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Message from the Organizers 
 
 
Welcome to the Third Workshop on Computer Architecture and Operating System Co-
design (CAOS), and thank you for helping us to make this event successful! 
 
This meeting brings together researchers and engineers from academia and industry to 
share ideas and research directions in Computer Architecture and Operating System co-
design and interaction. It is never easy to follow a successful edition, but this year we 
have three high-quality papers, spanning from single-chip multicore systems to large 
servers, and covering topics ranging from scalable shared-memory and storage 
architectures to integration of heterogeneous accelerators in the operating system. 
Scalability is surely this year’s hot topic! 
 
As last year, the third edition of CAOS presents another great keynote: “Blue Gene/Q: 
Architecture, Co-Design, and the Road to Exascale”, from Dr. Robert Wisniewski (IBM 
Research). We hope to make great keynotes one of the CAOS's traditions. 
  
This workshop is intended to be a forum for people working on both hardware and 
software to get together, exchange ideas, initiate collaborations, and design future 
systems. In fact, as multicore and/or multithreaded architectures monopolize the market 
from embedded systems to supercomputers, new problems have arisen in terms of 
scheduling, power, temperature, scalability, design complexity, efficiency, throughput, 
heterogeneity, and even device longevity. In order to minimize power consumption and 
cost, more and more cores per chip and hardware threads (contexts) per core share 
internal hardware resources, from the pipeline to the memory controller. Achieving high 
performance with these modern systems becomes increasingly difficult. Moreover, 
performance is no longer the only important metric: newer metrics such as security, 
power, throughput, and Quality of Service are becoming first-order design constraints. 
 
It seems clear that neither hardware nor software alone can achieve the desired 
performance objectives and, at the same time, comply with the aforementioned 
constraints. The answer to these new challenges must come from hardware-software co-
design. Computer Architectures (CA) and Operating Systems (OS) should interact 
through well-defined interfaces, exchange run-time information, monitor application 
progress and needs, and cooperatively manage resources.  

 
We thank the Program Committee and the additional reviewers for their hard work in 
putting together an exciting proceeding for this edition. 
 

Roberto Gioiosa (BSC) 
Omer Khan (MIT) 

 
        Organizing Committee 
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10.00-10.05 Opening 

10.05-11:00 

 
Keynote: Blue Gene/Q: Architecture, Co-Design, and the Road to Exascale 
Dr. Robert Wisniewski (IBM Research) 

In 2004 Blue Gene made a significant impact by introducing an ultra-scalable 
computer with a focus on low power. After that, Blue Gene/L maintained the 
number 1 spot on the top500 list for an unprecedented 7 lists. In 2007 Blue 
Gene/P was announced and a peak 1 PF machine installed at Juelich, and Blue 
Gene/P garnered the top position on the green 500 list. At Supercomputing 2011 
we announced Blue Gene/Q, a 208 TF per rack machine, obtaining over 2 
GF/watt of computing, which obtained the number 1 position on the green 500, 
and a 4 rack machine was ranked number 17 on the top 500 list. Blue Gene/Q 
also was number 1 on the graph 500 list. The announced LLNL Sequoia 
machine will be a 96 rack, 20 PF machine, and will be delivered in mid 2012. 

Blue	
  Gene/Q	
  contains	
  innovative	
  technology	
  including	
  hardware	
  
transactional	
  memory	
  and	
  speculative	
  execution,	
  as	
  well	
  as	
  mechanisms	
  
such	
  as	
  scalable	
  atomic	
  operations	
  and	
  a	
  wakeup	
  unit	
  to	
  help	
  us	
  better	
  
exploit	
  the	
  17	
  cores	
  and	
  68	
  threads	
  per	
  node.	
  In	
  the	
  talk	
  I	
  will	
  describe	
  the	
  
base	
  architecture	
  of	
  Blue	
  Gene/Q	
  include	
  the	
  hardware,	
  packaging,	
  and	
  
software	
  with	
  a	
  focus	
  on	
  the	
  codesign	
  process	
  between	
  the	
  applications,	
  
system	
  software,	
  and	
  hardware	
  teams	
  that	
  lead	
  to	
  the	
  above	
  capability.	
  I	
  
will	
  also	
  describe	
  how	
  Blue	
  Gene/Q	
  is	
  a	
  research	
  vehicle	
  for	
  helping	
  us	
  
explore	
  the	
  challenges	
  that	
  face	
  us	
  on	
  the	
  road	
  to	
  exascale. 

11.00-11.30 Break 
  

11:30-12:00 NUMA Implications for Storage I/O Throughput in Modern Servers 
Shoaib Akram, Manolis Marazkis, and Angelos Bilas 

  

12.00-12.30 Judicious Thread Migration When Accessing Distributed Shared Caches 
Keun Sup Shim, Mieszko Lis, Omer Khan, and Srinivas Devadas 

  

12:30-13:00 

Programming and Scheduling Model for Supporting Heterogeneous 
Accelerators in Linux 
Tobias Beisel, Tobias Wiersema, Christian Plessl, and André Brinkmann 
 

13.00-14:30 Lunch 
	
  



	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  



 Keynote 
Blue Gene/Q: Architecture, Co-Design, and the Road to Exascale 

Dr. Robert Wisniewski (IBM Research) 

Abstract: 

In 2004 Blue Gene made a significant impact by introducing an ultra-scalable computer 
with a focus on low power. After that, Blue Gene/L maintained the number 1 spot on the 
top500 list for an unprecedented 7 lists. In 2007 Blue Gene/P was announced and a peak 
1 PF machine installed at Juelich, and Blue Gene/P garnered the top position on the green 
500 list. At Supercomputing 2011 we announced Blue Gene/Q, a 208 TF per rack 
machine, obtaining over 2 GF/watt of computing, which obtained the number 1 position 
on the green 500, and a 4 rack machine was ranked number 17 on the top 500 list. Blue 
Gene/Q also was number 1 on the graph 500 list. The announced LLNL Sequoia machine 
will be a 96 rack, 20 PF machine, and will be delivered in mid 2012. 

Blue Gene/Q contains innovative technology including hardware transactional memory 
and speculative execution, as well as mechanisms such as scalable atomic operations and 
a wakeup unit to help us better exploit the 17 cores and 68 threads per node. In the talk I 
will describe the base architecture of Blue Gene/Q include the hardware, packaging, and 
software with a focus on the codesign process between the applications, system software, 
and hardware teams that lead to the above capability. I will also describe how Blue 
Gene/Q is a research vehicle for helping us explore the challenges that face us on the road 
to exascale. 

Bio: 

Dr. Robert Wisniewski is the chief software architect for Blue Gene Research and 
manager of the Blue Gene and Exascale Research Software Team at the IBM T.J. Watson 
Research Facility. He is an ACM Distinguished Scientist and IBM Master Inventor. He 
has published over 60 papers in the area of high performance computing, computer 
systems, and system performance, and has filed over 50 patents. Prior to working on Blue 
Gene, he worked on the K42 Scalable Operating System project targeted at scalable next 
generation servers and the HPCS project on Continuous Program Optimization that 
utilizes integrated performance data to automatically improve application and system 
performance. Before joining IBM Research, and after receiving a Ph.D. in Computer 
Science from the University of Rochester, Robert worked at Silicon Graphics on high-
end parallel OS development, parallel real-time systems, and real-time performance 
monitoring. His research interests lie in experimental scalable systems with the goal of 
achieving high performance by cooperation between the system and the application. He is 
interested in how to structure and design systems to perform well on parallel machines, 
and how those systems can be designed to allow user customization. 

 



	
  
	
  
	
  
	
  
	
  



NUMA Implications for Storage I/O Throughput in
Modern Servers

Shoaib Akram, Manolis Marazkis, and Angelos Bilas†

Foundation for Research and Technology - Hellas (FORTH)
Institute of Computer Science (ICS)

100 N. Plastira Av., Vassilika Vouton, Heraklion, GR-70013, Greece
Email: {shbakram,maraz,bilas}@ics.forth.gr

I. A BSTRACT

Current server architectures have started to move away from
traditional memory buses that do not scale and towards point-
to-point interconnects for communication among processors,
memories, and I/O devices. As a result, memory modules are
not equidistant from all cores leading to significant differences
in memory access performance from different cores. Similar
to memory modules, I/O devices are connected today to
processor sockets in a NUMA manner. This results in NUMA
effects for transfers between I/O devices and memory banks,as
well as processor I/O (PIO) accesses to I/O devices. This trend
towards NUMA architectures increases complexity for buffer
placement, device data transfers, and code execution, creating
a complex affinity space. In this paper, we discuss problems
that arise when performing I/O and present a preliminary
evaluation of the impact of different types of affinity. We
use a server-type system with two Intel Xeon processors,
four storage controllers, and24 solid-state-disks (SSDs). Our
experiments with various machine configurations show that
compared to local transfers between devices and memory,
remote transfers have the potential to reduce maximum achiev-
able throughput from8% up to40%. Further, for I/O-intensive
applications, remote transfers can potentially increase I/O-
completion time up to130%.

II. I NTRODUCTION

A predominant number of servers deployed in data-centres
today use multiple processors on a single motherboard. The
processors, memory modules, and the I/O devices are con-
nected together by a cache-coherent, point-to-point intercon-
nect [26], [4]. Such architectures result in non-uniform com-
munication overheads between different devices and memory
modules. A known problem in this direction has been the non-
uniform latency of memory accesses by a processor to a local
or remote memory module. Each processor has faster access to
memory modules connected locally to it and slower access to
the rest of the (remote) memory modules. In addition, today,
accesses from one processor to a remote memory module

†Also, with the Department of Computer Science, University of Crete, P.O.
Box 2208, Heraklion, GR-71409, Greece.

need to traverse other processors’ sockets (also called NUMA
domains), interfering with local traffic. Given the currenttrend
towards increasing number of cores in each processor and
also the number of sockets, we expect that this non-uniformity
will become more diverse with multiple crossings from other
processors’ sockets for memory accesses. Solutions have been
proposed to deal with this problem at the Operating System
(OS) layer [13], [8] mainly using various memory management
techniques as well as hardware caching approaches. However,
these approaches alone are inadequate to deal with affinity
issues that arise during transfers between I/O devices and
memory. The affinity that a transfer of data exhibits, e.g. from
a local memory module to a local I/O device can impact
performance.

Figure 1 shows a typical modern server architecture based
on a point-to-point interconnect. Note that the number of
processors in NUMA architectures has been increasing [12]
and the trend is projected to continue. In this paper, we
quantify the impact of affinity in non-uniform architectures
(NUMA) on storage I/O throughput. Our initial evaluation
of a server-class machine with an architecture similar to the
one shown in Figure 1 shows that the maximum achievable
storage throughput degrades significantly if communication
is done without considering proper affinity. In particular,we
observe that the maximum achievable throughput can reduce
significantly if processor (A) reads data from storage devices
connected to chipset (b) compared to reading from devices
connected to chipset (a).

The main objective of this paper is to give an initial
evaluation of the impact of affinity on storage throughput. In
particular, we present the impact of remote buffer placement
(improper affinity) on application throughput, device through-
put, time taken for completion of OS tasks (system time) and
time taken for completion of I/O requests (iowait time). We
quantify this impact by placing buffers and scheduling threads
manually. We use a simple classification scheme to build four
configurations with different approaches to buffer placement
and scheduling threads. We evaluate the performance of vari-
ous applications using these configurations.

Typically in real applications, buffers are allocated in mem-
ory modules closest to the processor. However, systems try
to balance the use of memory across modules to allow for
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Fig. 1. The top-level architecture of a server machine with non-uniformity.

higher throughput. In addition, the system scheduler may move
threads around resulting in the initiation of transfers between
devices and memory modules with improper affinity: Data
requested by a processor could be located on a device that is
either closer to the processor or remote, as shown in Figure 1,
whereas the buffers used for the transfer can have different
affinity to the processor, resulting in significant variations in
the observed performance.

Our work shows that compared to the configuration where
transfers between devices and memory are local :

• I/O-intensive workloads suffer from69% up to 130%
increase in I/O-completion time due to remote transfers.

• Filesystem-intensive workloads suffer from40% up to
57% increase in system time (time for performing OS-
related activities) due to remote transfers.

• Throughput-oriented workloads such as state checkpoint-
ing or data-streaming suffer up to20% drop in read/write
throughput due to remote transfers.

The rest of the paper is organized as follows. Section III
describes a taxonomy of NUMA affinity in modern servers in-
volving memory and devices. In the same section, we describe
four configurations with different policies for buffer placement
and thread scheduling Section IV describes our methodology
for evaluation and in Section V we discuss the results of our
evaluation. We provide a discussion of the shortcomings of our
work in Section V. We conclude this work in Section VIII.

