

 CSAIL
 Student
 Workshop
 2005

Workshop Proceedings

Preface

1st Annual CSAIL Student Workshop

CSW 2005
Gloucester, MA
September 19, 2005

The CSAIL Student Workshop (CSW) is a meeting of students, by the students, and for
the students. It brings together student researchers in the disparate fields, offering a venue
for interaction and the exchange of ideas. The workshop provides an opportunity for
participants to gain an overview of ongoing research in CSAIL, to meet other researchers,
and to initiate collaboration among different research groups. The scope of the meeting is
broad, and the primary audience is students themselves. CSW continues where the
Student Oxygen Workshop left off and is a forum for all the research that is occurring at
CSAIL.

Many thanks to this year’s sponsors, without whom the workshop would not have been
possible:
ITA Software
CSAIL Student Committee
Larry Rudolph

i

Acknowledgements

Conference Chair:
Aaron Adler

Program Chairs:
Albert Huang
Angelina Lee
Rose Liu

Web Masters:
Jeremy Fineman
Ali Mohammad
Yuan Shen

Panel Chairs:
Harold Fox
Gary Look

Organizing Committee:
Kunal Agrawal
Mario Christoudias
Tracy Hammond
Sally Lee
Robert Wang

Steering Committee:
Larry Rudolph
Vineet Sinha

Program Committee:
Aaron Adler
Kunal Agrawal
Meg Aycinena
Jake Beal
Rob Beverly
Mario Christoudias
Brooke Cowan
Jacob Eisenstein
Harold Fox
Seth Gilbert
Albert Huang
Viktor Kuncak
Angelina Lee
George J. Lee
Ben Leong
Rose Liu
Gary Look
Gregory Marton
Sayan Mitra
Evodokia Nikolova
Mike Oltmans
Alexandru Salcianu
Metin Sezgin
Yuan Shen
Sara Su
Bill Thies
Max Van Kleek
Robert Wang
Kevin Wilson
Hanson Zhou

ii

CSW 2005 Workshop Schedule
Gloucester, MA September 19, 2005

8:45a: Bus ride to Ocean View Inn and Resort, breakfast on bus
10:25a: Opening remarks (Adler, Rudolph, Wertheimer)
10:30a: Technical Session I (Chair: Liu)

10:30a: Analyzing provider and user incentives under congestion pricing on
the Internet (Bauer and Faratin)

10:50a: JCilk's exception semantics with a dynamic threading model (Lee)
11:10a: The Effect of Neighborhood Boundaries on Nearness (Look)
11:30a: Proovy: A Simple Proof Checker for Higher Order Procedures in

Agent Planning (Fox)
 11:50a: 6 short talks/elevator pitches
12:02p: Break
12:10p: Technical Session II (Chair: Eisenstein)

12:10p: Hypernyms as Answer Types (Marton)
12:30p: A Scalable Mixed-Level Framework for Dynamic Analysis of C/C++

Programs, Dynamic Variable Comparability Analysis for C and C++
Programs (Guo and McCamant)

12:42p: Reducing Configuration Overhead with Goal-oriented Programming
(Paluska)

12:54p: A Come-from-Behind Win or a Blown--Save Loss: Perspectives in
Baseball (Oh)

1:06p: Lunch, Discussion, Strolling
2:30p: ITA Talk (Greg Galperin, Justin Boyan)
3:00p: Technical Session III (Chair: Marton)

3:00p: Engineering transcription-based logic (Shetty)
3:20p: Re-engineering Enzyme Catalysis Using Computer Modeling and

Combinatorial Libraries (Armstrong)
 3:40p: 5 short talks/elevator pitches
3:50p: Break
4:00p: Technical Session IV (Chair: Wilson)

4:00p: The Worst Page-Replacement Policy (Fineman)
4:20p: Incremental Optimization of Large Robot-Acquired Maps (Olson)
4:40p: A Scalable Architecture for Network Fault Diagnosis in the

Knowledge Plane (Lee and Faratin)
5:00p: A Usability Evaluation of Two Computer Vision-Based Selection

Techniques (Eisenstein)
5:20p: Break
6:00p: Panel: Finding a Thesis Topic, Session Chairs: Gary Look, Harold Fox
 Panel Members: Brooke Cowan, George Lee, Ozlem Uzuner, and Hanson Zhou
7:00p: Dinner
8:00p: Talk (Charles Leiserson)
8:30p: Awards Presentation
9:00p: Return to Cambridge

iii

Table of Contents
Preface i
Acknowledgements ii
Workshop Schedule iii

Full Papers 1

The Worst Page-Replacement Policy
Kunal Agrawal and Jeremy T. Fineman 3

Re-engineering Enzyme Catalysis using Computer Modeling and Combinatorial Libraries
Kathryn A. Armstrong and Bruce Tidor 7

Analyzing Provider and User Incentives Under Congestion Pricing on the Internet
Steven Bauer and Peyman Faratin 9

Integrating on a Spatial Network Without Coordinates
Jacob Beal 11

Morphogenesis on an Amorphous Computer
Arnab Bhattacharyya 13

A Prototype Web User Interface for Scalable Medical Alert and Response Technology
Sharon H. Chou 15

A Usability Evaluation of Two Computer Vision-Based Selection Techniques
Jacob Eisenstein 17

Proovy: A Simple Proof Checker for Higher Order Procedures in Agent
Planning

Harold Fox 21
Hierarchical Recursive Feature Elimination: A Proposed Method for Reducing
the Set of Features Used in an EEG-based Epileptic Seizure Detector

