP4000) residing in the motherboard by identifying two pins of
interest: the pin that supplies the voltage to the core and the pin monitoring the total
output current of the regulator. By hacking the motherboard (connecting wires to these
pins) we were able to measure power using an oscilloscope while the processor was
under normal operation. We use a sampling period of 10ms (our target is to provide
OS-level optimizations so finer granularities will not provide useful results). The
power measurements can be easily fed to the kernel OS using DLP-IO8, a USB
analog–to–digital converter. Our future work includes utilizing this information (in the
kernel level) to drive application/OS-driven DVFS policies.

EHL 80)01+,!"#$%,1*,15

When the processor is in the idle state, it consumes only static power since the clock is
cut-off (the off-chip voltage regulator still provides voltage to the core). To get a full
picture of how much power is consumed in the idle state, we deactivate different
number of cores from the BIOS. The assessed idle power under different frequencies is
gathered by our kernel module. The collected power numbers can be then used for
predicting the processor power at run-time. Table 2 shows idle power for different
number of cores under maximum and minimum frequency.

PERFORMANCE COUNTER DESCRIPTION

UOPS_EXECUTED.CORE_STALL_CYCLES CYCLES NO INSTS ARE EXECUTED IN THE PROCESSOR

L2_RQSTS.LD_MISS LOAD REQUESTS THAT MISSED L2 CACHE

LLC_MISSES LAST LEVEL CACHE MISSES

BRANCH_MISSES.RETIRED MISPREDICTED BRANCHES

UOPS_EXECUTED.PORT015 MICRO-OPS EXECUTED IN PORTS 0, 1 OR 5
UOPS_EXECUTED.PORT234 MICRO-OPS EXECUTED IN PORTS 2, 3 OR 4
UNHALTED_CORE_CYCLES CYCLES CORE NOT HALTED

Table 1: The Intel i7 core hardware events selected for this work.
NUMBER OF ACTIVE CORES 2.66 GHZ (NOMINAL FREQ.) 1.6 GHZ (MINIMUM FREQ.)

4 CORES 15.8W 7.6W
2 CORES 10.4W 2.1W
1 CORE 2.6W 1W

Table 2: Power consumed by the i7 cores in the idle state.
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We run our experiments on an Ubuntu Linux 9.10 system with the 2.6.31-22 kernel.
The kernel is patched to enable our techniques to run as kernel modules. We use the en-
tire SPEC2006 suite with all the ref. inputs. We compiled the benchmarks with gcc 4.3
as 64-bits binaries and -O3 optimization. We use full benchmark runs to get a complete
view of the benchmark behavior (the benchmarks run for several minutes in our ma-
chine). Finally, the measurement of the performance counters runs as a kernel module,
enabling counting in the OS. This way, no changes to the target applications are re-
quired and the timing overhead during execution remains minimal (less than 1%).

L !%$.1+01*D,!$%'"%()*+$,'"%,A1''$%$*0,!,!"1*0>
Figure 2 shows the absolute error of predicting the execution time using our stall–
based model in i7 core for a large frequency step: running the program in the nominal
frequency and predicting the execution time in the minimum frequency (black bars) —
the grey bars represent the reverse scenario. Due to space restrictions, for the
benchmarks with multiple inputs, we present in Figure 2 the average error over all
inputs. To further analyze the results, we classify the benchmarks into three categories:
CPU–bound, memory–bound, and intermediate or mixed category. This categorization
is performed as follows: when the frequency is scaled from 2.66 to 1.6 GHz, a purely
CPU-bound program will suffer an increase in its execution time of 66.67%, but due to
memory accesses this penalty will be smaller. Based on this, a program with
performance penalty of more than 55% (when scaling the frequency from max to min)
is CPU-bound, a program with penalty less than 35% is memory bound while the rest
of the benchmarks fall into the intermediate category.