III. I/O A FFINITY TAXONOMY

In real applications, when a processor accesses a block
device for a file, it first allocates a buffer in memory for
reading a block from the block device. For instance, consider
a worst-case scenario (Figure 1 where a process running on
processor (A) allocates a buffer in memory module closer to
processor (B) and requests a block of file to be read from
the devices connected to the chipset (b). The three high-level
operations are 1) issuing the I/O operation, 2) serving the I/O
request, and 3) using the data that is returned. We ignore the
first operation because unlike the other two operations, issuing

an I/O request does not depend on the size of data. The second
operation is the type of transfer (local or remote) and the third
operation is the usage of data (local or remote). We further
differentiate based on the type of transfer (read or write) and
the type of usage (load or store).

Table I presents our taxonomy. The best case is when a
transfer occurs with proper affinity between a memory module
and an I/O controller that are located close to the same CPU
socket. Conversely, the worst case is when the transfer buffer
and the I/O controller are located in different sockets (also
called NUMA domains). An even worse case is when not only
the transfers are remote but the subsequent use of the data is
by a processor that is located remotely to where the memory
module is located. Some typical scenarios for real applications
include:

• TLORP0I0 : I/O transfers are local, the transfer operation
is read, and data is not used by the processor.

• TRORP0I0 : I/O transfers are remote, the transfer oper-
ation is read, and data not used by processor.

• TRORPRIR : I/O transfers are remote, transfer operation
is read, and the data that is returned is accessed by remote
processor.

• TLORPRIR : I/O transfers are local, transfer operation is
read, and the data is used by a remote processor.

• TRORPRIR : I/O transfers are remote, transfer operation
is read, and data usage is by remote processor (load).

• TLORPLIR : I/O transfers are local, transfer operation
is read, and data is used by the same (local) processor,
where data is returned.

The last three cases are depicted in Figure 2: circles denote
CPUs or devices involved in the I/O operation. Arrows denote
the transfer path taken by an I/O request. The first transfer
is from chipset to memory DIMM. Next, we discuss buffer
management and thread scheduling taking NUMA effects into
account. Proper buffer management involves placing data in
the same memory module that is connected to the socket
as the storage controller responsible for the I/O operation.
Thread scheduling involves running threads on the CPU that
is connected to the memory module containing data needed by
the CPU. In this paper, we do not propose new algorithms for
scheduling and buffer placement. Instead, we place threadsand
buffers manually and build five configurations for evaluating
the possible range in performance degradation. In order to
understand the configurations, we first describe the copies
that take place when data is transfered from from a device
to application memory.

The I/O stack of a typical OS today is shown in Figure 3. For
each I/O request made, there are two buffers involved in the
transfer from the device to the application: One buffer in the
application address space and one in the kernel. The placement
of the application buffer is controlled in our experiments via
numactl that is able to pin threads and buffers to specific
sockets. Kernel-buffer placement cannot be controlled; I/O
buffers in the kernel are part of the buffer cache and are shared
by all contexts performing I/O in the kernel. Thus, a context



TABLE I
TRANSFER AFFINITY TAXONOMY.

Transfer (T) Transfer Operation (O) Core access (P) Access type (I)
Local (L) Read (R) Local (L) Load (R)
Remote (R) Write (W) Remote (R) Store (W)

None (0)

CPUMEM CPU MEM
BA

CS baCS

CPUMEM CPU MEM
BA

CS bCS a

CPUMEM CPU MEM
BA

CS bCS a

Q4

Q3

Q1

Q2 Q2

Q3

Q4

Q1

Q2

Q1

Q4

Q3

TLORPRIR TRORPRIR TLORPLIR(1) (2) (3)

Fig. 2. Pictorial representation of three cases derived from the taxonomy described in Table I.

Application Buffer

Storage Device

SCSI Layer

Block Device Layer

Buffer Cache

Virtual File System 

File System (XFS)

Fig. 3. I/O Stack in Modern Operating Systems.

might use a buffer that is located in any memory module.
Creating different buffer pools for each socket could allow
proper kernel buffer placement and use, however, requires
extensive kernel modifications. In our experiments, buffer
allocations are initiated by user contexts entering the kernel
(we always start experiments with a clean buffer cache). This
results in (properly) placing buffers initially in the socket
where the user context is running. Although during each
experiment buffers can be reused by other contexts performing
I/O resulting in degraded affinity, this is not very pronounced
due to the large memory size in our setup.

Based upon buffer placement and thread scheduling, we use
five configurations shown in Table II. The axis for classifica-
tion are: (1) local versus remote transfers between I/O device
and memory and (2) local versus remote copy operation.
This copy operation is between the application buffers and

TABLE II
CONFIGURATIONS.

Transfer (TR) Copy Operation (CP) Configuration
Local(L) Local(L) TRLCPL
Remote(R) Remote(R) TRRCPR
Remote(R) Local(L) TRRCPR
Local(L) Remote(R) TRRCPR

the buffers of the OS-managed cache. We manually control
the source and destination of each copy operation by placing
threads and their buffers appropriately vianumactl.

IV. EVALUATION METHODOLOGY

In this section, we describe our experimental platform, ap-
plications for evaluation, and our methodology for evaluation.

A. Testbed for Evaluation

The top-level diagram of our evaluation platform is similar
to the one shown in Figure 1. The server uses Intel Xeon
Quadcore processors with four cores and eight hardware
threads (two-way hyperthreaded). The server is equipped with
two chipsets also from Intel (Tylersburg5520). We populate
the three memory slots with three DDR3 DIMMs. Each DIMM
occupy a separate physical channel. We use four storage
controllers (two per chipset). The storage controllers areform
LSI (Megasas 9260). We use a total of24 SSDs (Intel X-
25 SLC). Each storage controller is connected to six SSDs.
We create a software RAID device on top of six SSDs
connected to each storage controller. Therefore, each processor
has two software RAID devices that are local to it with better
affinity and two that are remote with worst affinity. We use
CentOS release 5.5 OS distribution with 2.6.18-194.32.1.el5
kernel (64-bit). For placing buffers and contexts, we use the
numactl library for Linux (version 2.0.7).



B. Bandwidth Characterization of System Components

In this section, we describe the bandwidth of individual
system components in order to understand the peak limitations
in our system. The bandwidth of the QPI links (labeled Q1,
Q2, Q3, Q4) is24 GBytes/s. Each storage controller from
LSI is able to achieve1.6 GBytes/s. The SSDs can sustain a
throughput of about200 MBytes/s for sequential writes and
270 MBytes/s for sequential (or random) reads. To measure
the memory bandwidth in our system, we use a in-house
benchmark modeled after STREAM [14] called mstress. We
run multiple instances of mstress and measure the memory
throughput with local and remote affinity. Figure 4(a) shows
our results. The peak bandwidth of storage controllers is much
less than the memory subsystem and the QPI interconnect,
neither of these is a potential bottleneck when performing I/O.

C. Methodology

To evaluate the impact of wrong buffer placement on
application performance, we use the following benchmarks
and applications:

1) zmIO: is an in-house benchmark that fully stresses the
storage sub-system of our high-end server machines (4 storage
controllers each capable of doing1.6 GB/s). zmIO uses the
asynchronous API of Linux for performing I/O operations [1].
zmIO issues multiple (user-defined parameter) I/O operations
and keep track of the status of each of the operation in a
queue called status queue. When the status queue is full, zmIO
performs a blocking operation and waits for an I/O operation
to complete. A new operation is issued after completing a
pending operation. The completion of I/O operations by CPU
and the completion of outstanding I/O operations by the
storage devices happens in parallel. We run zmIO in direct
mode. Note that in direct mode, zmIO performs I/O access to
storage devices that does not go through the page cache in the
kernel.

2) fsmark: is a filesystem stress benchmark that stresses
various features of the filesystem. fsmark runs a sequence
of operations on filesystem layer. In particular, we use it to
perform the operation sequence create,open,write,read, and
close. We run fsmark using128 threads with each thread
creating a single directory and128 files within each directory.
Each thread chooses a random directory and performs the
specified sequence of operations on any of the files within
the directory.

3) IOR: simulates checkpointing support in compute- in-
tensive applications [18]. We use the MPI API for performing
I/O operations. We run IOR on top of the XFS filesystem.
We use32 processes that checkpoint a2 GB state to a shared
file (aggregate file size is64 GB). Each process works with a
single file using sequential offsets within the single file.

4) Stream: is a synthetic application that simulates the
end-to-end datapath of data streaming systems [11]. The
application consists of a consumer thread that reads64 KB
records in a buffer. The consumer thread enqueues the pointer
to buffers in a list of descriptors. The list has128K entries. The
producer thread reads the buffer from the list of descriptors,

performs some conditioning on the buffer, updates the list of
descriptors and stores the record to storage device.

5) Psearchy: is a file indexing benchmark in the MOS-
BENCH [10] suite. File indexing is mainly done as a backend
job in data centres and web hosting facilities. We run Psearchy
using multiple processes. Each processes picks a file from a
shared queue of file names. Each process has a hash table for
storing in-memory BDB indices. The hash tables are written
to storage devices once they reach a particular size. We use32
processes,128 MB hash tables per process, and2 KB reads
and character oriented writes. We use100 GB corpus,10 MB
file size,100 files in each directory and100 directories.

For evaluating NUMA effects, we run a workload consisting
of four instances of the same application or benchmark. We
assign one RAID 0 device consisting of six SSDs to each
instance. Next, we define various metrics for our evaluation.

To project results to future systems with more components,
it is important to use appropriate metrics for evaluation and
observe how various components of the system are stressed
instead of merely observing the application throughput. For
this reason we use:

• Application Throughput (GB/s): The application through-
put refers to the aggregate bytes accessed by the appli-
cation divided by the execution time. Usually, read and
write throughput is reported separately based upon the
total bytes read or written during the execution time.

• Cycles per I/O (CPIO): In this work, we define and use
CPIO as a new metric for characterizing behavior of
applications that mainly process I/Os. We define CPIO
as the total cycles spent by the application divided by
the total sectors read and written by the device. We
believe that CPIO is particularly important for data-
centric applications that perform a one-pass over the
dataset as it gives an estimate of the work performed
per I/O sector. Ideally, as the number of cores increase,
CPIO should remain the same. Thus, it is a measure of
how well the applications scale on new generations of
systems.

• Throughput per socket: For one application, we report
the results in terms of throughput per socket. Because of
non-uniformity in the server systems, it is important to
maintain similar throughput across the entire system. We
show that for one of the applications, the throughput is
different for each socket depending upon the scheduling
scheme.

Since CPIO is a new metric we use in this paper, we discuss
it in detail below. We calculate cpio for each application by
running each application in ameaningfulconfiguration; ap-
plications when run, should generate I/O traffic. For instance,
cases where the workload fits in the available memory and ex-
hibit low I/O are probably not typical of future configurations
since the demand for data grows faster than DRAM capacity.
For this purpose, we select datasets that are big enough to not
fit in memory and generate I/O throughout execution.

To calculate CPIO, we measure the average execution time
breakdown as reported by the OS and consisting of user,



system, idle, and wait time. We also note the number of
I/Os that occurred during the same interval. There are two
issues related to the cpio calculation. First, what each of the
components means and second which ones should be taken
into account to come up with a meaningful metric. We next
briefly explain what each component of the breakdown means.

user timerefers to the time an application spends executing
code in the user space. When the user application request
services by the OS, the time spent is classified assystem time.
The time an application spends waiting for I/Os to complete
is classified aswait time. idle time refers to the time that the
application either has no more work to perform within the
current quantum or because it is waiting for resources that
are not available, for instance, locks. We use the modified
terms calledCPIOiowandCPIOsysrespectively to describe
the two components in terms ofCPIO. In our evaluation, we
use sector-size I/Os, with each sector being512 bytes. Note
that since CPU cycles proportionate to power [15], and given
the increasing emphasis on energy efficiency in data centres,
CPIO is an important metric.

V. RESULTS

In this section, we describe the results of our evaluation.

A. zmIO

We run zmIO indirect mode, and therefore, I/O accesses
do not go through the page cache in the kernel. Hence, there
is no distinction between local and remote copies. For DMA
transfers between devices and memory, the buffer provided by
the application is used instead. Note that this buffer is aligned
across the page boundary. In order to evaluate the impact of
affinity on throughput of zmIO, we use the affinity taxonomy
listed in Table I for describing our results. We mainly focus
on three issues:

• The impact of affinity between source and destination of
a transfer operation on storage throughput. Effectively,
this shows how much better or worse I/O transfers can
become by employing the wrong affinity.

• The impact of processor memory accesses on data trans-
fers, in combination with affinity. Typically, programs
that perform I/O also use CPU cycles to process data.
We examine the impact of accessing memory from the
processor to I/O transfer throughput.

• The impact of contention between processor and I/O
memory accesses on maximum achievable memory
throughput. Although this issues is similar to above,
in this case we are interested in whether simultaneous
accesses from processors and I/O devices to memory
result in a degradation of the maximum throughput, rather
than the impact on I/O throughput.

To evaluate the impact of affinity between source and
destination on storage bandwidth, we run multiple instances
of zmIO and measure the throughput. Figure 4(b) shows the
throughput of zmIO with up to eight instances. The reduction
in throughput with more than two instances and remote affinity
is up to40%.