Elena Leah Glassman 23
Dynamic Variable Comparability Analysis for C and C++ Programs

Philip J. Guo and Stephen McCamant 25
A Scalable Mixed-Level Framework for Dynamic Analysis of C/C++ Programs

Philip J. Guo and Stephen McCamant 27
A Scalable Architecture for Network Fault Diagnosis in the Knowledge Plane

George J. Lee, Peyman Faratin, and Steven Bauer 29
JCilk’s Support for Speculative Computation

I-Ting Angelina Lee 31
The Effect of Neighborhood Boundaries on Nearness

Gary Look 35
Hypernyms as Answer Types

Gregory Marton, Stefanie Tellex, Aaron Fernandes, and Boris Katz 37
English-to-English Statistical Machine Translation: Why and How

Ali Mohammad and Federico Mora 39

iv

Using Structured, Knowledge-Rich Corpora in Question Answering
Federico Mora, Jesse Louis-Rosenberg, Gregory Marton, and Boris Katz 41

A Synthetic Lattice for Structure Determination of Uncharacterized Proteins
Julie E. Norville 43

A Come-from-Behind Win or a Blown-Save Loss: Perspectives in Baseball
Alice Oh 45

Incremental Optimization of Large Robot-Acquired Maps
Edwin Olson 47

Reducing Configuration Overhead with Goal-oriented Programming
Justin Mazzola Paluska 51

A Distributed Object Framework for Pervasive Computing Applications
Hubert Pham 53

Modeling Online Sketching as a Dynamic Process
Tevfik Metin Sezgin 55

Engineering Transcription-Based Logic
Reshma P. Shetty and Thomas F. Knight, Jr. 59

Short Talk Abstracts 61

Personifying Public Key Infrastructure
Jacob Beal and Justin Mazzola Paluska 63

LabelMe: A Database and Web-Based Tool for Image Annotation
Bryan Russell, Antonio Torralba, Kevin P. Murphy, William T. Freeman, and Biswajit Bose 63

Object Manipulation and Control for Simulated Characters
Yeuhi Abe 64

Weapons of Mass Construction
Justin Werfel 64

Integrating on a Spatial Network Without Coordinates
Jacob Beal 65

Automatic Human "Diary" Generation
Vivek Kale 65

Modular Static Analysis with Sets and Relations
Viktor Kuncak 66

Hierarchical Recursive Feature Elimination: A Proposed
Method for Reducing the Set of Features Used in an EEGbased
Epileptic Seizure Detector

Elena Glassman 66
Molecular Simulations

Greg Pintilie 67
Protein Structure Prediction with Multi-Tape Grammars and
Support Vector Machines

Blaise Gassend, Charles O'Donnel, Bill Thies, Marten van Dijk, and Srinivas Devadas 67
A Synthetic Lattice for Structure Determination of
Uncharacterized Proteins

Julie Norville 68

v

vi

Full
Papers

1

2

The Worst Page-Replacement Policy

Kunal Agrawal KUNAL AG@MIT.EDU

Jeremy T. Fineman JFINEMAN@MIT.EDU

MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar Street, Cambridge, MA 02139

1. Introduction

Consider a computer system with a two-level memory hi-
erarchy consisting of a small fast memory of sizek and
a large slow memory. Memory is divided into fixed-size
pages. Each memory access indicates an access into a par-
ticular page of memory. If the page is located in fast mem-
ory, the access has no cost. If the page is located only in
slow memory, the access induces apage fault, whereby the
page must be moved from slow memory into fast mem-
ory (possibly evicting a page that is currently stored in fast
memory). A page fault has a cost of one.

Research in the area of page-replacement strategies focuses
on strategies that reduce the number of page faults. If all
the page requests are known a priori (offline), the optimal
strategy is to replace the page whose next request occurs
furthest in the future [Belady, 1966]. Anonline strategy
must make its decisions at the time that each page request
arrives, without any knowledge of the future accesses.

Since the performance of any online strategy depends on
the input sequence, Sleator and Tarjan introducecompet-
itive analysis [Sleator & Tarjan, 1985] to analyze these
strategies. An online strategyA is c-competitive if there
exists a constantβ such that for every input sequenceσ,

A(σ) ≤ c ·OPT(σ) + β ,

whereA(σ) is the cost incurred by the algorithmA on the
input sequenceσ, andOPT(σ) is the cost incurred by the
optimal offline strategy for the sequenceσ. Sleator and Tar-
jan prove that there is no online strategy for page replace-
ment that is better thank-competitive, wherek is the mem-
ory size. Moreover, theleast-recently-used (LRU)heuris-
tic, whereby the page evicted is always the one least re-
cently used, isk-competitive. If the offline strategy oper-
ates on a memory that is twice the size of that used by the
online strategy, LRU is2-competitive.

In this paper we are interested in finding a “reasonable”
online strategy that causes as many page faults as possi-
ble. We assume that the fast memory is initially empty. A
reasonablestrategy1 follows two rules:

1. It is only allowed to evict a page from fast memory
when the fast memory is full.

2. It is only allowed to evict a page from fast memory
when that page is being replaced by the currently re-
quested page, and the currently requested page does
not already reside in fast memory.

Although this problem has no practical motivation, it is fun
and theoretically interesting.