In general, the more memory–bound a program is, the more the increase in the pre-
diction error. This is an inherent property of the stall–based model, since this model ig-
nores the ROB-fill effect. In the rest of this section we explain errors on a per-bench-
mark basis. To be able to delve into details about the power “behavior” of each bench-
mark, we also gather information for all the events listed in Table 1.
4!O,="7*.:This category contains the following benchmarks/inputs: astar_2,
bwaves, bzip2 (6 inputs), cactusADM, calculix, gamess (3 inputs), gobmk (5 inputs),
gromacs, h264ref (3 inputs), hmmer (2 inputs), namd, povray, sjeng, sphinx3, tonto
and zeusmp. The errors in predicting the execution time in this category for 17
benchmarks are below 5%. Clear exceptions are cactusADM (14.8% error), gromacs
(12.7%), and astar_2 (10.9%). To understand and explain these errors, Table 3 shows

Figure 2 Error in predicting execution time using the stall-based model.
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the results for the full list of the performance counters for representative cases. By
cross comparing the results, we are able to explain the behavior of each benchmark.

The error in cactusADM is due to the increased number of stalls generated by L2
and LLC misses and the low IPC. Although only 2 LLC misses per 1k cycles occur, the
penalty for a fmax to fmin transition is 63.4% which means that these L3 misses overlap
either with each other or with L2 misses, thus few of the stalls counted are strictly due
to LLC misses. gromacs shows a similar behavior. The increased number of stalls are
due to L2 misses, branch mispredictions and low IPC. On the other hand, astar_2 has a
quite high IPC which “hides” the stalls due to the large number of L2 misses thus the
prediction error is smaller (10.9%). zeusmp lies on the border between CPU-bound and
mixed categories, so the 2.5 LLC misses per 1k cycles introduce some stall cycles but
L2 misses, branch mispredictions and low IPC also introduce stall cycles resulting in an
error of 10.1%. Finally, sjeng has few misses but many branch mispredictions and as a
result a 9.7% error. In general, benchmarks with few miss events and high IPC exhibit
smaller errors. For example, h264ref1 and calculix have about 1 L2 miss per 1k cycles
and 13.8 and 41 branch mispredictions respectively, but due to high ILP (indicated by
high IPC) few stalls are introduced in the machine resulting in low errors. Similar be-

CATE-
GORY

BENCHMARK TIME PEN-
ALTY (%)A

STALLS L2 
MISSES

L3 
MISSES

BRANCH 
MISPRED

IPCB ERROR (%) FROM 
2.66 TO 1.6 GHZ

C
P

U

B
O

U
N

D
CACTUSADM 63.4 356 2.7 2 0.02 2 14.8

GROMACS 65.8 287 2.2 0.01 4.96 1.97 12.7
ASTAR_2 67.1 234 6.36 0.09 23.66 2.28 10.9
ZEUSMP 57.4 348 3.22 2.5 17.84 1.83 10.1
SJENG 63.3 260 0.96 0.5 30.7 2.26 9.7

BZIP2_3 60.8 127 11.4 0.02 28.4 2.33 2
H264REF_1 66.1 37 1.35 0.05 13.8 2.49 1.4
GAMESS_2 65.3 46 0.16 0 27.2 2.5 1.3
CALCULIX 65.8 39 1.12 0.1 41 2.54 1.3
BWAVES 58.4 134 1.04 1 12.47 2.39 0.7

M
IX

E
D

MCF 44.8 518 25 10.4 9.1 1.47 10
LESLIE3D 52.9 378 4.1 3.6 0.36 1.9 8.5

GEMSFDTD 52.4 353 7.6 4.3 0.3 1.67 6.8
ASTAR_1 52.1 357 10.8 3.9 14.4 2.13 6.7

GCC_2 54.6 304 6.72 1.67 17.1 2.13 6
LBM 48 231 1.87 2.88 6.75 1.78 -1.5

GCC_5 37.4 394 4.35 5.36 7.15 2.11 -1.3
GCC_3 35.9 421 3.34 4.45 7.26 2.15 -1.2
GCC_4 43.3 336 4.52 5 10.15 2.14 -0.2
GCC_6 38.4 405 4.21 5.25 6.94 2.14 -0.1

M
E

M
O

R
Y

B
O

U
N

D

LIBQUANTUM 17.4 483 3.27 5.58 4.97 1.6 -12.2
MILC 22.5 519 10.9 12.9 3.19 1.99 -6.4

GCC_8 28.5 472 3.95 4.89 5.96 2.18 -4.1
OMNETPP 33 565 14.7 7.35 6.49 2.04 3.4

GCC_7 32.2 480 3.18 5.24 7.11 2.1 -1.3

Table 3: Performance counter events (per 1K cycles) and prediction error for 
three benchmark categories: CPU bound, mixed, and memory bound category.