At this point, it should be mentioned that we measured
throughput of zmIO using different machine configurations.
We observed that NUMA effects on throughput of zmIO
depend on a number of factors including OS distribution, the
version of Linux kernel, version ofnumactl library, and even
the type of motherboard. We observed that while Figure 4(b)
shows a40% drop in throughput, one of the machine config-
uration with a newer OS distribution and kernel, we observed
8% drop in throughput due to remote transfers. We believe that
the range of degradation that an application can potentially
suffer due to remote transfers is important to quantify and
improve.

Next, we optionally perform a summation operation over all
the bytes returned by the I/O read to observe the impact of
TLORPRIL and TRORPRIL. The variable that stores the sum
of the bytes is pinned in memory. The size of each transfer
is 1 MByte. Figure 4(b) shows results with zmIO touching
the data. Note that the absolute throughput for local transfers
and local use (TLORPLIR) is lower to that of TLORP0I0 be-
cause both the outstanding I/Os and the summation operation
accesses memory simultaneously. The reduction in throughput
for TLORPRIR when the data is used by a remote processor
is 5% with four instances of the benchmark. Beyond four
instances, TLORPRIL and TLORPLIL behave similarly. We
do not show results for TRORPLIR as it is also bounded by the
bandwidth of remote transfer operation and behaves similarto
the second case (TRORPRIR).

Next, we show how memory contention can hurt the per-
formance of storage I/O throughput in case of TLORPLIR in
Figure 4(c). We run instances of zmIO and mstress together.
We run up to eight instances of zmIO. Neither mstress nor
zmIO is bottlenecked by the CPU in this experiment. We run
zmIO in TLORPLIR mode. The absolute throughput of zmIO
drops by23% for eight instances when there is contention
for memory throughput i.e., mstress is running. The sum of
memory bandwidth used by zmIO and mstress together is
never greater than22 GBytes/s which is the maximum memory
bandwidth in the system.

B. fsmark

We discuss the results for fsmark in terms of cycles per
I/O. Since fsmark mostly perform operations related to the
filesystem, the system time is high. Also, due to contention
from multiple threads for I/O devices, iowait time is high. Fig-
ure 5(a) shows the breakdown of CPIO in terms ofCPIOsys

andCPIOiow. Remote transfers (TRRCPR) result in a40%
increase inCPIOsys compared to local transfers (TRLCPL).
Also if transfers are local, remote memory copy operation
(TRLCPR) result in a15% increase inCPIOsys compared
to TRLCPL. There is a130% increase inCPIOiow due to
remote transfers. The difference inCPIOiow due to remote
copies is not noticeable.

C. Psearchy

The results for Psearchy are shown in Figure 5(b). Again,
we discuss the results in terms of the cycles per I/O metric.
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Fig. 4. Results for mstress and zmIO.
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Fig. 5. NUMA affinity results for benchmarks and real applications.

First, we observe that remote transfers result in an increase in
CPIOsys andCPIOiow. However, remote copies does not
show a noticeable difference. In particular, TRRCPR results
in a 57% and 69% increase inCPIOsys and CPIOiow

respectively relative to TRRCPL.

D. IOR

We report read and write throughput of IOR for differ-
ent configurations in Figure 5(c). Note that for IOR, read
operations can potentially complete in memory and thus the
aggregate throughput in Figure 5(c) goes up to7 GB/s. We
observe that the read throughput decreases by16% for the
worst case (TRRCPR) compared to the best case (TRLCPL).
Similarly, write throughput decreases by19% due to remote
transfers.

E. Stream

Figure 5(d) shows the results for the streaming workload.
We show the throughput observed on each of the two sets
of SSDs. Note that one set of12 SSDs is connected to two
storage controllers. Compared to TRLCPL, we observe a14%
and 27% drop in throughput respectively for the two set of
SSDs in case of TRRCPR.

VI. SUMMARY AND DISCUSSION

In this section, we first summarize the results of our
evaluation. We then provide implications of our results for

other important data-centric applications. We also discuss the
shortcomings of our methodology for evaluation.

A. Summary of Results

We summarize our results as follows:
• Applications that are I/O-intensive suffer from70% up to
130% increase in iowait time and from40% up to 57%
increase in system time due to remote transfers.

• For streaming workloads, remote transfers can potentially
result in asymmetric throughput across the system i.e.,
some (NUMA) domains can provide more throughput
compared to other domains.

• Checkpointing applications can potentially suffer a20%
degradation in write throughput due to remote transfers.

• Finally, raw device throughput, as measured by mi-
crobenchmarks such as zmIO, can drop from8% up to
40% depending upon the machine configuration.

B. Discussion

Our main purpose is to discuss the I/O behavior of many
emerging data-centric applications. In particular, we arein-
terested in NUMA affinity effects on the performance of
these applications. The applications we collected for evaluation
comes from various domains. In particular, these applications
are part of various benchmark suites including PARSEC [6],
MOSBENCH [10], two OLTP workloads from the TPC foun-
dation, and emerging data stores. A brief description of the



TABLE III
APPLICATIONS AND DATA SETS FOREVALUATION .

Application Description
zmIO I/O subsystem stress test:

direct mode (D) or through VFS.
fs mark File system stress test.
IOR Application checkpointing.
Psearchy File indexing:

Directories (D) can be small (L)
or large (L); files (F) can be
small (L) or large (L).

Dedup File compression:
Files can be small (S) or Large (L).

Ferret Content similarity search:
Files could be Small (S) or Large(L).

Metis Mapredce library:
Word Count (C) or Linear Regression (LR).

Borealis Data streaming:
Record size could be 64 KB (Bor64),
128 bytes (Bor128), or 1 KB (Bor1024)

HBase Non-relational database.
BDB Key-value data store.
TPC-C OLTP workload (Warehouse).
TPC-E OLTP workload (Stock broker).
Tarrif Profiling of Call Detail Records.

applications along with the type of data sets is given in
Table III.

In terms of I/O behavior, most applications in Table III
does not have high system or iowait times. Further, most
applications does not stress the storage subsystem in a manner
similar to applications we evaluate in Section V. For this
reason, using different configurations do not show a noticeable
difference in application throughput, CPIO, or physical device
throughput. We suspect two potential reasons for this behavior
as follows:

Figure 6 shows the breakdown of execution time of the
applications in Table III in terms of user, system, idle, and
iowait time. The breakdown is collected by running one
instance of each application on top of a software RAID device
consisting of24 SSD devices. We note from the figure that
most applications exhibit neither a significant component of
system time nor iowait time. This lead us to the conclusion that
in current NUMA systems, transfers from remotely located
devices are detrimental to performance only if the application
exhibit significant system or iowait time.

Finally, our experimental results, performed under con-
trolled circumstances, strongly suggest that the kernel allocates
buffers for paging purposes locally. Nevertheless, we can
not manually control the placement of kernel buffers. Most
applications in Table III have complex runtime layers and
a large user-level application code base. Therefore, proper
placement of kernel buffers can not be guaranteed.

VII. RELATED WORK

Much work has been done for NUMA-aware process
scheduling and memory management in the context of shared
memory multiple processors [24], [16], [23]. Here, we discuss
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Fig. 6. Breakdown of time spent by various applications in terms of user,
system, idle, iowait, serving hardware interrupts (IRQ) and serving software
interrupts (SIRQ).

recent work for modern server machines with multiple sockets
on a single motherboard.

With the trend towards multiple cores on a single processor
chip in commodity desktop and server machines, there is no
longer a one-to-one mapping between I/O devices (network
interface cards (NIC) or storage controllers) and process-
ing resources (cores, virtual threads or even processors in
motherboards with multiple sockets). For instance, a network
interface card (NIC) can route the incoming traffic pertaining
to a particular socket to a specific core and the rest of
traffic to some other core. Recent10 GBit/s Ethernet NICs
from Intel (IX10GBE) provide multiple hardware queues and
mechanisms to associate each queue in hardware to a particular
software queue (which in turn is bind to a single core) [3], [2].

NUMA memory management is the problem of assigning
memory in a NUMA processor such that threads use memory
located next to the processor that they mostly run. These
issues are discussed in the realm of traditional multiprocessor
systems in [9], [17]. Recently, with multiple cores becoming
commonplace, commodity OS developers have started to in-
vest efforts to provide a NUMA API for programmers [5].

The authors in [20], [19] quantify NUMA effects in the
memory subsystem of Xeon 5520 processor from Intel. The
authors report that current memory controllers favor remote
memory accesses to local memory accesses which implies that
scheduling for data locality is not always a good idea. Also,
they show that throughput of remote memory accesses are
limited by QPI bandwidth. In this work, we show that along
with remote memory accesses, accessing remote I/O devices



can also hurt performance of realistic workloads.
Recently, there is a surge in literature dealing with thread

scheduling for modern servers. The authors in [25], [7] discuss
scheduling policies that address shared resource contention.
Their scheduling policies are built on a classification scheme
for threads and addresses contention in the memory sub-
system. In this paper, we use the transfer path from I/O devices
to physical memory and the processor that subsequently uses
the data to classify our scheduling policies.

Finally, energy efficiency in data centres is becoming more
and more important. In [21], [22], the authors discuss the
issues of co-scheduling processes considering both memory
bandwidth and potential of frequency scaling.

VIII. C ONCLUSIONS

In this paper, we described a problem in modern server ma-
chines that use point-to-point interconnects to connect CPUs,
memory and devices. We discuss the performance degradation
on applications if processes access data from memory modules
or devices that are located remotely to the processor. As
systems are built with more CPUs and sockets, with each CPU
having many cores and various memory modules, the perfor-
mance degradation due to the presence of NUMA affinity in
the system will increase. We propose a taxonomy based upon
the transfers from storage devices to memory modules and the
use of data by the process running on the local or the remote
socket. We describe four configurations with different buffer
placement and process scheduling policies. We classify the
configurations based upon how the transfers occur between the
storage devices and the kernel memory, and from the kernel
memory to the buffer reserved by the application. Our results
show that NUMA effects are particularly degrading for I/O-
intensive applications. As systems become more and more
heterogeneous, a more general solution to the placement and
scheduling problem will become essential for NUMA servers.

IX. A CKNOWLEDGMENTS

We thankfully acknowledge the support of the European
Commission under the 7th Framework Programs through the
IOLANES (FP7-ICT-248615), HiPEAC2 (FP7-ICT-217068),
and SCALUS (FP7-PEOPLE-ITN-2008-238808) projects. We
are thankful to Yannis Klonatos for modifications to the
original fsmark benchmark, Michail Flouris for modifications
to Psearchy, and Zoe Sebepou and Markos Fountoulakis for
providing the zmIO benchmark.

REFERENCES

[1] Kernel Asynchronous I/O (AIO) Support for Linux .
http://lse.sourceforge.net/io/aio.html .

[2] Receive flow steering . http://lwn.net/Articles/382428/ .
[3] Receive packet steering . http://lwn.net/Articles/362339/ .
[4] Advanced Micro Devices, Inc. AMD HyperTransportTM Technology.

http://www.amd.com.
[5] A.Kleen. A numa api for linux. In

http://www.firstfloor.org/ andi/numa.html., 2004.
[6] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The parsec benchmark suite:

characterization and architectural implications. InProceedings of the
17th international conference on Parallel architectures and compilation
techniques, PACT’08, pages 72–81, New York, NY, USA, 2008. ACM.

[7] S. Blagodurov, S. Zhuravlev, A. Fedorova, and A. Kamali.A case for
numa-aware contention management on multicore systems. InProceed-
ings of the 19th international conference on Parallel architectures and
compilation techniques, PACT’10, pages 557–558, New York, NY, USA,
2010. ACM.

[8] M. J. Bligh. Linux on numa systems. InProceedings of the Linux
Symposium, 2004.

[9] W. Bolosky, R. Fitzgerald, and M. Scott. Simple but effective techniques
for numa memory management. InProceedings of the twelfth ACM
symposium on Operating systems principles, SOSP’89, pages 19–31,
New York, NY, USA, 1989. ACM.

[10] S. Boyd-Wickizer, A. T. Clements, Y. Mao, A. Pesterev, M. F. Kaashoek,
R. Morris, and N. Zeldovich. An analysis of linux scalability to many
cores. In Proceedings of the 9th USENIX conference on Operating
systems design and implementation, OSDI’10, pages 1–8, Berkeley, CA,
USA, 2010. USENIX Association.

[11] M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney, U. etintemel,
Y. Xing, and S. Zdonik. Scalable distributed stream processing. In In
CIDR, 2003.

[12] M. Feldman. Dell unveils eight-socket hpc box. In
http://www.hpcwire.com/features/Dell-Unveils-Eight-Socket-HPC-
Server-116201574.html. HPCwire, 2011.

[13] http://lse.sourceforge.net/numa/. Linux Support for NUMA Hardware.
[14] John D. McCalpin. STREAM: Sustainable Memory Bandwidth in High

Performance Computers. http://www.cs.virginia.edu/stream/ .
[15] C. Kozyrakis, A. Kansal, S. Sankar, and K. Vaid. Server engineering

insights for large-scale online services.IEEE Micro, 30:8–19, July 2010.
[16] R. P. LaRowe, Jr., C. S. Ellis, and L. S. Kaplan. The robustness of numa

memory management. InProceedings of the thirteenth ACM symposium
on Operating systems principles, SOSP’91, pages 137–151, New York,
NY, USA, 1991. ACM.