The optimal offline strategyOPT for the problem of max-
imizing page faults discards the page that will be requested
next. An online strategyA is c-competitive if there exists a
constantβ such that for every input sequenceσ,

A(σ) ≥ OPT(σ)/c− β ,

whereA(σ) is the number of page faults incurred by the
algorithmA on the input sequenceσ, andOPT(σ) is the
number of page faults incurred by the optimal offline strat-
egy on the sequenceσ.

Throughout this paper, when we talk about strategies being
competitive, we mean with respect to the offline strategy
that maximizes page faults. An optimal strategy is there-
fore the “worst” page-replacement policy.

The rest of this paper is organized as follows. Section 2
proves that there is no deterministic, competitive, online
algorithm to maximize page faults, and that no (random-
ized) algorithm is better thank-competitive. Section 3
gives an algorithm that isk-competitive, and hence opti-
mal. Section 4 proves that a direct-mapping strategy is also
the worst possible strategy under the assumption that page
locations are random. Most proofs are omitted for space
reasons.

2. Lower bounds

This section gives lower bounds on the competitiveness of
online strategies for maximizing page faults.

The following lemma states that there is no deterministic
online strategy that is competitive with the offline strategy.

1Once unreasonable strategies are allowed, one could design
a strategy that uses only one location on the fast memory. This
strategy will perform optimally for maximizing page faults, but it
doesn’t make much sense in a real system.

3

Lemma 1 Consider any deterministic strategyA with a
fast-memory sizek ≥ 2. For anyε > 0 and constantβ,
there exists an inputσ such thatA(σ) < ε ·OPT(σ)− β.

Proof. Consider a sequenceσ that begins by request-
ing pagesv1, v2, . . . , vk+1. After pagevk is requested, all
strategies have a fast memory containing pagesv1, . . . , vk.
At the timevk+1 is requested, one of the pages must be
evicted from the fast memory. Suppose that the determin-
istic strategyA chooses to evict pagevi. Then consider the
sequenceσ = v1, v2, . . . , vk, vk+1, vj , vk+1, vj , vk+1, . . .,
that alternates betweenvk+1 andvj for somej with 1 ≤
j ≤ k and i 6= j. After vk+1 is requested, bothvj and
vk+1 are inA’s fast memory. Thus,A incurs only the first
k + 1 page faults. The offline strategyOPT incurs a page
fault on every request (by evicting pagevj whenvk+1 is
requested and vice versa). Extending the length of the se-
quence proves the lemma.

Lemma 1 also holds even if we introduce resource augmen-
tation. That is, even if the deterministic strategy is allowed
a smaller fast memory of sizekon ≥ 2 than the fast mem-
ory koff ≥ kon used by the offline strategy, there is still no
competitive deterministic strategy.

The following lemma states that no randomized strategy is
better than expectedk-competitive when both the online
and offline strategies have the same fast-memory sizek.
Moreover, when the offline strategy uses a fast memory of
sizekoff and the online strategy has a fast memory of size
kon ≤ koff , no online strategy is better thankoff /(koff −
kon + 1). We omit the proof due to space limitations.

Lemma 2 Let koff be the fast-memory size of the offline
strategy andkon ≤ koff be the fast-memory size of the
online strategy. Consider any (randomized) online strategy
A. For anyc < koff /(koff −kon +1) and constantβ, there
exists an inputσ such thatE[A(σ)] < OPT(σ)/c− β.

3. Most-recently used

This section describes twok-competitive strategies. The
first strategy uses one step of randomization followed by
the deterministic “most-recently-used” (MRU) heuristic.
The second strategy uses more randomization to achieve
the optimal result even when the offline and online strate-
gies have different fast-memory sizes.

Since least-recently-used (LRU) is optimal with respect to
an offline strategy that minimizes page faults, it is rea-
sonable to expect MRU to be optimal for maximizing
page faults. This strategy, however, is deterministic, and
Lemma 1 states that no deterministic strategy is compet-
itive. Instead we consider arandomized MRUstrategy,
where the first page evicted (when the(k + 1)th distinct
page is requested) is chosen at random. All subsequent re-

quests follow the MRU strategy. This strategy avoids the
alternating-request problem from the proof of Lemma 1.

Theorem 3 Randomized MRU is expectedk-competitive,
wherek is the fast-memory size.

This result does not match the lower bound from Lemma 2.
In particular, it does not generalize to the case in which
the online and offline strategies have different fast-memory
sizes. We have a strategy called “reservoir MRU” that
uses more randomization. The main idea behind ourreser-
voir MRU strategy is to keep a reservoir ofkoff − 1 page,
where each previously requested page is in the reservoir
with equal probability.2 The reservoir MRU strategy works
as follows. For the firstkon distinct requests, the fast mem-
ory is not full, thus there are no evictions. After this time,
if there is a request for a previously requested pagevi, and
the page is not in fast memory, then the most recently re-
quested page is evicted. When thenth new page is re-
quested, for anyn > kon , the most recently requested page
is evicted with probability1− (koff − 1)/(n− 1). Other-
wise, a fast-memory location (other than the most-recently-
used page’s) is chosen uniformly at random, and the page
at that location is evicted.

The following theorem matches the lower bound given by
Lemma 2, and hence reservoir MRU is optimal.

Theorem 4 Reservoir MRU is expectedkoff /(koff −kon+
1)-competitive, wherekoff is the fast-memory size of the
offline strategy, andkon ≤ koff is the fast-memory size for
reservoir MRU.