a. Performance penalty when the frequency is scaled from 2.66 GHz to 1.6 GHz.
b. Instructions per non-stall cycles (indicates Instruction Level Parallelism).



havior is reported by gamess_2. bwaves approaches the mixed category, but the extra
stalls introduced by L2 misses and branch mispredictions boost the model to compen-
sate for its inherent inability to account for the ROB-fill area (this phenomenon will be
further explained in the next categories).
@1P$.,+)0$D"%?:This category includes: astar_1, gcc (6 inputs), gemsFDTD,
lbm, leslie3d, mcf and soplex (2 inputs). As we move towards more memory-bound
programs, we observe that the prediction error becomes smaller. This is because now
the stall cycles introduced by L3 misses become a larger part of the total stall cycles
and what we measure is closer to what we should measure according to the stall-based
model. mcf yields the largest prediction error in this category (10%) due to the large
amount of L2 misses (25), the branch mispredictions (9.1) and the strong dependencies
between instructions illustrated by the low IPC (1.47). Although there are many L3
misses (10.4), mcf’s penalty is only 44.8%, which means that most of them are not
performance critical (overlapping misses). leslie3d and gemsFDTD are more CPU-
bound compared to mcf and the prediction error is smaller due to the reduced amount
of miss events (4.1 and 7.6 L2 misses and 0.36 and 0.3 branch mispredictions
respectively). astar_1 has about the same penalty with leslie3d and gemsFDTD and
more miss events (10.8 L2 misses and 14.4 branch mispredictions), but it also has
larger IPC (2.13) which means that the processor is able to keep executing instructions
when a miss event occurs and thus the majority of stalls measured are due to L3
misses. Similar to astar_1 is gcc_2 which has a slightly smaller prediction error due to
the reduced amount of L2 misses.

Until now we explained how miss events other than L3 misses pollute our measure-
ments. As the program becomes more memory-bound, L3 misses become the governing
factor in stalls and another source of inaccuracy arises: neglecting the ROB-fill area. Al-
though this is an inherent problem of the stall-based model, the way we measure stalls
improves accuracy because the extra stalls measured due to other miss events compen-
sate for the non-measured ROB-fill area. The negative error indicates that the stall cy-
cles are underestimated. So in lbm, L2 misses, branch mispredictions, and low IPC pro-
duce extra stalls which reduce the error. The error would be even smaller if more stalls
were measured. This is the case for gcc_3, gcc_4, gcc_5, gcc_6. The stalls introduced
by L2 misses and branch mispredictions result in small prediction error, less than 1.5%.
@$("%?,="7*.,+)0$D"%?:This category includes 5 benchmarks. The largest
prediction error is observed in libquantum (12.2%). The low increase in execution time
(17.4) between the maximum and the minimum frequency indicates that libquantum is
heavily memory bound, although L3 misses are not that many. This means that all or
most of them are performance critical (isolated). libquantum has a few other miss
events which reduce the error (negative error means that stalls are underestimated and
extra stalls reduce prediction error). milc is slightly more CPU-bound compared to
libquantum but also has more L2 misses, so the extra stalls reduce prediction error to
6.4%. gcc_8 is more CPU-bound and the prediction error is improved. omnetpp and
gcc_7 have about the same penalty, but differ in the sign of prediction error. omnetpp
has many L2 misses which results in overestimating the stalls and thus positive errors.
On the other hand, gcc_7 has fewer L2 misses and thus the prediction error is negative.

M !%$.1+01*D,K*$%D?,'"%,A1''$%$*0,!"!"1*0>
Our methodology in predicting the dynamic energy of a program is the following: we
measure static power (power in idle state) under all available different frequencies. To



calculate the run-time dynamic energy of a program, we subtract from the total energy
the product of execution time and static power for the corresponding frequency.
Finally, to predict the dynamic energy consumed in a new frequency, we tested the two
extremes of a fully clock-gated and fully non-clock-gated processor: dynamic energy
in the former case is proportional to the square of the voltage (E~V2), while in the
latter case the energy should be computed according to the formula: E~f*V2*t.