[17] R. P. Larowe, Jr. and C. Schlatter Ellis. Experimental comparison of
memory management policies for numa multiprocessors.ACM Trans.
Comput. Syst., 9:319–363, November 1991.

[18] llnl.gov. ASC Sequoia Benchmark Codes .
https://asc.llnl.gov/sequoia/benchmarks/.

[19] Z. Majo and T. R. Gross. Memory management in numa multicore
systems: trapped between cache contention and interconnect overhead.
In Proceedings of the international symposium on Memory management,
ISMM’11, pages 11–20, New York, NY, USA, 2011. ACM.

[20] Z. Majo and T. R. Gross. Memory system performance in a numa
multicore multiprocessor. InProceedings of the 4th Annual International
Conference on Systems and Storage, SYSTOR’11, pages 12:1–12:10,
New York, NY, USA, 2011. ACM.

[21] A. Merkel and F. Bellosa. Memory-aware scheduling for energy effi-
ciency on multicore processors. InProceedings of the 2008 conference
on Power aware computing and systems, HotPower’08, pages 1–1,
Berkeley, CA, USA, 2008. USENIX Association.

[22] A. Merkel, J. Stoess, and F. Bellosa. Resource-conscious scheduling
for energy efficiency on multicore processors. InProceedings of the 5th
European conference on Computer systems, EuroSys’10, pages 153–166,
New York, NY, USA, 2010. ACM.

[23] S. Schneider, C. D. Antonopoulos, and D. S. Nikolopoulos. Scalable
locality-conscious multithreaded memory allocation. InProceedings of
the 5th international symposium on Memory management, ISMM’06,
pages 84–94, New York, NY, USA, 2006. ACM.

[24] M. Steckermeier and F. Bellosa. Using locality information in userlevel
scheduling. Technical report, University Erlangen-Ng, IMMD IV, 1995.

[25] S. Zhuravlev, S. Blagodurov, and A. Fedorova. Addressing shared
resource contention in multicore processors via scheduling. In Pro-
ceedings of the fifteenth edition of ASPLOS on Architecturalsupport
for programming languages and operating systems, ASPLOS’10, pages
129–142, New York, NY, USA, 2010. ACM.

[26] D. Ziakas, A. Baum, R. A. Maddox, and R. J. Safranek. Intel R© quick-
path interconnect architectural features supporting scalable system archi-
tectures.High-Performance Interconnects, Symposium on, 0:1–6, 2010.
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Abstract—Chip-multiprocessors (CMPs) have become the
mainstream chip design in recent years; for scalability reasons,
designs with high core counts tend towards tiled CMPs with
physically distributed shared caches. This naturally leads to a
Non-Uniform Cache Architecture (NUCA) design, where on-
chip access latencies depend on the physical distances between
requesting cores and home cores where the data is cached.
Improving data locality is thus key to performance, and several
studies have addressed this problem using data replication and
data migration.

In this paper, we consider another mechanism, hardware-
level thread migration. This approach, we argue, can better
exploit shared data locality for NUCA designs by effectively
replacing multiple round-trip remote cache accesses with a
smaller number of migrations. High migration costs, however,
make it crucial to use thread migrations judiciously; we therefore
propose a novel, on-line prediction scheme which decides whether
to perform a remote access (as in traditional NUCA designs) or
to perform a thread migration at the instruction level. For a set
of parallel benchmarks, our thread migration predictor improves
the performance by 18% on average and at best by 2.3X over
the standard NUCA design that only uses remote accesses.

I. BACKGROUND

In the recent years, transistor density has continued to
grow [13] and Chip Multiprocessors (CMPs) with four or more
cores on a single chip have become common in the commodity
and server-class general-purpose processor markets [25]. To
further improve performance and use the available transistors
more efficiently, architects are resorting to medium and large-
scale multicores both in academia (e.g., Raw [31], TRIPS [26])
and industry (e.g., Tilera [12], [4], Intel TeraFLOPS [29]), and
industry pundits are predicting 1000 or more cores in a few
years [5].

With this trend towards massive multicore chips, a tiled
architecture where each core has a slice of the last-level on-
chip cache has become a popular design, and these physically
distributed per-core cache slices are unified into one large,
logically shared cache, known as the Non-Uniform Cache
Architecture (NUCA) [18]. In the pure form of NUCA, only
one copy of a given cache line is kept on chip, maximizing the
effective on-chip cache capacity and reducing off-chip access
rates. In addition, because only one copy is ever present on-
chip, no two caches can disagree about the value at a given
address and cache coherence is trivially ensured. A private per-
core cache organization, in comparison, would need to rely
on a complex coherence mechanism (e.g., a directory-based
coherence protocol); these mechanisms not only pay large area
costs but also also incur performance costs because repeated

cache invalidations are required for shared data with frequent
writes. NUCA obviates the need for such coherence overhead.

The downside of NUCA designs, however, is high on-
chip access latency, since every access to an address cached
remotely must cross the physical distances between the re-
questing core and the home core where the data can be cached.
Therefore, various NUCA and hybrid designs have been
proposed to improve data locality, leveraging data migration
and replication techniques previously explored in the NUMA
context (e.g., [30]). These techniques move private data to
its owner core and replicate read-only shared data among the
sharers at OS level [11], [15], [1] or aided by hardware [33],
[8], [28]. While these schemes improve performance on some
kinds of data, they still do not take full advantage of spatio-
temporal locality and rely on remote cache accesses with two-
message round trips to access read/write shared data cached
on a remote core.

To address this limitation and take advantage of available
data locality in a memory organization where there is only one
copy of data, we consider another mechanism, fine-grained
hardware-level thread migration [19], [20]: when an access is
made to data cached at a remote core, the executing thread is
simply migrated to that core, and execution continues there.
When several consecutive accesses are made to data assigned
to a given core, migrating the thread context allows the thread
to make a sequence of local accesses on the destination core
rather than pay the performance penalty of the corresponding
remote accesses, potentially better exploiting data locality. Due
to the high cost of thread migration, however, it is crucial to
judiciously decide whether to perform remote accesses (as in
traditional NUCA designs) or thread migrations, a question
which has not been thoroughly explored.

In this paper, we explore the tradeoff between the two
different memory access mechanisms and answer the question
of when to migrate threads instead of performing NUCA-
style remote accesses. We propose a novel, on-line prediction
scheme which detects the first instruction of each memory
instruction sequence in which every instruction accesses the
same home core and decides to migrate depending on the
length of this sequence. This decision is done at instruction
granularity. With a good migration predictor, thread migration
can be considered as a new means for memory access in
NUCA designs, that is complementary to remote access.

In the remainder of this paper,
• we first describe two memory access mechanisms –

remote cache access and thread migration – and explain



the tradeoffs between the two;
• we present a novel, PC-based migration prediction

scheme which decides at instruction granularity whether
to perform a remote access or a thread migration;

• through simulations of a set of parallel benchmarks, we
show that thread migrations with our migration predictor
result in a performance improvement of 18% on average
and at best by 2.3X compared to the baseline NUCA
design which only uses remote accesses.

II. MEMORY ACCESS FRAMEWORK

NUCA architectures eschew capacity-eroding replication
and obviate the need for a coherence mechanism entirely by
combining the per-core caches into one large logically shared
cache [18]. The address space is divided among the cores in
such a way that each address is assigned to a unique home core
where the data corresponding to the address can be cached;
this necessitates a memory access mechanism when a thread
wishes to access an address not assigned to the core it is
running on. The NUCA architectures proposed so far use a
remote access mechanism, where a request is sent to the home
core and the data (for loads) or acknowledgement (for writes)
is sent back to the requesting core.

In what follows, we first describe the remote access mech-
anism used by traditional NUCA designs. We also describe
another mechanism, hardware-level thread migration, which
has the potential to better exploit data locality by moving the
thread context to the home core. Then, we explore the tradeoff
between the two and present a memory access framework for
NUCA architectures which combines the two mechanisms.

A. Remote Cache Access

Since on-chip access latencies are highly sensitive to the
physical distances between requesting cores and home cores,
effective data placement is critical for NUCA to deliver high
performance. In standard NUCA architectures, the operating
system controls memory-to-core mapping via the existing
virtual memory mechanism: when a virtual address is first
mapped to a physical page, the OS chooses where the relevant
page should be cached by mapping the virtual page to a
physical address range assigned to a specific core. Since the
OS knows which thread causes a page fault, more sophisticated
heuristics can be used: for example, in a first-touch-style
scheme, the OS can map the page to the core where the
thread is running, taking advantage of data access locality. For
maximum data placement flexibility, each core might include
a Core Assignment Table (CAT), which stores the home core
for each page in the memory space. Akin to a TLB, the per-
core CAT serves as a cache for a larger structure stored in
main memory. In such a system, the page-to-core assignment
might be made when the OS is handling the page fault caused
by the first access to the page; the CAT cache at each core is
then filled as needed1.
1Core Assignment Table (CAT) is not an additional requirement for our
framework. Our memory access framework can be integrated with any data
placement scheme.

Under the remote-access framework, all non-local memory
accesses cause a request to be transmitted over the interconnect
network, the access to be performed in the remote core, and
the data (for loads) or acknowledgement (for writes) to be sent
back to the requesting core: when a core C executes a memory
access for address A, it must

1) compute the home core H for A (e.g., by consulting the
CAT or masking the appropriate bits);

2) if H =C (a core hit),
a) forward the request for A to the cache hierarchy

(possibly resulting in a DRAM or next-level cache
access);

3) if H 6=C (a core miss),
a) send a remote access request for address A to core

H;
b) when the request arrives at H, forward it to H’s

cache hierarchy (possibly resulting in a DRAM
access);

c) when the cache access completes, send a response
back to C;

d) once the response arrives at C, continue execution.
Accessing data cached on a remote core requires a poten-

tially expensive two-message round-trip: unlike a private cache
organization where a coherence protocol (e.g., directory-based
protocol) would take advantage of spatial and temporal locality
by making a copy of the block containing the data in the local
cache, a traditional NUCA design must repeat the round-trip
for every remote access. Optimally, to reduce remote cache
access costs, data private to a thread should be assigned to the
core the thread is executing on or to a nearby core; threads that
share data should be allocated to nearby cores and the shared
data assigned to geographically central cores that minimize
the average remote access delays. In some cases, efficiency
considerations might dictate that critical portions of shared
read-only data be replicated in several per-core caches to
reduce overall access costs. For shared read/write data cached
on a remote core (which are not, in general, candidates for
replication), a thread still needs to perform remote accesses.

B. Thread Migration

In addition to the remote access mechanism, fine-grained,
hardware-level thread migration has been proposed to exploit
data locality for NUCA architectures [19], [20]. A thread
migration mechanism brings the thread to the locus of the data
instead of the other way around: when a thread needs access
to an address cached on another core, the hardware efficiently
migrates the thread’s execution context to the core where
the memory is (or is allowed to be) cached and continues
execution there.

If a thread is already executing at the destination core, it
must be evicted and migrated to a core where it can continue
running. To reduce the necessity for evictions and amortize the
latency of migrations, cores duplicate the architectural context
(register file, etc.) and allow a core to multiplex execution
among two (or more) concurrent threads. To prevent deadlock,
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one context is marked as the native context and the other is
the guest context: a core’s native context may only hold the
thread that started execution on that core (called the thread’s
native core), and evicted threads must migrate to their native
cores to guarantee deadlock freedom [10].

Briefly, when a core C running thread T executes a memory
access for address A, it must

1) compute the home core H for A (e.g., by consulting the
CAT or masking the appropriate bits);

2) if H =C (a core hit),
a) forward the request for A to the cache hierarchy

(possibly resulting in a DRAM access);
3) if H 6=C (a core miss),

a) interrupt the execution of the thread on C (as for
a precise exception),

b) migrate the microarchitectural state to H via the
on-chip interconnect:
i) if H is the native core for T , place it in the

native context slot;
ii) otherwise:

A) if the guest slot on H contains another
thread T ′, evict T ′ and migrate it to its
native core N′

B) move T into the guest slot for H;
c) resume execution of T on H, requesting A from its

cache hierarchy (and potentially accessing backing
DRAM or the next-level cache).

Although the migration framework requires hardware
changes to the baseline NUCA system (since the core itself
must be designed to support efficient migration), it migrates
threads directly over the interconnect network to achieve the
shortest possible migration latencies, which is faster than other
thread migration approaches (such as OS-level migration or
Thread Motion [24], which uses special cache entries to store
thread contexts and leverages the existing cache coherence

protocol to migrate threads). In terms of a thread context size
that needs to be migrated, the relevant architectural state in
a 64-bit x86 processor amounts to about 3.1Kbits (16 64-bit
general-purpose registers, 16 128-bit floating-point registers
and special purpose registers, e.g., rflags, rip and mxcsr),
which is the context size we are assuming in this paper. The
thread context size may vary depending on the architecture;
in the Tilera TILEPro64 [4], for example, it amounts to about
2.2Kbits (64 32-bit registers and a few special registers).