This theorem means that when the offline strategy and
reservoir MRU have the same fast-memory sizek, reser-
voir MRU is k-competitive. When reservoir MRU has fast-
memory sizek and the offline strategy has fast-memory
size(1 + 1/c)kon , reservoir MRU is(c + 1)-competitive,
which is analogous to Sleator and Tarjan’s [Sleator & Tar-
jan, 1985] result for LRU.

4. Direct Mapping

This section considers a particular page-replacement strat-
egy used in real systems called “direct mapping” and
proves that under some assumption of randomness, the
direct-mapping strategy isk-competitive.

In a direct-mapping strategy [Patterson & Hennessy, 1998],
each page is mapped to a particular location on the fast
memory. If the page is requested and it is not on the fast
memory, it evicts the page in that location. This strategy
does not follow the rules of a reasonable strategy setup

2This technique is inspired by reservoir sampling [Vitter,
1985], which is where we came up with the name.

4

in Section 1. In particular, it may evict a page from the
fast memory before the fast memory is full. We still think
it is interesting to consider this strategy in the context of
maximizing page faults as it is a strategy commonly imple-
mented for the normal page-replacement problem (where
the goal is reversed).

The direct-mapping strategy we consider is as follows.
Each time a new page is requested, that page is mapped
to a random location on the fast memory uniformly at ran-
dom. Every time that page is requested again, it maps to
the same location. The following theorem states that this
strategy isk-competitive.

Theorem 5 The direct-mapping strategy isk-competitive,
wherek is the fast-memory size of the online and offline
strategies.

In real direct-mapping strategies, pages are not typically
mapped at random. Instead, they are mapped based on the
lower order bits in the address. Theorem 5 states that as
long as the pages are located at random locations in mem-
ory, then (deterministic) direct-mapping is the worst pos-
sible strategy. This assumption of random locations may
seem a bit pessimistic in a real program. On a machine
with some time sharing, however, each application may be
located at a random offset in memory, so as long as the ap-
plications don’t access too many pages during a time slice,
the theorem still applies.

References

Belady, L. A. (1966). A study of replacement algorithms
for virtual storage computers.IBM Systems Journal, 5,
78–101.

Patterson, D. A., & Hennessy, J. L. (1998).Computer or-
ganization & design: The hardware / software interface.
San Francisco, CA: Morgan Kaufmann. Second edition.

Sleator, D. D., & Tarjan, R. E. (1985). Amortized efficiency
of list update and paging rules.Communications of the
ACM, 28, 202–208.

Vitter, J. S. (1985). Random sampling with a reservoir.
ACM Transactions on Mathematical Software, 11, 37–
57.

5

6

Re-engineering Enzyme Catalysis Using Computer Modeling and
Combinatorial Libraries

Kathryn A. Armstrong KATHRYN@MIT.EDU
Bruce Tidor TIDOR@MIT.EDU

MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar Street, Cambridge MA, 02139 USA

1. Introduction
Enzymes are proteins that act as molecular machines to ef-
ficiently catalyze chemical reactions. An enzyme is made
of a chain of amino acids whose sequence is determined
by the information in DNA/RNA. The enzymes existing in
nature catalyze only a subset of the possible chemical re-
actions and so the development of new enzymes is of inter-
est to those doing chemical synthesis. New enzymes have
been created in the past by making random mutations to
the protein sequence of a known enzyme and then screen-
ing for new function (Farinas et al., 2001; Glieder et al.,
2002). However, the number of sequences available to an
enzyme is phenomenally large, and such searches can only
examine a tiny fraction of them. Efforts to computationally
model and predict new catalytic sequences directly are un-
derway but have yet to create new catalytic activity. Our
strategy is more broad; we computationally analyze the se-
quences available to an enzyme’s structure and eliminate
those that are incompatible. A catalytically active enzyme
must first fold correctly, and so screening this reduced list
of sequences for function should be more effective than
screening random mutants.

2. Reducing the Search Space
It is thought that mutations in an enzyme active site (the
enzyme section most directly involved with catalysis) are
most often detrimental but have a large impact on catalysis
(Heering et al., 2002). Conversely, mutations far from the
active site have subtle effects but are more easily tolerated
(Morawski & Arnold, 2001). We would like to substan-
tially modify catalytic activity, so we have decided to ana-
lyze the active site of the enzyme Horseradish peroxidase.
The three-dimensional structure of this enzyme (produced
by X-ray crystallography, shown in Figure 1) was used to
start our search of the allowed active site amino acid se-
quences. The dead-end elimination and A* algorithms al-
low us to search all possible sequences of amino acids and
their structures in the enzyme active site. By fixing the
enzyme’s backbone conformation and allowing only dis-

Figure 1. Horseradish peroxidase, a plant enzyme that synthesizes
hormones. The enzyme active site is indicated by an arrow.

crete conformations of each amino acid, dead-end elimina-
tion guarantees that we will find the global minimum en-
ergy sequence and structure in this discrete space (Desmet
et al., 1992). Then A*, a branch-and-bound search algo-
rithm, is used to create a list of sequences and structures
ranked by energy (Leach & Lemon, 1998). We assume that
any sequence more than 15 kcal/mol worse in energy than
the native sequence will not fold into the correct enzyme
structure, and so we eliminate all sequences with energies
above this cutoff. The A* algorithm efficiently generates
these feasible sequences by pruning the branch-and-bound
tree of sequences using our energy cutoff along with esti-
mation of the lowest possible energy required to make each
sequence and structure. For the five positions we chose in
the enzyme active site, this restricts the feasible list of se-
quences from

�����
(��� �	�) to about 50000. This substantially

reduced list of sequences can now be searched exhaustively
using high-throughput experimental techniques.