Our experimental findings reveal that the i7 core is not highly clock-gated, since the
fully non-clock-gating scenario produced better results. Especially, in memory bound
programs, in which the clock gating is expected to save more energy due to the long stall
intervals, the results for the fully clock-gated case were even worse compared to the non
clock gated scenario. A more accurate model could be derived if we knew exactly the
processor clock gating map. However this information is not available [3]. Total energy
can be predicted by adding to the predicted dynamic energy the product of the new static
power and the execution time. Figure 3 shows our results. The grey bar shows the re-
sults for total (dynamic and static) energy prediction, while for clarity reasons we also
depict the results for dynamic energy prediction (black bar). Figure 3 depicts the errors
when all cores are active. Maximum and average error are 14% and 8% respectively for
dynamic energy prediction, while the errors in total energy prediction are less than 5%
and 2% respectively. In case that fewer cores were activated from BIOS, the dynamic
energy prediction error would be the same but the total energy prediction error would
be between the current value and the dynamic energy error for each program.

Q N<$%<1$#,"',09$,@$09"."3"D?,)*.,C707%$,G"%R

The study presented in the paper shows a development stage of our work in building a
strong framework for power/performance runtime management for the Intel
processors. Our view is that this framework can form the basis for future power-related
research. A unique characteristic of our approach (compared to previous approaches)
is that it requires minimal input and calculations. The required inputs are: a single
performance counter (line 1 in Table 1) and the power consumed by the processor
collected by monitoring the off-chip voltage regulator. Both inputs are gathered at run-
time by our kernel module. The idle power consumed by the processor in all
frequencies (9 values in i7) is also stored in our kernel module. Based on those inputs,
our kernel module is able to predict the effect of frequency scaling with minimal
calculations (presented in our previous work [9]). The whole approach runs in kernel
space thus introducing minimal timing overhead (less than 1%) in the execution of the
applications.

Figure 3 Error in predicting dynamic and total energy in i7 core.
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In this work, we focus on the following scenario: we perform a single whole run of
an application and using our methodology we predict the execution time and energy con-
sumed by the application in different frequencies (i.e. the core frequency is kept constant
during the whole execution). We are currently extending this work towards a window-
based approach in which our kernel module applies different V/f points at runtime aim-
ing to optimize different energy-efficient metrics (e.g EDP, application/OS energy met-
rics) in analogy to our runtime DVFS management in a simulated environment [9].

5 4"*+37>1"*>

We described a hardware-specific implementation of the stall-based model proposed
in our previous work [9]. In order to explain how the model performs in the i7 core, we
attempted a qualitative analysis of how prediction accuracy is affected by various
benchmarks’ behavior. Our experimental results show that the execution time of the
applications can be predicted for various frequency scaling steps —even for the
extreme scaling from fmax to fmin— by our model with good accuracy. We also
reverse engineer the power behavior of i7 core by measuring static energy dissipation,
as well as dynamic energy consumed during the execution of programs and predicting
how the power consumed by the processor is affected by frequency scaling.
-+R*"#3$.D($*0>:This work is supported by the EU-FP7 ICT Projects, “A
highly efficient adaptive multi-processor framework (HEAP),” Contract No. 247615,
and “Embedded Reconfigurable Architecture (ERA),” Contract No. 249059.
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Abstract. Energy-efficiency of applications deployed in data-centers is
becoming increasingly important. Techniques that reduce CPU utiliza-
tion for specific workloads can help improve energy consumption. An
application domain that has been studied in the past extensively and
is lately gaining importance in data-centers is distributed stream pro-
cessing. In this work we examine an existing stream processing system,
Borealis [6], and we identify significant sources of overhead in the com-
munication stack. Specifically, we examine the inter-node communication
path in a distributed setup and the overheads associated as streams flow
from node to node. We find that the send and receive tasks in Borealis
take up significant CPU resources. We redesign the send and receive
paths of Borealis by replacing TCP with a user-level protocol based
on Myrinet MX. We then evaluate the CPU utilization and network
throughput on a 10 Gbits/s network using both polling and interrupts
for communicating data. Finally, we propose a sleep mechanism that
avoids the CPU overheads associated with both interrupts and polling.
We use a real setup consisting of four eight-core nodes equipped with 10
Gbits/s Ethernet and native Myrinet MX communication subsystems to
examine the impact of our approach. Our results show that our approach
saves CPU utilization for a range of workload conditions and is able to
achieve better throughput compared to TCP with lower CPU utilization
(upto 40%).