C. Hybrid Framework

We propose a hybrid memory access framework for NUCA
architectures by combining the two mechanisms described:
each core-miss memory access may either perform the access
via a remote access as in Section II-A or migrate the current
execution thread as in Section II-B. The hybrid architecture is
illustrated in Figure 1. For each access to memory cached on
a remote core, a decision algorithm determines whether the
access should migrate to the target core or execute a remote
access.

As discussed earlier, the approach of migrating the thread
context can potentially better take advantage of spatiotemporal
locality: where a remote access mechanism would have to
make repeated round-trips to the same remote core to access its
memory, thread migration makes a one-way trip to the core
where the memory can be cached and continues execution
there; unless every other word accessed resides at a different
core, it will make far fewer network trips.

At the same time, we need to consider the cost of thread mi-
gration: given a large thread context size, the thread migration
cost is much larger than the cost required by remote-access-
only NUCA designs. Therefore, when a thread is migrated to
another core, it needs to make several local memory accesses
to make the migration “worth it.” While some of this can be
addressed via intelligent data layout [27] and memory access
reordering at the compiler level, occasional “one-off” accesses



seem inevitable and migrating threads for these accesses will
result in expensive back-and-forth context transfers. If such
an access can be predicted, however, we can adopt a hybrid
approach where “one-off” accesses are executed under the
remote access protocol, and migrations handle sequences of
accesses to the same core. The next section discusses how we
address this decision problem.

III. THREAD MIGRATION PREDICTION

As described in Section II, it is crucial for the hybrid
memory access architecture (remote access + thread migration)
to make a careful decision whether to follow the remote
access protocol or the thread migration protocol. Furthermore,
because this decision must be taken on every access, it must
be implementable as efficient hardware. Since thread migration
has an advantage over the remote access protocol for multiple
contiguous memory accesses to the same location but not
for “one-off” accesses, our migration predictor focuses on
detecting such memory sequences that are worth migrating.

A. Detection of Migratory Instructions

Our migration predictor is based on the observation that
sequences of consecutive memory accesses to the same home
core are highly correlated with the program (instruction) flow,
and moreover, these patterns are fairly consistent and repetitive
across the entire program execution. At a high level, the
predictor operates as follows:

1) when a program first starts execution, it basically runs
as on a standard NUCA organization which only uses
remote accesses;

2) as it continues execution, it keeps monitoring the home
core information for each memory access, and

3) remembers each first instruction of every sequence of
multiple successive accesses to the same home core;

4) depending on the length of the sequence, marks the
instruction either as a migratory instruction or a remote-
access instruction;

5) the next time a thread executes the instruction, it mi-
grates to the home core if it is a migratory instruction,
and performs a remote access if it is a remote-access
instruction.

The detection of migratory instructions which trigger thread
migrations can be easily done by tracking how many con-
secutive accesses to the same remote core have been made,
and if this count exceeds a threshold, marking the instruction
to trigger migration. If it does not exceed the threshold, the
instruction is marked as a remote-access instruction, which is
the default state. This requires very little hardware resources:
each thread tracks (1) Home, which maintains the home
location (core ID) for the current requested memory address,
(2) Depth, which indicates how many times so far a thread
has contiguously accessed the current home location (i.e., the
Home field), and (3) Start PC, which keeps record of the PC
of the very first instruction among memory sequences that
accessed the home location that is stored in the Home field.
We separately define the depth threshold θ, which indicates

the depth at which we determine the instruction as migratory.
With a 64-bit PC, 64 cores (i.e., 6 bits to store the home
core ID) and a depth threshold of 8 (3 bits for the depth
field), it requires a total of 73 bits; even with a larger core
count and a larger threshold, fewer than 100 bits are sufficient
to maintain this data structure. When a thread migrates, this
data structure needs to be transferred together with its 3.1Kbit
context (cf. II-B), resulting in 3.2Kbits in total. In addition,
we add one bit to each instruction in the instruction cache (see
details in Section III-B) indicating whether the instruction has
been marked as a migratory instruction or not, a negligible
overhead.

The detection mechanism is as follows: when a thread T
executes a memory instruction for address A whose PC = P,
it must

1) compute the home core H for A (e.g., by consulting the
CAT or masking the appropriate bits);

2) if Home = H (i.e., memory access to the same home
core as that of the previous memory access),

a) if Depth < θ,
i) increment Depth by one, then if Depth = θ,

StartPC is marked as a migratory instruction.
3) if Home 6= H (i.e., a new sequence starts with a new

home core),
a) if Depth < θ,

i) StartPC is marked as a remote-access instruc-
tion2;

b) reset the entry (i.e., Home = H, PC = P, Depth =
1).

Figure 2 shows an example of the detection mechanism
when θ = 2. Suppose a thread executes a sequence of memory
instructions, I1 ∼ I8. Non-memory instuctions are ignored
because they do not change the entry content nor affect the
mechanism. The PC of each instruction from I1 to I8 is PC1,
PC2, ... PC8, respectively, and the home core for the memory
address that each instruction accesses is specified next to each
PC. When I1 is first executed, the entry {Home, Depth, Start
PC} will hold the value of {A, 1, PC1}. Then, when I2 is
executed, since the home core of I2 (B) is different from Home
which maintains the home core of the previous instruction
I1 (A), the entry is reset with the information of I2. Since
the Depth to core A has not reached the depth threshold,
PC1 is marked as a remote-access instruction (default). The
same thing happens for I3, setting PC2 as a remote-access
instruction. Now when I4 is executed, it accesses the same
home core C and thus only the Depth field needs to be updated
(incremented by one). After the Depth field is updated, it
needs to be checked to see if it has reached the threshold
θ. Since we assumed θ = 2, the depth to the home core
C now has reached the threshold and therefore, PC3 in the
Start PC field, which represents the first instruction (I3) that

2Since all instructions are initially considered as remote-accesses, marking
the instruction as a remote-access instruction will have no effect if it has not
been classified as a migratory instruction. If the instruction was migratory,
however, it reverts back to the remote-access mode.



accessed this home core C, is now classified as a migratory
instruction. For I5 and I6 which keep accessing the same
home core C, we need not update the entry because the first,
migration-triggering instruction has already been detected for
this sequence. Executing I7 resets the entry and starts a new
memory sequence for the home core A, and similarly, I7 is
detected as a migratory instruction when I8 is executed. Once
a specific instruction (or PC) is classified as a migratory
instruction and is again encountered, a thread will directly
migrate instead of sending a remote request and waiting for a
reply.

Memory Instruction Sequence

PCA 1

Start PCHome Depth

Memory Instruction Sequence
In : {PCn , Home core for In}

execute I1 : {PC1 , A} PC1A 1

PC2B 1

execute I2  : {PC2 , B}
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8 { 8 }

Fig. 2. An example how instructions (or PC’s) which are followed by
consecutive accesses to the same home location, i.e., migratory instructions
are detected in the case of the depth threshold θ = 2. Setting θ = 2 means
that a thread will perform remote accesses for “one-off” accesses and will
migrate for multiple accesses (≥ 2) to the same home core.

Figure 3 shows how this migration predictor actually im-
proves data locality for the example sequence we used in
Figure 2. Suppose a thread originated at core A, and thus, it
runs on core A. Under a standard, remote-access-only NUCA
where the thread will never leave its native core A, the memory
sequence will incur five round-trip remote accesses; among
eight instructions from I1 to I8, only three of them (I1, I7
and I8) are accessing core A which result in core hits. With
our migration predictor, the first execution of the sequence
will be the same as the baseline NUCA, but from the second
execution, the thread will now migrate at I3 and I7. This
generates two migrations, but since I4, I5 and I6 now turn
into core hits (i.e., local accesses) at core C, it only performs
one remote access for I2. Overall, five out of eight instructions
turn into local accesses with effective thread migration.

B. Storing and Lookup of Migratory Instructions
Once a migratory instruction is detected, a mechanism to

store the detection is necessary because a thread needs to
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Fig. 3. The number of remote accesses and migrations in the baseline NUCA
with and without thread migration.

migrate when it executes this instruction again during the
program. We add one-bit called the “migratory bit” for each
instruction in the instruction cache to store this information.
Initially, these bits are all zeros; all memory instructions are
handled by remote-accesses when the program first starts exe-
cution. When a particular instruction is detected as a migratory
instruction, this migration bit is set to 1. The bit is set to 0
if the instruction is marked as a remote-access instruction,
allowing migratory instructions to revert back to the remote-
access mode. In this manner, the lookup of the migratory
information for an instruction also becomes trivial because the
migratory bit can be read together with the instruction during
the instruction fetch phase with almost no overhead.

When the cache block containing a migratory instruction
gets evicted from the instruction cache, we can choose either to
store the information in memory, or to simply discard it. In the
latter case, it is true that we may lose the migratory bit for the
instruction and thus, a thread will choose to perform a remote
access for the first execution when the instruction is reloaded
in the cache from memory. We believe, however, that this
effect is negligible because miss rates for instruction caches are
extremely low and furthermore, frequently-used instructions
are rarely evicted from the on-chip cache. We assume the
migratory information is not lost in our experiments.

Another subtlety is that since the thread context transferred
during migration does not contain instruction cache entries,
the thread can potentially make different decisions depending
on which core it is currently running on, i.e., which instruction
cache it is accessing. We rarely observed prediction inaccu-
racies introduced by this, however. For multithreaded bench-
marks, all worker threads execute almost identical instructions
(although on different data), and when we actually checked
the detected migratory instructions for all threads, they were
almost identical; this effectively results in the same migration
decisions for any instruction cache. Therefore, a thread can
perform migration prediction based on the I-$ at the current
core it is running on without the overhead of having to send
the migratory information with its context. It is important to
note that even if a misprediction occurs due to either cache
eviction or thread migration (which is very rare), the memory



access will still be carried out correctly (albeit perhaps with
suboptimal performance), and the functional correctness of the
program is maintained.

IV. EVALUATION

A. Simulation Framework

We use Pin [2] and Graphite [22] to model the proposed
NUCA architecture that supports both remote-access and
thread migration. Pin enables runtime binary instrumentation
of parallel programs, including the SPLASH-2 [32] bench-
marks we use here; Graphite implements a tile-based multi-
core, memory subsystem, and network, modeling performance
and ensuring functional correctness. The default settings used
for the various system configuration parameters are summa-
rized in Table I.

Parameter Settings

Cores 64 in-order, 5-stage pipeline, single-issue
cores, 2-way fine-grain multithreading

L1/L2 cache per core 32/128KB, 2/4-way set associative
Electrical network 2D Mesh, XY routing, 3 cycles per hop,

128b flits
3.2 Kbits execution context size (cf. Sec-
tion III-A)

Context load/unload latency:
⌈

pkt size
flit size

⌉
=

26 cycles
Context pipeline insertion latency = 3
cycles

Data Placement FIRST-TOUCH, 4KB page size
Memory 30GB/s bandwidth, 75ns latency

TABLE I
SYSTEM CONFIGURATIONS USED

For data placement, we use the first-touch after initialization
policy which allocates the page to the core that first accesses it
after parallel processing has started. This allows private pages
to be mapped locally to the core that uses them, and avoids all
the pages being mapped to the same core where the main data
structure is initialized before the actual parallel region starts.

B. Application benchmarks

Our experiments used a set of Splash-2 [32] benchmarks:
fft, lu contiguous, lu non contiguous, ocean contiguous,
ocean non contiguous, radix, raytrace and water-n2, and two
in-house distributed hash table benchmarks: dht lp for linear
probing and dht sc for separate chaining. We also used a
modified set of Splash-2 benchmarks [27]: fft rep, lu rep,
ocean rep, radix rep, raytrace rep and water rep, where each
benchmark was profiled and manually modified so that the
frequently-accessed shared data are replicated permanently
(for read-only data) or temporarily (for read-write data)
among the relevant application threads. These benchmarks

Fig. 4. The fraction of memory accesses requiring accesses to another core
(i.e., core misses). The core miss rates decrease when thread migrations are
effectively used.

with careful replication3 allow us to explore the benefits of
thread migration on NUCA designs with more sophisticated
data placement and replication algorithms like R-NUCA [15].
Rather than settling on and implementing one of the many
automated schemes in the literature, we use modified Splash-
2 benchmarks which implement all beneficial replications, and
can serve as a reference placement/replication scheme.

Each application was run to completion using the recom-
mended input set for the number of cores used. For each
simulation run, we measured the average latency for memory
operations as a metric of the average performance of the
multicore system. We also tracked the number of memory
accesses being served by either remote accesses or thread
migrations.