7

Figure 2. Evolutionary map of the feasible sequences for two ac-
tive site positions. Nodes represent sequences and each edge rep-
resents a single DNA mutation. The natural sequence is indicated
by an arrow.

3. Creating the Feasible Sequences
While 50000 sequences is a reasonable number of new en-
zymes to screen once they exist, it is beyond the limit of
the number of enzymes a person would be willing to exper-
imentally build one by one. Therefore, we have developed
two techniques to create all of the feasible enzymes at once.
The first method uses the list of 50000 active site sequences
to create a larger combinatorial library of sequences that in-
cludes most of the sequences we desire. The most popular
amino acids at each of the five active site positions in our
original list are made experimentally in all possible com-
binations. While this technique creates some unwanted se-
quences, the resulting combinatorial library is still much
smaller than the original search space and about 70% of
the library sequences are from the original list.

The second method for experimentally creating the feasi-
ble sequences uses an evolutionary map of the feasible se-
quences to suggest better starting points for the random mu-
tation experiments mentioned in the Introduction. The evo-
lutionary map of all 50000 sequences is too large to print,
but to give an idea of the graph structure we show an evolu-
tionary map in Figure 2 of the 49 compatible sequences for
only 2 positions in the active site. In this case, we can see
that some sequences have many neighbors, and therefore
could easily mutate to other feasible sequences and might
be good starting points for mutation experiments. The natu-
ral sequence, on the other hand, has no neighbors, indicat-
ing that a random mutation experiment starting from this
sequence might be less successful.

4. Results and Future Work
Our computational analysis merges with experimental ef-
forts underway in the Wittrup and Klibanov laboratories

at MIT. The Wittrup lab uses yeast-display and high-
throughput screening to completely search our combina-
torial libraries, and the Klibanov laboratory uses advanced
enzymology to thoroughly study the properties of variant
enzymes. The first experimental screen of our Horseradish
peroxidase sequence library was for specific catalysis of the

over the � conformation of tyrosine, both natural sub-
strates of this enzyme. One mutant enzyme with increased
specificity was found in our designed library, though the
full enzymological characterization of the new enzyme has
not been completed. That only one new sequence showed
this modified catalytic activity indicates the rarity of cat-
alytic function in sequence space. Further computational
work must also be done to better characterize our evolu-
tionary maps. For example, clusters in these graphs could
yield other suggestions for mutation experiments. We hope
that this joint theoretical and experimental approach will
produce understanding of the inner workings of this en-
zyme through iterative analysis, design, and experimental
testing. The techniques developed for this problem may
also be generally applicable to other hard protein design
problems, involving other functions, in the future.

References
Desmet, J., Demaeyer, M., Hayes, B., & Lasters, I. (1992).

The dead-end elimination theorem and its use in protein
side-chain positioning. Nature, 356, 539–542.

Farinas, E. T., Bulter, E., & Arnold, F. H. (2001). Directed
enzyme evolution. Current Opinion in Biotechnology,
12, 545–551.

Glieder, A., Farinas, E. T., & Arnold, F. H. (2002). Labora-
tory evolution of a soluble, self-sufficient, highly active
alkane hydroxylase. Nature Biotechnology, 20, 1135–
1139.

Heering, H. A., Smith, A. T., & Smulevich, G. (2002).
Spectroscopic characterization of mutations at the
phe(41) position in the distal haem pocket of horseradish
peroxidase c: structural and functional consequences.
Biochemical Journal, 363, 571–579.

Leach, A. R., & Lemon, A. P. (1998). Exploring the con-
formational space of protein side chains using dead-end
elimination and the a* algorithm. Proteins: Structure,
Function, and Genetics, 33, 227–239.

Morawski, B., & Arnold, F. H. (2001). Functional expres-
sion and stabilization of horseradish peroxidase by di-
rected evolution in saccharomyces cerevisiae. Biotech-
nology and bioengineering, 76, 99–107.

8

Analyzing Provider and User Incentives Under Congestion Pricing on the
Internet

Steven Bauer BAUER@CSAIL.MIT.EDU
Peyman Faratin PEYMAN@CSAIL.MIT.EDU

MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar Street, Cambridge MA, 02139 USA

1. Overview

The networking community has a long history of research
investigating ways to price network traffic. The academ-
ically favored approach often involves some form of con-
gestion pricing (B. Briscoe, 2005; B. Briscoe, 2003). How-
ever, congestion pricing has been criticized for creating a
potentially perverse incentive for providers to cause artifi-
cial congestion by under-provisioning their networks since
increased congestion will increase their revenue (Shenker
et al., 1996). In our work we demonstrate that even if
network providers, disciplined perhaps by market competi-
tion, do not have an incentive to cause artificial congestion,
that users actually have surprising, perverse incentives to
cause artificial congestion under congestion pricing. We
analyze these incentives using a repeated game theoretic
approach. This result is important because it suggests that
even if congestion pricing were technically feasible, mar-
ket acceptable and cost effective to implement, that it still
may not be a desirable pricing mechanism on the Internet.