1 Introduction

Modern data-center applications tend to employ complex software stacks that
are processor hungry. Recent work [7, 18] shows that CPU utilization can be
directly correlated to total system energy consumption.

Stream processing is a workload that has been studied extensively in the past
and has recently been gaining attention due the data-oriented nature of many

†Also, with the Department of Computer Science, University of Crete, P.O. Box
2208, Heraklion, GR-71409, Greece.



modern applications. In this work we examine the impact of the communication
protocol on CPU utilization of distributed stream processing applications over
10 Gbits/s networks. We use an existing stream processing system, Borealis [6],
to investigate how improved communication mechanisms can reduce CPU uti-
lization.

Traditionally, in communication-based applications, senders and receivers
need to detect the arrival of new (data or control) messages. Two approaches
to detecting these events are using interrupts or polling [17]. Neither of these
approaches is satisfactory. On one hand, interrupts incur high overhead at high-
network speeds and large packet rates. Polling, on the other hand, wastes CPU
at low packet rates. In addition, previous work has also examined adaptive tech-
niques that switch between interrupts and polling [13].

An alternative approach is to release the CPU by sleeping for a specific
amount of time when required events are still pending. Compared to interrupts,
releasing the CPU can be implemented synchronously thus avoiding overheads
related to asynchronous events. However, this approach can result in waking up
long before or after the event is due. Compared to polling, sleeping can release
the CPU to other threads but results in a system call. Ultimately, sleeping has
the potential to adjust CPU utilization to the required processing rate. The main
obstacle is regulating the sleep interval.

One approach to address this problem is to try and predict the amount
of sleep that is appropriate at any given point. However, in modern operating
systems it is not possible to exactly regulate sleep time at fine grain, because
it depends on a number of coarse grain events in the operating system kernel.
Thus, a more robust approach is to use a notion of doing work in “waves”.
Consider two nodes connected in a pipeline fashion with the first node being
the sender and the second node being the receiver. The receiver informs the
sender of the available memory buffers that it has reserved for receiving data
and then checks the buffers for the arrival of data. If the test fails, the receiver
sleeps for a fixed amount of time. In essence, the receiver accumulates work
while taking no extra CPU cycles. Similarly, the sender distributes the work and
then waits for a message from the receiver. This message informs the sender if
the receiver is ready to receive more data. If the test for the message fails, the
sender sleeps for a fixed amount of time. Thus, the sender accumulates work for
the receiver, which will process this during the next “wave”. The relationship
between network throughput and processing rate determines the exact shape of
these “waves”.

Normally in applications such as borealis, there is a separate task that process
the incoming data. Thus one way to look at our approach is that the sleep gives
the opportunity to conserve energy by not consuming excess energy polling or
processing interrupts. This more of the available CPU time is spent doing useful
work.

Implementing such a “wave” approach requires dealing with three issues.
First, we need to convert blocking send and receive operations to non-blocking
combined with a sleep operation. Second, we need to introduce an appropriate



buffering mechanism at each of these points to allow the rest of the system to
operate during the sleep. Finally, we need to ensure that the amount of buffer-
ing available at any point is appropriate for tolerating the inaccuracy of the
corresponding sleep operation.

We investigate the impact of this approach on Borealis. The original version
of Borealis uses TCP/IP for inter-node communication. It is possible to evaluate
our sleep-based approach with a communication stack based on TCP. However,
we port the communication stack of borealis to user-level Myrinet MX for two
reasons. First, as we will show in Section 3, user-level communication protocols
result in higher throughput compared to TCP/IP. This helps to accomodate the
drop in throughput due to the difficulty of implementing a precise sleep interval
for an entire range of system parameters. Further, a user-level communication
protocol allows a fine-grained control of buffering resources in the send and
receive paths since all the memory buffers for sending and receiving are allocated
at the user-layer.