C. Performance

We first compare the core miss rates for a NUCA system
without and with thread migration: the results are shown in
Figure 4. The depth threshold θ is set to 3 for our hybrid
NUCA, which basically aims to perform remote accesses for
memory sequences with one or two accesses and migrations
for those with ≥ 3 accesses to the same core. We show how
the results change with different values of θ in Section IV-D.
While 29% of total memory accesses result in core misses
for remote-access-only NUCA on average, NUCA with our
migration predictor results in a core miss rate of 18%, which
is a 38% improvement in data locality. This directly relates
to better performance for NUCA with thread migration as
shown in Figure 5. For our set of benchmarks, thread mi-
gration performance is no worse than the performance of the
baseline NUCA and is better by up to 2.3X, resulting in 18%
better performance on average (geometric mean) across all
benchmarks.

Figure 6 shows the fraction of core miss accesses handled by
remote accesses and thread migrations in our hybrid NUCA
scheme. Radix is a good example where a large fraction of
remote accesses are successfully replaced with a much smaller
number of migrations: it originally showed 43% remote access
rate under a remote-access-only NUCA (cf. Figure 4), but

3Our modifications were limited to rearranging and replicating the main
data structures to take full advantage of data locality for shared data. Our
modifications were strictly source-level, and did not alter the algorithm used.



Fig. 5. Average memory latency of our hybrid NUCA (remote-access +
thread migration) with θ = 3 normalized to the baseline remote-access-only
NUCA.

Fig. 6. The breakdown of core miss rates handled by remote accesses and
migrations

it decreases to 7.9% by introducing less than 0.01% of
migrations, resulting in 5.4X less core misses in total. Across
all benchmarks, the average migration rate is only 3% and
these small number of thread migrations results in a 38%
improvement in data locality (i.e., core miss rates) and an
18% improvement in overall performance.

D. Effects of the Depth Threshold

We change the value of the depth threshold θ = 2, 3
and 5 and explore how the fraction of core-miss accesses
being handled by remote-accesses and migrations changes. As
shown in Figure 7, the ratio of remote-accesses to migrations
increases with larger θ. The average performance improvement
over the remote-access-only NUCA is 13%, 18% and 15%
for the case of θ = 2, 3 and 5, respectively (cf. Figure 8).
The reason why θ = 2 performs worse than θ = 3 with almost
the same core miss rate is because of its higher migration
rate; due to the large thread context size, the cost of a single
thread migration is much higher than that of a single remote
access and needs, on average, a higher depth to achieve better
performance.

V. RELATED WORK

To provide faster access of large on-chip caches, the non-
uniform memory architecture (NUMA) paradigm has been
extended to single-die caches, resulting in a non-uniform
cache access (NUCA) architecture [18], [9]. Data replication
and migration, critical to the performance of NUCA designs,
were originally evaluated in the context of multiprocessor

Fig. 7. The fraction of remote-accesses and migrations for the standard
NUCA and hybrid NUCAs with the different depth thresholds (2, 3 and 5)
averaged across all the benchmarks.

Fig. 8. Average memory latency of hybrid NUCAs with the different depth
thresholds (2, 3 and 5) normalized to that of the standard NUCA averaged
across all the benchmarks.

NUMA architectures (e.g., [30]), but the differences in both
interconnect delays and memory latencies make the general
OS-level approaches studied inappropriate for today’s fast on-
chip interconnects.

NUCA architectures were applied to CMPs [3], [17] and
more recent research has explored data distribution and mi-
gration among on-chip NUCA caches with traditional and
hybrid cache coherence schemes to improve data locality. An
OS-assisted software approach is proposed in [11] to control
the data placement on distributed caches by mapping virtual
addresses to different cores at page granularity. When adding
affinity bits to TLB, pages can be remapped at runtime [15],
[11]. The CoG [1] page coloring scheme moves pages to
the “center of gravity” to improve data placement. The O2

scheduler [6], an OS-level scheme for memory allocation
and thread scheduling, improves memory performance in
distributed-memory multicores by keeping threads and the
data they use on the same core. Zhang proposed replicating
recently used cache lines [33] which requires a directory
to keep track of sharers. Reactive NUCA (R-NUCA) [15]
obviates the need for a directory mechanism for the on-chip
last-level cache by only replicating read-only data based on
the premise that shared read-write data do not benefit from
replication. Other schemes add hardware support for page
migration support [8], [28]. Although manual optimizations of
programs that take advantage of the programmer’s application-
level knowledge can replicate not only read-only data but
also read-write shared data during periods when it is not
being written [27], only read-only pages are candidates for
replication for a NUCA substrate in general automated data



placement schemes. Instead of how to allocate data to cores,
our work focuses on how to access the remote data that is not
mapped to the local core, especially when replication is not
an option. While prior NUCA designs rely on remote accesses
with two-message round trips, we consider choosing between
remote accesses and thread migrations based on our migration
predictor to more fully exploit data locality.

Migrating computation to the locus of the data is not itself
a novel idea. Hector Garcia-Molina in 1984 introduced the
idea of moving processing to data in memory bound archi-
tectures [14]. In recent years migrating execution context has
re-emerged in the context of single-chip multicores. Michaud
shows the benefits of using execution migration to improve the
overall on-chip cache capacity and utilizes this for migrating
selective sequential programs to improve performance [21].
Computation spreading [7] splits thread code into segments
and assigns cores responsible for different segments, and
execution is migrated to improve code locality. A compile-time
program transformation based migration scheme is proposed
in [16] that attempts to improve remote data access. Migration
is used to move part of the current thread to the processor
where the data resides, thus making the thread portion lo-
cal. In the design-for-power domain, rapid thread migration
among cores in different voltage/frequency domains has been
proposed to allow less demanding computation phases to
execute on slower cores to improve overall power/performance
ratios [24]. In the area of reliability, migrating threads among
cores has allowed salvaging of cores which cannot execute
some instructions because of manufacturing faults [23]. Thread
migration has also been used to provide memory coherence
among per-core caches [19], [20] using a deadlock-free fine-
grained thread migration protocol [10]. We adopt the thread
migration protocol of [10] for our hybrid memory access
framework that supports both remote accesses and thread
migrations. Although the hybrid architecture is introduced
in [19], [20], they do not answer the question of how to
effectively decide/predict which mechanism to follow for each
memory access considering the tradeoffs between the two.
This paper proposes a novel, PC-based migration predictor
that makes these decisions at runtime, and improves overall
performance.

VI. CONCLUSIONS AND FUTURE WORK

In this manuscript, we have presented an on-line, PC-based
thread migration predictor for memory access in distributed
shared caches. Our results show that migrating threads for
sequences of multiple accesses to the same core can improve
data locality in NUCA architectures, and with our predictor,
it can result in better overall performance compared to the
traditional NUCA designs which only rely on remote-accesses.

Our future research directions include improving the mi-
gration predictor to better capture the dynamically changing
behavior during program execution and to consider other
factors than access sequence depths, such as distances or
energy consumption. Furthermore, we will also explore how
to reduce single-thread migration costs (i.e., the thread context

size being transferred) by expanding the functionality of the
migration predictor to predict and send only the useful part of
the context in each migration.
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Abstract—Computer systems increasingly integrate hetero-
geneous computing elements like graphic processing units and
specialized co-processors. The systematic programming and
exploitation of such heterogeneous systems is still a subject
of research. While many efforts address the programming of
accelerators, scheduling heterogeneous systems, i. e., mapping
parts of an application to accelerators at runtime, is still
performed from within the applications. Moving the scheduling
decisions into an external component would not only simplify
application development, but also allow the operating system
to make scheduling decisions using a global view.

In this paper we present a generic scheduling model that
can be used for systems using heterogeneous accelerators. To
accomplish this generic scheduling, we introduce a scheduling
component that provides queues for available accelerators,
offers the possibility to take application specific meta infor-
mation into account and allows for using different scheduling
policies to map tasks to the queues of both accelerators
and CPUs. Our additional programming model allows the
user to integrate checkpoints into applications, which permits
the preemption and especially also subsequent migration of
applications between accelerators. We have implemented this
model as an extension to the current Linux scheduler and show
that cooperative multitasking with time-sharing enabled by our
approach is beneficial for heterogeneous systems.

I. INTRODUCTION

Heterogeneous accelerator environments have become
ubiquitous with the advent of multi-core CPUs and general-
purpose graphics processing units (GPUs). This heterogene-
ity is also observable in compute centers, where cluster
systems use combinations of multi-core processors, GPUs,
and specialized co-processors, such as ClearSpeed CSX or
FPGAs, to accelerate scientific applications [1].

The usage of such systems is still limited though, since
most accelerators need to be programmed with unfamiliar
programming languages and APIs. Developing efficient soft-
ware for these architectures requires knowledge about the
underlying hardware and software components. Hence many
recent research efforts address the challenges to ease the
development and use of hardware accelerated code. While
this research area is of high relevance, we do not address
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the task of creating programs or configurations for hardware
accelerators in this paper.

Instead, we approach the challenge of performing schedul-
ing decisions at runtime and treating hardware accelerators
as peer computation units that are managed by the operating
system (OS) kernel like CPU cores. The goal of scheduling
tasks in the context of heterogeneous systems is to assign
tasks to compute units in order to enable time-sharing of ac-
celerators and to provide fairness among tasks that compete
for the same resources. Scheduling tasks to heterogeneous
accelerators raises a number of practical challenges, the most
important being that some hardware accelerators such as
GPUs do not support preemption and that the migration
of tasks between different accelerators is complicated due
to largely different execution models and machine state
representations. Also, the scheduling process itself is more
complex than process scheduling for homogeneous CPU
cores, since each scheduling decision requires to incorporate
specific hardware characteristics (e. g., the communication
bandwidth or memory sizes) and needs to consider the
current availability and state of the heterogeneous compute
units. In addition, knowledge about the availability and
suitability of a task for a particular hardware accelerator is
required. This information is highly application specific and
has to be provided by the application developer. Scheduling
tasks to hardware accelerators has been neglected by OS
developers so far and is managed as part of the application.
This implies that hardware accelerators are used exclusively
by one particular application without any time-sharing.

The contribution of this work is a general programming
and scheduling model for heterogeneous systems and an ex-
ample implementation in Linux. We provide an extension to
the Linux Completely Fair Scheduler (CFS) that 1) provides
awareness of installed accelerators, 2) enables scheduling
of specific tasks to accelerators, and 3) allows time-sharing
and task migration using a cooperative multitasking and
checkpointing approach. Our approach is non-preemptive,
but allows tasks to release a compute unit upon a request
by the scheduler and thus increases the fairness among
tasks. Dynamic task migration on heterogeneous systems is
a major contribution of this approach.



The scheduler hardware selection decision is based on
meta information provided by the applications. While we
supply a basic scheduling policy based on static affinities
to accelerators, our focus is to provide a framework for
heterogeneous scheduling using a time-sharing approach. We
evaluate our work with two example applications that prove
the usability and benefits of the approach and supply data
for an efficiency analysis.

This work is an extension and more comprehensive dis-
cussion of a previous work of ours, in which we already
presented a prototype implementation of a linux kernel
extension supporting heterogeneous systems [2]. In this
paper we provide a more general view onto the problem
and describe the kernel extension in more detail.

The remainder of this paper is structured as follows. We
introduce a general scheduling model in Section II. After-
wards we describe our newly developed Linux kernel exten-
sion in Section III and present an according programming
model in Section IV. Section V evaluates the contributions
with two example applications. After a discussion of related
work in Section VI, we finish the paper with discussing
future work and drawing conclusions.

II. GENERAL SCHEDULING MODEL FOR
HETEROGENEOUS SYSTEMS

The CFS schedules processes in current Linux SMP
systems. CFS is a preemptive scheduler that guarantees
fairness with respect to the allocation of CPU time among
all processes. The scheduler aims to maximize the overall
utilization of CPU cores while also maximizing interactivity.
An inherent precondition for the use of such a preemptive
scheduler is that processes can be preempted and also
migrated between computing resources.

In this work, we address scheduling in a heterogeneous
computer system with non-uniform computing resources. We
target computer systems, which include single- or multi-core
CPUs operating in SMP mode and an arbitrary combination
of additional hardware accelerators, such as GPUs, DSPs,
or FPGAs. Scheduling such systems is more difficult due to
several reasons:

1) Accelerators typically do not have autonomous access
to the shared memory space of the CPU cores and
explicit communication of input data and results is
required. The most important impact on a scheduling
decision is the introduction of data transfer times that
rely on available bandwidths and the data to be copied.
These overheads have to be known and used as input
for a scheduling decision in heterogeneous systems.
Further, the communication bandwidth, latency, and
performance characteristics of accelerators are non-
uniform. These characteristics also determine the gran-
ularity of the task that can be successfully scheduled
without too much overhead (single operations, kernels,
functions/library calls, threads). Scheduling decisions

thus usually have to be more coarse-grained than on
CPUs.

2) Most accelerator architectures do not support preemp-
tion but assume a run-to-completion execution model.
While computations on CPU cores can be easily pre-
empted and resumed by reading and restoring well
defined internal registers, most hardware accelerators
do not even expose the complete internal state nor are
they designed to be interrupted.