2. Background

The argument for congestion pricing is based on the the-
ory that it is the only economically efficient usage-based
pricing mechanism (MacKie-Mason & Varian, 1995). As
the argument often goes, the “marginal cost of bandwidth
is zero” if there is no congestion, therefore, under a com-
petitive marketplace, the usage-price during those periods
should also be zero.

However, congestion pricing is not without its critics. Both
economic and technical arguments (Shenker et al., 1996),
and arguments based on historical evidence (Odlyzko,
2001) have pointed out the shortcomings of congestion
pricing. Some of the critiques of congestion pricing cou-
pled with the traditional responses are presented in table 1.

3. User incentives under congestion pricing

In our work we explore what would happen if the first three
problems in table 1 could be adequately addressed by a

Congestion-pricing
problems

Traditional responses

1. Congestion pricing po-
tentially creates an incen-
tive for providers to under-
provision, creating artifi-
cial congestion

1. Competition disci-
plines the market so that
providers will have an in-
centive to expand capacity
when congestion occurs

2. Recovering large sunk
costs may become infea-
sible under marginal cost
pricing

2. Two-part tariffs al-
low the recovery of fixed
costs with the fixed ac-
cess charge plus conges-
tion charges that account
for the congestion costs

3. Technically difficult
to implement in a cost-
effective manner

3. Clever engineering so-
lutions are possible (e.g.
leveraging ECN bits)

4. Congestion pricing may
be unacceptable to users

4. Congestion pricing is
the only economically effi-
cient approach so it is the
only approach that will sur-
vive long-term

Table 1. Traditional congestion pricing critiques and responses

congestion pricing mechanism. We assume that providers
expand capacity once they have received sufficient conges-
tion revenue (a capacity expansion assumption illustrated
in figure 1). We also assume that access charges cover
provider’s fixed costs and that congestion charging is tech-
nically implementable.

The capacity expansion assumption implies that providers
do not have an incentive to cause artificial congestion
(for instance by intentionally under-provisioning their net-
works.) Rather after a provider-determined sufficient
amount of revenue is collected, the provider will expand
capacity. Providers may for instance use the congestion
charges to retire debts from a previous capacity expansion
before incurring new expansion debts, or they may use the
congestion charges to directly purchase additional routers

9

Sufficient revenue from

congestion charges collected

to expand capacity
Congestion charges

Congestion free

No charges

Figure 1. Capacity expansion assumption: revenues from conges-
tion charges provide the financial basis for expanding a network.

or network links. In other words, under the capacity expan-
sion assumption, congestion charges represent more than
pure profit for a provider – they represent the financial ba-
sis for growing a network.

4. User incentives under congestion pricing

To formalize the analysis of user incentives and the strat-
egy space we employ a repeated game model. Game the-
ory provides the right analytic tools and also allows us to
demonstrate that while congestion pricing in a single shot
game induces efficient user behavior, surprisingly conges-
tion pricing in a repeated game introduces incentives for
some users to create inefficient artificial congestion. This is
consistent with the recent work of Afergan (Afergan, 2005)
that illustrates the importance of considering the repeated
context of games that model networking – a problem area
that inherently involves many repeated processes.

The intuition behind this perverse incentive is that users
can lower their own overall long-term contribution to a
capacity expansion cost by paying smaller penalties (i.e.
smaller congestion charges) earlier (discounting the time
value of money appropriately), thereby enabling their later
and larger amounts of traffic to enjoy the benefit (i.e. a
congestion free expanded network capacity). By causing
congestion in earlier time periods a selfish user can induce
other players that would have been “free riders” – sending
traffic while there was no congestion – to now contribute to
the capacity expansion cost.

Informally stated, a subgame perfect equilibrium of this re-
peated game is for users to adopt a congestion-dependent
strategy. The user initially sends their normal traffic (delay-
ing as long as tolerable to avoid congested periods). How-
ever, once the user forms an expectation that they cannot
avoid incurring congestion charges for a large portion of
their normal traffic, they have an incentive to prevent free
riders during uncongested periods. The user sends artifi-
cial traffic during some of these uncongested periods to try
to cause artificial congestion. The additional artificial con-
gestion benefits the user by causing the revenue required to
expand the network to be extracted sooner and from users
that would not have normally paid for their traffic.

5. Summary

Practically speaking, individual users are unlikely to be so-
phisticated enough to strategize in such a way. However,
were congestion pricing to be deployed on the Internet,
an inevitable result would be that applications (or oper-
ating systems) would become strategic in when and how
they generate traffic on the network. (We refer to this as
congestion-strategic traffic behaviors.) Indeed one of the
goals of congestion pricing is to create incentives for net-
work traffic to be modified given the level of congestion. So
while individual users would likely not make this a prac-
tical problem, the capability of classes of applications to
exhibit strategic behaviors makes understanding the incen-
tives created by congestion pricing a very relevant issue.

To summarize, the main contributions of this work are:

• A set of new models, Congestion-Pricing Traffic
Games, for analyzing the incentives of congestion
pricing on the Internet.

• Demonstration of subgame perfect equilibriums of the
Congestion-Pricing Traffic Games.

• An analysis of congestion-strategic traffic behaviors
and the resulting implications for the viability of con-
gestion pricing on the Internet.

References

Afergan, M. (2005). Applying the repeated game frame-
work to multiparty networked applications. Doctoral dis-
sertation, Massachusetts Institute of Technology.

B. Briscoe, A. Jacquet, C. D. C.-G. e. (2005). Policing con-
gestion response in an internetwork using re-feedback.
Proceedings of the ACM SIGCOMM ’05 Conference.
Philadelphia, Pennsylvania.