In this work, we create a version of Borealis that replaces kernel-based TCP/IP
with user-level Myrinet MX communication [5]. Our modified version of Bore-
alis uses a more light-weight communication mechanism and is able to achieve
higher throughput than the original, TCP/IP-based version. We implement all
three approaches (interrupts, polling, sleeping) in this version of Borealis and
examine the impact on CPU utilization. We also compare the results with the
original Borealis with TCP. We use a setup of four, eight-core systems (with each
one being 2-way hyperthreaded) connected with a 10 Gbits/s Myrinet network
using simple streaming workloads.

The rest of this paper is organized as follows. Section 2 presents our design of
the new communication subsystem of Borealis using Myrinet MX and the new
sleeping mechanism that saves CPU utilization for a range of workload condi-
tions. Section 3 presents our experimental platform and evaluation methodology
and discusses our experimental results. In Section 4 we present related work.
Finally, we draw our conclusions in Section 5.

2 Communication Subsystem Design

In this section, we describe our modifications to the communication subsystem of
Borealis and our proposed algorithm for sleeping in the send and receive threads.

2.1 Communication using Myrinet MX

Figure 1 shows our implementation of Borealis using Myrinet MX. During the
initialization phase, the receiver allocates and posts a number of buffers where
data could be received directly from the network interface controller (NIC).
Later, the receiver can poll each location to find out if data has arrived in the
buffer. If so, data is picked up from the buffer and the buffer is posted again
as ready for reception of new data. Similarly, the sender operates on a queue
of buffers. First, the sender fills up and post all buffers of the queue. Then, the
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Fig. 1. MX-based communication in Borealis. ’X’ indicates that the buffer is hold-
ing valid data and is not available for re-use. Arrows indicate the sequence in which
operations are performed.

sender scans the queue one by one, checks for the completion of DMA and fills
up and posts the buffer for sending data.

In Myrinet MX there is a need to deal with “unexpected” messages [15].
Myrinet MX, similar to other user-level communication systems, operates with-
out copies when receive buffers for messages have already been pre-posted. In
case a message arrives at the receiver and there is no receive buffer specified by
the application the system will deliver the message to a library-level, internal
buffer. Later, when the message is successfully detected via a receive operation,
it is copied to the application buffer. To ensure that Myrinet MX will operate
without data copies in the receive path, there is a need to ensure that receive
buffers are pre-posted and arriving messages are always delivered directly to
these application buffers. For this purpose we use an application-level flow con-
trol mechanism for buffer management purposes between the sender and the
receiver. The receiver (Figure 1(a)) pre-posts an agreed number of buffers for
sender to send events. Then, the receiver updates the sender with new credits
as it frees receive buffers after sending events to another thread that processes
these events.

2.2 Sleep-based communication algorithms

We use non-blocking send and receive Myrinet MX calls combined with sleep
system calls to replace blocking send and receive calls. This in turn requires
introducing buffering at certain points in the path to ensure that other parts
of the system continue processing when a specific thread sleeps. Figure 1 and
Algorithms 1 show our receive and send paths.

In the receive path, we check each buffer for arrival of data. If the test fails,
the receive thread sleeps for a fixed amount of time. In the send path we check
for completion of a DMA operation on a buffer posted earlier. If the operation
is not complete yet, the send thread sleeps for a fixed amount of time. Also,
before posting a send buffer, the sender checks to see if credits are available for
sending data. If there are no credits to send data, the send thread sleeps for a



Algorithm 1 Receive (left) and send (right) path with sleeping enabled.
n=size of circular queue that holds incoming or outgoing events
f=frequency with which to send credits to upstream node
t=time interval for which to sleep
m=number of credits to send to the upstream node
Receiver:
// initialize receive buffers and credits
post buffers(n)
send credits(n);
i = 0
// wait until next receive buffer contains
new event
while TRUE do

while poll buffer(i) do
sleep(t)

end while
process event(i)
i = (i+ 1)%n
// if above threshold replenish sender
if (i%f) = (f − 1) then

send credits(m)
end if

end while

Sender:
credits=waitfor credits()
i = 0
while TRUE do

//wait for next send buffer
while poll buffer(i) do

sleep(t)
end while
prepare event(i)
//replenish in case you run out
credits += collect credits()
while credits = 0 do

sleep(t)
credits += collect credits()

end while
send event(i)
i = (i+ 1)%n

end while

fixed amount of time. The sleep in the receive thread and the sleep when there
are no credits available are related and work together to reduce CPU utilization
without reducing overall throughput.