3) Heterogeneous computing resources have completely
different architectures and ISAs. Hence, a dedicated
binary is required for each combination of task and
accelerator, which prevents migrating tasks between
arbitrary compute units. Even if a task with the same
functionality is available for several architectures and
if the internal state of the architecture is accessible, mi-
grating a task between different architectures is far from
trivial, because the representation and interpretation of
state is completely different.

A. Design Decisions

In this section, we discuss and describe basic design
decisions made for our scheduling framework.

1) Scheduler Component: Scheduling of homogeneous
CPU cores is currently done in the kernel, as all needed
input information for the scheduling decision is available to
the system, so that the scheduling problem can be completely
hidden from the application programmer. The heterogeneous
scheduling problem is more complicated, as more decision
parameters affect the decision, which are partly not available
to the systems scheduler component.

Selecting an appropriate hardware architecture for a task
to be scheduled dynamically at runtime is non trivial and
has to be performed by a scheduler, which can be located
at different locations in the system, either in the application,
in user space or in the system’s kernel.

To allow a holistic view on the applications and its
execution environment, we perform scheduling in the sys-
tem’s kernel by extending the CF scheduler. That way the
scheduling principles are still hidden from the application
developer and the OS can perform global decisions based
on the system utilization. Application specific scheduling
inputs still have to be provided by the application devel-
oper to incorporate application’s needs. Therefore we use a
hybrid user/kernel level approach to perform heterogeneous
scheduling. A specific interface has to be provided to allow
communication between application and scheduler.

2) Adapting the Operating System: Kernel space schedul-
ing is the current standard in operating systems. To provide
support for heterogeneous architectures one could either ex-
tend an existing OS or completely rewrite and fully optimize
it towards the heterogeneity. While heterogeneous systems
will be more and more used in future and become standard
in a foreseeable time, we believe that a complete rewrite of



the OS is not needed. An extension to the current system
has several advantages: Providing a modular implemented
extension to the CFS 1) keeps the management structures
as well as the scheduler component exchangeable, 2) makes
the changes easily applicable to other OS, and 3) reuses well
established and well known functionalities of the current
kernel that have been developed over years. That way our
kernel extension will help to explore new directions for
future OS, but does not yet try to set a new standard.

3) Delegate Threads: Tasks that execute on heteroge-
neous resources may have no access to main memory and
use a completely different instruction set or execution model
than an equivalent task on a CPU. In order to schedule and
manage these tasks without requiring a major OS rewrite, we
need to expose the tasks to the OS as known schedulable
entities. We therefore represent each task executing on a
hardware accelerator as a thread to the OS. This allows us
to use and extend the existing data structures of the scheduler
in the Linux kernel. We denote each thread representing
a task on a hardware accelerators as a delegate thread.
Apart from serving as a schedulable entity, the delegate
thread also performs all operating system interaction and
management operations on behalf of the task executing on
the accelerator unit, such as transferring data to and from the
compute unit and controlling its configuration and execution.
The delegate threads must be spawned explicitly by the
application and thus can also be used for co-scheduling on
different architectures. Once created, all threads are treated
and scheduled equally by the operating system.

4) Cooperative Multitasking: The CFS implements pre-
emptive multitasking with time-sharing based on a fairness
measure. Therefore, our scheduler has to include means
to preempt a task and to migrate it to another computing
unit. While non-voluntary preemption on FPGAs is possible,
GPUs currently do not directly support it yet, even if it is
planned for the future [3]. Therefore we use the delegate
threads to forward requests from the kernel scheduler to the
task on the accelerator.

Nevertheless, even enabling preemption on GPUs does not
solve the migration problem. The major difficulty is to find
a way of mapping the current state of a compute unit to
an equivalent state on a different compute unit. To allow
preemption and subsequent migration of applications on
heterogeneous systems, their delegate threads need to be in
a state, which can be interpreted by other accelerators or by
the CPU. As it is not possible to interrupt an accelerator at an
arbitrary point of time and to assume that it is in such a state,
we propose to use a cooperative multitasking approach using
checkpoints to resolve these limitations. After reaching a
checkpoint, an application voluntarily hands back the control
to the OS, which then may perform scheduling decisions to
suspend and migrate a thread at these points. We believe
that this currently is the only way to simulate preemptive
multitasking on heterogeneous hardware.
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Figure 1. Novel scheduling model for heterogenous systems. New parts
are surrounded by dashed lines.

In this paper, we focus on the underlying framework and
assume that the application developer defines such states in
his application and that he provides a delegate thread, which
interacts with the scheduler and the accelerator. The structure
of the delegate thread (cf. Section IV) as well as providing
relocatable system states is generic enough that these can be
automatically generated by a compiler in the future.

B. Scheduling Model

From the design decisions above we derive our scheduling
model shown in Figure 1 that is not restricted to a certain
class of operating systems or scheduling algorithms. Appli-
cations using the scheduler may spawn several threads that
may possibly run on diverse architectures.

Thread information: As the scheduler needs infor-
mation about the threads to be scheduled, we store this
application provided information called meta information
about each thread and submit it to the scheduler. The
meta information can be individually set for an application.
Currently we only use a type affinity towards a target ar-
chitecture, which can be determined dynamically depending
on the input data. Further application specific input data can
possibly be determined using profiling prior to the first use of
an application. While this is not in the focus of this paper,
one could think of useful values like estimated runtimes,
required memory sizes or data transfer sizes.

Scheduling: The scheduler component may be located
in the kernel space as well as the user space. To assign
tasks to certain hardware components, the scheduler has to
provide a queue for each available hardware. The application
provided meta information is used in a scheduling policy to
map newly arriving tasks to one of the queues. Whenever
a compute unit runs idle or the currently running task has
used its complete time slice, the scheduler may dequeue a
waiting task for that specific compute unit. In case this is a
hardware task, the delegate thread receives the information
that it may run its hardware counterpart. This includes using
the proprietary drivers of the hardware, which are inevitable
for the communication with some accelerators. As these
currently may only be used from user space, this requires



a combined approach using the kernel space and the user
space. For CPUs, the standard Linux scheduler is used.

Checkpointing: Checkpointing has to be performed
when the application can safely interrupt its execution and
store its state in main memory. The state has to be stored by
the application itself in data structures of the corresponding
delegate thread, which then can be migrated to a different
architecture. The checkpoint data of the delegate thread thus
has to be readable by all target architectures.

We define a checkpoint as a struct of data structures
that unambiguously defines the state of the application. The
scheduler does not have any requirements concerning the
checkpoint data. Hence, the application has to make sure
that all needed data is available in these data structures and
thus stored in accessible memory at the end of each thread’s
time-slice. A checkpoint in most cases is a combination of
1) a set of data structures that define a minimum state that
is reached several times during execution, and 2) a data
structure that define the position in the code. The checkpoint
data of an application is copied to the newly allocated
accelerator and copied back to the host’s main memory when
the application’s time slice is exhausted.

Checkpoints are to be defined by the application developer
or to be inserted by a compiler. One has to identify a
preferably small set of data structures that 1) unambiguously
define the state of a thread, and 2) are readable and trans-
latable to corresponding data structures of other compute
units. The size of checkpoints may vary to a large extend
depending on the application used. While MD5 cracking (cf.
Section V) only needs to store the current loop index (i.e.,
a hash value) and the given search-string, image processing
algorithms (e.g., medical image processing) require to store
the complete intermediate results that might be of large
extent. In general, a checkpoint could be simply defined
by a list of already processed data sets. Therefore, the
choice of the checkpoint is very important and influences
the scheduling granularity. The checkpoint distance, i.e., the
amount of work done between 2 checkpoints stored back,
increases with the size of the checkpoint.

We here assume all checkpoints to be small enough to fit
into the host’s memory. The introduced checkpoint size is
known at definition time and may be used to re-determine
the scheduling granularity for a task. Please refer to Sections
IV and V for examples and implementation details about the
meta information and checkpoints, or directly to the example
implentations (cf. Section VIII).

III. LINUX KERNEL EXTENSIONS

This section shortly introduces the changes made to the
Linux kernel to enable the scheduling of heterogeneous
hardware accelerators according to our scheduling model.
Please refer directly to the source code for implementation
details (cf. Section VIII).

A. Data Structures

Following the goal to extend the current Linux scheduler,
we have to make the kernel aware of existing heterogeneous
hardware accelerators. The CFS uses its queues and statistics
to ensure a fair treatment of all tasks with respect to their
priorities. Its queue is ordered by the amount of unfairness,
i.e., the time the task would have to execute undisturbed
to be treated fair. We extend the kernel with a specific task
struct for hardware threads and a semaphore protected queue
for each of the available accelerators.

The current implementation of the meta information in-
cludes the memory size to be copied and an array of type
affinities. The higher a task’s affinity to a compute unit is,
the better is the estimated performance on this compute unit.

B. Scheduler API

With respect to the cooperative use of the scheduler, we
provide an interface to the scheduler, which enables user
space applications to request (allocate), re-request and free
compute units. The allocation call requests and acquires
that compute unit, which matches the calling task best by
enqueueing the task to the associated waiting queue. The
assignment is done using an affinity-based approach, where
the given affinity, as well as the current length of the waiting
queues and the load of the compute units are included.

Our CFS extension allows the migration of threads from
one compute unit to another if the application provides
implementations for both. Migration of a thread may be
performed while it is blocked within a waiting queue or
even if it is running on any of the available compute units.
Since there are no means of directly migrating the tasks from
one instruction set to another, migration is achieved by a
combination of checkpointing and cooperative multitasking.

If the program reaches a checkpoint, it requests (re-
requests) to further use the compute unit, but offers to
voluntarily release it (also compare Figure 2). The scheduler
decides if the task on the compute unit should be replaced
by another, which depends on the type of compute unit and
on the cost of switching the task. Re-requests inside the time
window of an accelerator-specific granularity are always
successful and will only be denied after the granularity has
expired and if other tasks are waiting for the resource. The
time a task may run on an accelerator follows the CFS
approach. It is the sum of the fairness delta, i.e., the time
to compute until the (negative) unfairness is equalized, and
the granularity, i.e., the “positive unfairness" for this task.

To enable dynamic load balancing on CPU cores and
GPUs, a load balancing component managing running and
queued tasks was introduced. If the application has either
finished its work or unsuccessfully re-requested its compute
unit, it calls a free function. This releases the compute units
semaphore and hands it to the next task or, in case no other
tasks are waiting on this device, invokes the load balancer.



If a task is waiting for the semaphore of a compute unit
and another suitable unit is running idle in the meantime
then the load balancer wakes the task with a migration flag.
The task then removes itself from the waiting queue and
enqueues on the idle compute unit. Using this mechanism
the scheduler achieves a late binding of tasks to units, which
ensures a better utilization of the resources with only a
negligible amount of computation overhead in the scheduler,
as most tasks are blocked and thus migrated while waiting
on the semaphore of a compute unit. The load balancer at
first traverses the run-queues of all other compute units and
tries to find the task with the maximum affinity to the idle
compute unit. If the balancer is not able to find a suitable
waiting task, it parses through all running tasks, which are
currently being executed on other units.

C. Control API

Using most of todays hardware accelerators involves using
their proprietary user space APIs to copy code or data to and
from the device and to invoke programs on it. Since there
are virtually no implementations to communicate efficiently
with these devices from the kernel, our extension leaves all
interaction with the accelerators to the user space.

We provide system calls to add a compute unit, to remove
it afterwards, to iterate through all currently added units and
to alter a device after it has been added.

IV. PROGRAMMING MODEL

This section describes the design of applications using the
provided system calls of our kernel extension. Additionally,
we describe a design pattern for implementing an application
worker thread (delegate thread), which is not mandatory for
using the extended functionality of the CFS, but simplifies
application development.

A. User Application Workflow

Figure 2 describes the typical lifecycle of a thread in our
extended CFS. Besides the information about the system
status the scheduler needs to have meta information about
the thread to be scheduled. Additionally, the code to be
executed and the needed input data has to be copied to the
compute unit after it has been acquired by using the block-
ing allocation call. The worker then can execute its main
function in a loop. If a re-request fails before the worker is
done, it writes a checkpoint and waits for the allocation of
a new compute unit for taking up its computation.

B. Worker Implementation

We provide code templates in C++ to simplify application
development. We introduce a worker class that is the super-
class of the delegate threads in an application. The worker
class provides the virtual functions getImplementationFor
and workerMetaInfo, which have to be implemented in the
derived delegate threads.

Create New Thread 
pthread_create()

Request Resource 
computing_unit_alloc()

Get Code getImplemetationFor()

Copy Data & Code cu_init()

Reuse?
cu_rerequest()

Start Computation cu_main()

Determine Meta Info 
workerMetaInfo()

Reduce Results pthread_join()

Delete Worker shutdown()

Free Resources & Copy Results 
Back  cu_free()

No

Yes

Done?