B. Briscoe, V. Darlagiannis, O. H. (2003). A market man-
aged multiservice internet. Computer Communications,
26(4):404–414, 2003.).

MacKie-Mason, J., & Varian, H. (1995). Pricing con-
gestible network resources. IEEE Journal on Selected
Areas in Communications, 13, 1141–1149.

Odlyzko, A. (2001). Internet pricing and the history
of communications. Computer Networks (Amsterdam,
Netherlands: 1999), 36, 493–517.

Shenker, S., Clark, D., Estrin, D., & Herzog, S. (1996).
Pricing in computer networks: Reshaping the research
agenda. ACM Computer Communication Review, 26,
19–43.

10

Integrating on a Spatial Network Without Coordinates

Jacob Beal JAKEBEAL@MIT.EDU

MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar Street, Cambridge MA, 02139 USA

1. Introduction
Calculating surface and volume integrals is a useful oper-
ation for space-approximating networks. For example a
sensor network might estimate crowd size by integrating
the density of people in an area, or estimate the severity
of a pollutant spill by calculating the area of the affected
region. More exotically, a smart material might integrate
force to find the weight it is supporting, or a bio-film com-
puter might monitor its activity by integrating the flow of
nutrients through a volume.

Calculating such an integral involves interpolating the col-
lection of values measured at network nodes across space,
a problem which is non-trivial if the distribution of nodes
through space is not known in advance. Spatial interpola-
tion is a well-studied problem with a large family of ap-
plicable methods.1 These methods, however, generally de-
pend on knowing the spatial coordinates at which values
are measured, and coordinates for nodes may not be reli-
ably available to a space-approximating network.

I present a method for finding surface integrals without co-
ordinates. My method assumes that nodes communicate
only with their nearby neighbors, then integrates by sum-
mation using Thiessen weights estimated from expected
communication range and number of neighbors.

2. Method
Thiessen weighting(Thiessen, 1911) is a simple discrete
approximation of spatial integrals commonly used in GIS
problems. A Voronoi diagram is calculated for the network
and each node is assigned a weight equal to the area of its
cell. The integral is then estimated as the weighted sum of
the measurements.

Without coordinates we cannot calculate a Voronoi dia-
gram, but we do not actually need to know which space
belongs to a particular cell, only the total area of the cell.
For interior nodes, this can be estimated from the density
of the network: if there are ρ nodes per unit area, then the
expected area occupied by each node is 1/ρ.

1See, for example, (Lam, 1983), (Burrough & McDonnell,
2000), (Meyers, 1994), or (Cressie, 2003) for a thorough review.

To estimate the Thiessen weight of an interior node i, we
assume that nodes are distributed uniformly through space
at an unknown density.2 Thus, given an expected commu-
nication range r, if i has ni neighbors then its estimated
Thiessen weight is

wi =
πr2

1 + ni

.

Note that since this estimate uses local information, it is
adaptive for regions with differing local density, but may
fail for regular distributions of nodes (e.g. grids).

Nodes at the edge of the network are more difficult to han-
dle, since their Voronoi cells may be infinite. Thiessen
weighting clips these cells against a boundary, which can-
not be done without coordinates. Moreover, without co-
ordinates or distribution priors, it is not even possible to
distinguish between edge nodes and interior nodes.

Since we cannot distinguish between edge nodes and in-
terior nodes, we will instead examine the behavior of our
weight estimation wi at the edge. As we approach the edge
of a uniform density space-approximating network, the ap-
parent density decreases, effectively causing edge nodes to
represent some of the empty space within their communi-
cation range.

We can calculate the effective increase in area beyond the
edge by finding the expected increase in weight for edge
nodes. For simplicity, we will ignore corners and consider
a square rather than circular neighborhood. If x is distance
from the edge, then the effective area is multiplied by 2r

x+r
.

The expected multiplier is thus

∫
r

0

1

r

2r

x + r
dx = 2 ln (r + x)|r

x=0 = (2 ln 2)

so we should expect integrals to extend the edge of a space-
approximating network by about 1/3 of a communication
radius. This can be compensated for in deployment or sim-
ply factored into expected error.

2This is not a probability distribution, because the measure is
not well defined.

11

1000 2000 3000 4000 5000
0.95

1

1.05

Nodes per unit area

N
or

m
al

iz
ed

 A
re

a
E

st
im

at
e

(a) Accuracy vs. Density

0.05 0.1 0.15
0.95

1

1.05

Communication Radius

N
or

m
al

iz
ed

 A
re

a
E

st
im

at
e

(b) Accuracy vs. Radius

Figure 1. Normalized area of the interior of a square. Graph (a) shows small error and decreasing variance as node density ranges from
200 to 5000 per unit area and communication radius is fixed at 0.12. Graph (b) shows minimal error when communication radius ranges
from 0.018 to 0.15 units and node density is fixed at 5000.

3. Experimental Results
I tested these predictions in simulation, using 100 to 10,000
nodes uniformly randomly distributed through a rectangle
with unit area and an aspect ratio ranging from 1 to 16.
Nodes were connected to all neighbors within the commu-
nication radius, which ranged from 0.018 to 0.15 units dis-
tance in different experiments. I then integrated the con-
stant 1 through regions of the rectangle to calculate area.