The rational behind sleeping in the receive thread is to accumulate work
while consuming no CPU cycles. While the receive thread sleeps it has already
posted buffers for receiving data. When the receiver wakes up, it takes some
time to process buffers and re-post them. Therefore, the credits to receive more
data are sent to the upstream node after some time which depends upon the
frequency with which credits are sent. The send thread of the node upstream
sleeps during this time interval to conserve energy. If the sleeping intervals are
approximately correct, when the send thread wakes up, it will receive credits to
send data to the downstream node.

The minimum sleep time in our systems is 2 ms. However, we use a sleep
interval of 10 ms in our sleeping algorithms. We experimentally find this to be
an appropriate time interval for our specific systems. Note that the sleep interval
can change based upon the system load. An algorithm to adjust sleep interval
according to system load is left as future work.

3 Experimental results

In this section, we describe our evaluation methodology, the experimental plat-
form, and our experimental results.



3.1 Experimental platform and methodology

Our test environment consists of four, server-type systems running the Linux op-
erating system (CentOS release 5.4). Each system has two Intel Xeon Quad-core
chipsets. The cores have two-way hyper-threaded capability. Therefore, each ma-
chine can potentially execute sixteen threads simultaneously. Each machine has
14 Gbytes of DRAM physical memory and a 10 Gbits/s Ethernet NIC fromMyri-
com that is capable of operating both in TCP/IP and Myrinet MX mode. The
four machines are physically connected via 10 Gbits/s Ethernet HP ProCurve
3400cl switch. The first node in the pipeline runs a load-generator that generates
a batch of tuples (events). The next two nodes in the pipeline run Borealis. The
last node runs a light-weight receiver that receives tuples and consumes them
internally without storing them.

We use an in-house micro-benchmark that consists of two filter operators in
a chain. The parameters of the filter are set to pass each incoming tuple down
the pipeline.

Our main goal is to understand the impact on performance and CPU utiliza-
tion of using spinning, interrupts, and sleeping in the send and receive threads
of Borealis with Myrinet MX API vs. TCP/IP. We build and use the four con-
figurations of Borealis, tcp, mx-poll, mx-int, mx-sleep, that use TCP, Myrinet
MX with interrupts, polling, and our sleeping mechanism, respectively.

We perform experiments with 8 instances of Borealis running on each node. A
different stream is associated with each instance of Borealis. There is a separate
load-generator (source) and receiver (sink) for each instance. A given instance
of Borealis can not utilize the entire bandwidth of 10 Gbits/s Ethernet because
processing time becomes the limiting factor. For this reason, we use multiple
instances of Borealis on each node to exploit the maximum bandwidth available
from the underlying 10 Gbits/s network. We believe that this is a realistic mode
of operation for data streaming systems. Finally, we show results for different
tuple sizes and different batching factors.

We perform experiments for different tuple sizes and event sizes. Note that
a larger event size is obtained by using a large batching factor. We use a buffer
queue of 100 entries on the receive side and send credits to the nodes upstream
after processing every 10 buffers. The size of queue on the send side is 10 entries.
The sender posts a send operation for receiving credits when 5 credits are left.

3.2 Impact on Network Throughput

Figure 2 shows the network throughput of Borealis for TCP and Myrinet MX
(interrupts, polling, and sleeping). In all our experiments, the processing thread
is the bottleneck. For this reason the use of polling when running 8 instances
of Borealis results in a lower throughput compared to that of interrupts. Using
Myrinet MX with interrupts instead of TCP improves the throughput of Borealis
by upto 22% for a tuple size of 512 bytes. Further note that mx-adp always results
in better throughput compared to TCP between 23− 63%.
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Fig. 2. Network throughput of Borealis in tuples/s for TCP/IP and Myrinet MX for
different tuple and batch (event) sizes running a filter query.