Yes
No

Free Resources & Copy Results 
Back  cu_free()

Figure 2. Typical workflow of a delegate thread.

void Worker_example::workerMetaInfo(struct meta_info *mi){
mi->memory_to_copy=0; // in MB
mi->type_affinity[CU_TYPE_CUDA]=2;
mi->type_affinity[CU_TYPE_CPU]=1;
}

void* Worker_example::getImplementationFor(int type,
functions *af)

switch(type) {
case CU_TYPE_CPU:
af->init=&Worker_example::cpu_init;
af->main=&Worker_example::cpu_main;
af->free=&Worker_example::cpu_free;
af->initialized=true;
break;
case CU_TYPE_CUDA:
... //similar
default:
af->initialized=false; }

Listing 1. Example implementation for mandatory worker functions.

The workerMetaInfo method implemented by a worker
instance includes the mandatory values for the meta infor-
mation, which ensures that only compatible compute units
are assigned to the thread. The example type_affinity in
Listing 1 defines the GPU to be twice as suitable for the
worker as the CPU. Setting an affinity to zero tells the
scheduler that no implementation for the specific compute
unit exists. The application developer does not have to know
the exact performance difference between implementations.
The affinity only gives an approximate hint of how much the
implementation for one compute unit outperforms the other.

The getImplementationFor function fills the functions
array af with pointers to the implementation for the allocated
compute unit type type. The worker implementation has to
provide the three functions cu_init, cu_main, and cu_free
for all supported compute units. While the CPU does not
require anything to be copied, all other accelerators usually



typedef struct md5_resources {
std::string hash_to_search;
unsigned long long currentWordNumber;
bool +;
} md5_resources_t;

Listing 2. Example checkpoint for MD5 cracking.

need the data to be copied explicitly. The cu_init function
allocates memory on the compute unit and copies needed
resources (including the checkpoint) to it. These resources
can be used in the computation performed in the cu_main
function, which does all the work between two checkpoints.
The resources have to be copied back to main memory after
finishing a computation or being denied a re-request and the
memory on the compute unit can be freed, which has to be
implemented in the cu_free function.

In addition to the code framework, the worker class
provides system call wrappers to the Scheduler API.

The provided programming model is generic and can be
easily used by a scheduler different than the CFS, e.g., by
a new scheduler component to be used from user space.
Applications that do not use the programming model are
simply executed by the usual CFS scheduling mechanisms.

V. EVALUATION

In this section we present applications using the extended
scheduler, which dynamically switch between CPU cores
and a GPU. We evaluate the overheads and show how
adjusting the scheduler parameters affects the runtimes.

A. Example Applications

We used a brute-force MD5 hash cracker (MD5) and a
prime number factorization (PF) as example applications
to evaluate our scheduler extension. Both applications were
implemented in C++ for the CPU and CUDA C to be run
on NVIDIA GPUs. In both cases we examine the execution
of several application instances concurrently.

1) MD5 Cracking: MD5 brute-force cracking enumerates
all possible strings of a fixed length with letters of a given
alphabet and computes their MD5 hash value until a match
with a target hash value is found. Each string is identified by
an ascending unique number, which can be used as a check-
point specifying the progress of the search. Listing 2 shows
how checkpoints usually are defined. The actual checkpoint
within this struct is the currentWordNumber, which saves
the current status of the computation. The other information
is needed to restore the complete state of the application,
i.e., by storing the needed inputs (hash_to_search) and the
general status (foundsolution).

We chose the interval in terms of searched strings between
two checkpoints different for the CPU (e. g., 500 strings) and
the GPU (e. g., 1 billion) in order to consider the costs for
re-transferring the kernel to the compute unit and doing a
re-request at a checkpoint that are much higher on the GPU.

The meta information for this application is very simple,
as practically no memory has to be copied. The affinity can
be set depending on the size of the string length and the used
alphabet, which defines the problem size. The performance
differences between CPU and GPU are known to be very
high in the test case, hence the meta data is set up to express
a clear affinity to the GPU.

The vertical axis in Fig. 3 represents the search space
that has been searched, while the horizontal axis denotes
the runtime in seconds. We run 15 GPU affine threads, with
a limited queue length of 5 for the GPU. As we spawn 15
threads at the same time, 9 threads initially run on CPU
cores, 6 (1 running, 5 queued) on the GPU. Each thread
is displayed by a different color. The GPU threads can
be identified by the fast progress in the search space. The
ascend of the curves representing CPU threads can hardly
be seen, only a minor progress can be noticed in region
e). The ability of the tasks to be stopped and replaced
for later continuation on the GPU can, e.g., be seen in
region a), where 6 GPU threads share the computation
time based on their fairness, the granularity, and the time
needed to reach the next checkpoint. In this example the
load balancer refills the GPUs queue as soon as a thread
finishes its computation (regions b) and d)). Regions c)
and e) show how CPU enqueued threads are migrated
to the GPU and afterwards compute much faster. Fig. 3
shows that cooperative multitasking is possible using the
introduced checkpoints. Although the CPU does not lead to
great speedups one can see that the heterogeneous system
is fully utilized and computing resources are shared among
the available tasks.

2) Prime Factorization: Prime factorization algorithms
decompose numbers into their prime factors. Our sample
application searches through all possible divisors of the num-
ber up to its square root. Whenever a divisor is encountered
the number is divided by it as often as possible. Hence the
application yields the divisor and its multiplicity. It then
continues the search, now using the current remainder and its
square root instead of the original number. Checkpoints here
are defined by the pair of current remainder and potential
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Figure 3. Running 15 independent MD5 instances.
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Figure 4. Turnaround times for 75 concurrently started threads without
time-sharing (a)) and with time-sharing and 4s granularity (b)) using 25
MD5 and 50 PF threads.

divisor. Between two checkpoints the algorithm advances the
divisor to the value of the second checkpoint, while keeping
the remainder correct during the process. In our version the
checkpoints are 1000 divisors apart.

B. Scheduler Evaluation

The following setup was used for the evaluation:
• SMP system with 2-way 4-Core Intel Xeon CPU E5620

@ 2.4GHz, hyperthreading enabled, 12 GB DDR3
• NVIDIA Geforce GTX 480, 480 thread-processors,

1536 MB GDDR5 memory
• Ubuntu Linux 10.04.1 LTS, 2.6.32-24 kernel
• CUDA 3.1, GCC 4.4.3
1) Performance Evaluation: The turnaround time is the

interval between the submission of a process and its comple-
tion [4]. The effect of time-sharing on turnaround times can
be seen in Fig. 4. Subfigure a) shows the turnaround times
of 25 MD5 and 50 PF instances with one thread spawned by
each instance in batch mode. As tasks are started at the same
time and scheduled one after another, long running tasks
(e.g., tasks 1, 2, 5, 20) block all other tasks, such that the
average turnaround time is increased. Using time-sharing,
short tasks are not blocked, so that the average turnaround
time is lower. Subfigure b) shows that the tasks are not
finished in the same order as they are started. Longer jobs do
not block the shorter ones, as their time slice is of the equal
length as that of a short job. This increases interactivity, as
response times are decreased. After 150 seconds only long
running threads remain in the system.

In addition to the reduced average turnaround times, the
overall performance of several running applications may be
increased, if using more than one compute unit. This is
shown in Fig. 5, which depicts the total runtime of a varying
number of PF applications on the GPU alone and on both
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Figure 5. Average runtimes of different counts of PF instances on a GPU
and on a combination of GPU and CPU cores.��������
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Figure 6. Mean of total runtime for 30 runs with 25 MD5 threads (string
length 6) and 50 PF threads on the GPU.

the GPU and the available CPU cores. As can be seen, the
average runtime of all instances can be reduced by using the
scheduler extension. All threads compete for the use of the
GPU, but profit from the fallback computation on the CPU.

2) Overheads: Fig. 6 shows the influence of the granular-
ity of time slices on the runtime of the example applications.
All tasks in this test were run on the GPU. Decreasing the
granularity raises the total runtime, as task switching over-
heads are introduced. Introducing time-sharing is therefore
a trade off between overheads and interactivity, as a higher
granularity decreases the response times of the threads and
FCFS scheduling obviously has the smallest overhead.

This is also emphasized in Fig. 7, which shows the
average turnaround time depending on the used granularity.
Using a granularity of 0 leads to fast-paced task switching
and a very high interactivity and thus introduces huge
overheads. On the other hand, submitting all tasks at the
same time to the GPU queue and using FCFS for the tasks
on the GPU results in higher average turnaround times due
to the fact that long running tasks are blocking short tasks.
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Figure 7. Avg. turnaround times per thread with 25 MD5 threads (string
length 6) and 50 PF threads on the GPU.



VI. RELATED WORK

Heterogeneous systems are widely examined in research.
Many groups work on the programmability and utilization of
these systems (e.g., [5], [6], [7]). OpenCL [8] is a recently
well discussed approach that aims on using heterogeneous
architectures. Our approach is more general. We do not rely
on a complete library, but we provide a simple programming
model, allow easy integration of further architectures into
our scheduling framework, and allow multi-user scenarios
and dynamic runtime scheduling. OpenCL does not support
task scheduling. This work addresses OS integration of
accelerators by using delegate threads and the problem of
reading back their state to the system.

Delegate threads have also, e.g., been used by Bergmann
et al. [9], which discuss an approach using “ghost processes”
to make reconfigurable System-on-chip (rSoC) hardware
processes appear like software processes in a Linux environ-
ment. Software ghost processes are associated to hardware
processes, used to control these and allow communication
with the associated hardware threads. Ghost processes load
modules to a FPGA and set up the communication channels.
The authors used processes combined with inter process
communication (IPC) instead of threads to encapsulate hard-
ware processes. This makes the handling of hardware tasks
less lightweight and more complicated for OS integration.
Scheduling hardware accelerators has not been discussed.

Lübbers et al. [10] extended the Linux and eCos oper-
ating systems by a uniform interface for software threads
on the CPU and hardware threads on FPGA accelerators.
They extended the multi-threaded programming model to
heterogeneous computing resources. Every hardware thread
is associated with exactly one software thread, which al-
lows communication between FPGA threads and OS data
structures. Cooperative multitasking has been discussed to
be possible by storing state information on FPGAs.

Other groups also present work on enabling the OS to read
the hardware state. Early work has shown that migrating
the state of an application between heterogeneous CPU
cores is possible. [11] presents a technique that allows
objects and threads to be migrated between machines using
heterogeneous nodes at native code level. They introduce
so called “bus stops” as machine-independent formats to
represent program points. We extend this idea to use time-
sharing for current hardware architectures like FPGAs and
GPUs. In contrast to GPUs, preemption has been shown
to be possible on FPGAs (e.g., [12]). as well as non-
preemptive multitasking (e.g., [13]). Nevertheless, none of
these approaches has extended the OS scheduler to become
responsible for hardware scheduling.

So et al. [14] also modify and extend a standard Linux ker-
nel with a hardware interface. They use a message passing
network to provide conventional IPC mechanisms to FPGAs.
Communication between hardware and software processes

was implemented by FIFOs and mapped to file system-based
OS objects. FPGA processes are bound via the Linux /proc
directory and behave similar to software processes. FPGA
resources are provided as virtual file system.

Integrating time-sharing using the Linux thread model on
heterogeneous systems is a novel approach that increases the
interactivity of the system and optimizes the components
utilization and the performance of universal applications.
None of the previous approaches presents such a global view
on the system allowing a holistic scheduling decision by
using meta information of the applications as well as incor-
porating the systems status. This is possible by providing an
extension of the operating systems scheduler that can easily
be extended to also support other hardware resources.

VII. CONCLUSIONS AND FUTURE WORK

We presented an general model to perform scheduling
of tasks on heterogeneous components. We introduced the
use of cooperative multitasking to heterogeneous systems
and provided an implementation that allows the preemption
and a subsequent migration of threads between GPUs and
CPU cores. The migration is done automatically based on
an affinity metric associated with the compute units and the
current system status. This not only reduces the average
load on the CPU while at least preserving the application’s
performance, but also allows intelligent task scheduling to
maximize application performance and system utilization.

Considering the fact that preemption is not possible on
GPUs and reading back the state of accelerators is generally
challenging, we introduced a programming model that uses
checkpoints to define an unambiguous state of a running
application, allowing its suspension and later continuation
based on a time-sharing paradigm. This approach is in line
with the goal of the current Linux scheduler to provide a
fair treatment of available tasks and to increase interactivity.

Our programming model does not yet completely decou-
ple the application development from the use of heteroge-
neous systems, but relieves the programmer from managing
the scheduling of independent threads within the applica-
tion. Nevertheless, we assume that this decoupling can be
achieved by compiler extensions. The Linux kernel handles
hardware threads as if they were software threads, which is
a continuation of the traditional CPU scheduling approach.
We have shown that the automatic migration of threads is
possible and that task switching overheads are acceptable.

In future work, we will compare this work to a similar
user space scheduling library approach, simplify the usage
of our programming model by automatic detection and ex-
traction of checkpoints in applications, and provide example
applications incorporating FPGAs.

VIII. SOURCE CODE

To promote the uptake of our work by other researchers
and users, we made our extended kernel available to the gen-
eral public as open-source at http://github.com/pc2/hetsched.
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