3.3 Impact on CPU Utilization

Figure 3(d-e) shows the CPU utilization of Borealis for Myrinet MX (polling,
interrupts, and sleeping). CPU utilization is reported as the average utilization
across the two nodes that run Borealis. A utilization of 100% in Figure 3(d-e)
means that all 16 hardware threads in both nodes are fully utilized. We note that
in all cases CPU utilization exceeds 90% for both TCP (not shown) and Myrinet
MX with polling. Using Myrinet MX with interrupts reduces the CPU utilization
slightly. Note that at small event sizes, the receive thread does not have enough
work to perform as it receives fewer tuples per event, quickly enqueues them,
and waits for the next batch. Therefore, mx-adp results in significant reduction
in CPU utilization compared to both mx-poll and mx-int. For an event size of
1024 bytes ( batching factor of 8), mx-adp approaches exactly the throughput
of mx-int, with saving in CPU utilization upto 15% for a tuple size of 128.
Note that since data streaming is an upcoming application, the typical range
of parameters such as batching factor is not obvious. However, since our sleep-
based mechanisms do not result in significant loss in throughput compared to
mx-int, we believe it to be a reasonable approach.

Next, we note that we do not observe any saving in CPU utilization beyond
event sizes of 1024 bytes, 2048 bytes and 4096 bytes respectively for tuple size
of 128 bytes, 256 bytes and 512 bytes. This is because events larger than these
result in a large batching factor. A large batching factor implies more tuples in a
single event and thus high overhead relating to enqueuing of tuples compared to
communication overhead of sending or receiving a single event. Therefore, when
the receive thread enqueues one event, it finds the next event readily available.

In summary, an implementation based upon Myrinet MX with sleep-based
send and receive paths, we are able to achieve better throughput compared to
TCP and reduce CPU utilization upto 40%.

4 Related Work

Data streaming has recently been gaining importance due to the large number
of existing and emerging applications that need to process data [10]. Research
both in academia [6, 9, 3] and industry [16] aims at building scalable distributed
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Fig. 3. Network throughput in tuples/s and % utilization for different tuple and batch
(event) sizes for a filter query.

stream processing systems. Efforts span the space from designing and imple-
menting efficient relational operators for streaming databases [1], to proposing
high-level query languages for specifying streaming workloads [8, 4], and to map-
ping different applications to streaming systems [20, 11, 1].

Less attention has so far been paid to understanding the performance impli-
cations of communication protocols and infrastructure for this communication-
intensive class of applications. The authors in [16] presents an evaluation of
SystemS, a data streaming system built by IBM. They discuss at a high level
the impact of communication on streaming performance. In contrast, in our work
we not only quantify the performance of an existing stream processing system
on a cluster consisting of modern server machines but also discuss a number
of specific issues related to the communication protocol stack and related opti-
mizations. We also evaluate in detail the impact of these aspects and show how
future streaming systems can benefit from careful design.

Recently there has also been increased interest in research on issues related to
(in)efficiency of software stacks in data center applications. The authors in [14]
examine trends in building data center applications from existing components
that lead to large inefficiencies. In addition, recent work has been pointing out
that software stack inefficiencies have an impact on the energy efficiency of data
center infrastructures [2, 12]. These approaches propose architectural techniques
to adaptively manage power subject to changing workload conditions or policies
above the hardware layer to exploit techniques and have pointed out inefficiencies
in the software stack of existing middleware systems.

The authors in [19] have proposed hardware mechanisms to avoid OS spin
overheads. Their techniques addresses the problem of extra spin overhead in
over-committed virtual machines running operating systems that do not use



gang scheduling. In this paper, we quantify the negative impact of using spinning
in the send and receive paths of the communication stack of Borealis when the
system and underlying network is heavily-loaded.

5 Conclusions

In this work we examine how the communication stack of a distributed streaming
system, Borealis, can use a sleep-based mechanism to avoid both interrupt and
polling overheads. We identify subtle reasons for excessive CPU utilization in
this class of applications and propose mechanisms to improve the efficiency of
individual nodes. We propose a sleeping mechanism that saves CPU utilization
for a range of workload conditions. In comparison with TCP, using Myrinet MX
and our sleep-based send and receive operations achieves better throughput and
reduces CPU utilization upto 40% for a range of parameters. We expect that the
importance of our approach will increase as systems become more heterogeneous
by combining networks and processors of different speeds in consolidated data
center environments that execute multiple distributed applications at the same
time..
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