Integration in the interior yielded answers deviating from
correct by less than 3% independent of communication ra-
dius and with variance decreasing with node density (Fig-
ure 1). Integration of the entire rectangle produced de-
viations close to the predicted values (Figure 2): a least
squares fit yields an equation for estimated area A =
0.32 · c · r + 1.00, where c is the circumference of the rect-
angle and r is the communication radius.

4. Conclusions
Estimating Thiessen weights from number of neighbors is
an effective method for calculating approximate integrals
in space-approximating networks. When calculating inte-
grals, the boundary of the network is effectively extended
beyond the outermost nodes by approximately 1/3 of a
communication radius.

Further investigation is needed to verify that this method
is effective for integrating other functions and for net-
works with variable density and more realistic connectiv-
ity, particularly networks with poor connectivity. Finally,
Thiessen weights are crude compared to other spatial inter-
polation methods; perhaps more sophisticated methods can
also be adapted for an environment without coordinates.

0 0.05 0.1 0.15 0.2
1

1.1

1.2

1.3

1.4

1.5

Communication Radius

N
or

m
al

iz
ed

 A
re

a
E

st
im

at
e

Aspect Ratio = 1
Aspect Ratio = 4
Aspect Ratio = 16

Figure 2. Estimated area versus radius for rectangles of various
aspect ratios in a network with 5000 nodes (dashed lines are pre-
dicted values). The extra area is proportional to communication
radius and circumference, but independent of node density.

References
Burrough, P., & McDonnell, R. (2000). Principles of geo-

graphical information systems. Oxford University Press.

Cressie, N. (2003). Statistics for spatial data, revised edi-
tion. John Wiley & Sons.

Lam, S. (1983). Spatial interpolation methods: a review.
American Cartographer, 10, 129–49.

Meyers, D. (1994). Spatial interpolation: an overview.
Geoderma, 62, 17–28.

Thiessen, A. H. (1911). Precipitation for large areas.
Monthly Weather Review, 39, 1082–1084.

12

Morphogenesis on an Amorphous Computer

Arnab Bhattacharyya abhatt@csail.mit.edu

MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar Street, Cambridge, MA 02139 USA

1. Introduction
Embryological development is a magnificent demonstra-
tion of how complexity can arise from initial simplicity.
A single egg cell contains most of the information needed
to position the millions of cells in a human body; more-
over, the construction process is remarkably robust in that
it can recover from a large number of cell deaths and mal-
functions. Our goal is to understand the major principles
involved in the developmental process so that they can be
usefully applied to areas in computer science. Specifically,
in this paper, I use motivation from morphogenesis and de-
velopmental biology to describe a scheme for creating sys-
tems that dynamically and robustly self-assemble into de-
sired shapes. What follows will describe this scheme as
well as the computational framework used to implement it.

2. The Computational Framework
The central challenge in imitating biology is managing the
huge amount of concurrent, largely decentralized, behav-
ior exhibited by the cells. How do you program a mas-
sively distributed, noisy system of components? This prob-
lem is formalized in the study of amorphous computing.
An amorphous computing medium (Abelson et al., 2000)
is a system of tiny, computationally-limited elements scat-
tered irregularly across a surface or a volume. These ele-
ments, which we shall call cells, have a limited range of
communication, can retain some local state, are identically
programmed, and can replicate and kill themselves. These
cells, thus, are analogous to biological cells. The goal of
the amorphous system is to attain some desired global state.
So, while the cells are only locally interacting, their col-
lective behavior should result in complex global behavior.
Moreover, we want the amorphous computation to be ro-
bust; that is, the computation should still proceed in the
face of random cell death/failure.

An individual cell has no a priori knowledge of where it
is located with respect to the global structure. However,
eventually, each cell must get some idea of where it is lo-
cated in order to be differentiated properly from its neigh-
boring cells. In biology, regional specification of the em-
bryo is accomplished mainly through the use of gradient

fields (Nüsslein-Volhard, 1996; Slack, 1991). Embryonic
cells respond to a particular chemical, called a morphogen,
whose concentration increases in some direction, forming
a gradient; thus, cells differentiate based on the concen-
tration of morphogen at the positions they are located. We
use a similar strategy for regional specification in the amor-
phous computing medium. A cell can release a morphogen
that is uniquely identified. In our model, the concentration
of the morphogen decreases linearly with the distance from
the source. Cells in the amorphous medium have receptors
with which they can query the local morphogen concentra-
tion; thus, they can adapt their behavior based on the in-
ferred distance from some morphogen source. In addition
to the morphogens released by the cells, there could also
exist background gradient fields. These fields serve to ori-
ent the very initial cells in development; so, functionally,
they are similar to the Bicoid morphogen in Drosophila
which establishes the fruit-fly embryo’s anterior-posterior
axis at the earliest stages.

3. The Problem and Related Work
Here, we apply the above computational paradigm to the
creation of arbitrary (two- or three-dimensional) shapes
from amorphous elements. The amorphous scheme should
have the following properties:

• shape generation should resemble biological develop-
ment in that an initially small group of cells should repli-
cate repeatedly until the desired shape is attained

• cells should be allowed to move during the course of
development

• the shape development should be regenerative, meaning
that if some portion of the shape is suddenly cut off dur-
ing any part of the development process, the rest of the
shape should be able to regrow the missing part

• the number of gradient fields used should be minimized

Amorphous shape generation has already been discussed
in some previous works. Attila Kondacs (Kondacs, 2003)
presents a scheme that compiles an input global two-
dimensional shape into a program that provides local in-
structions to cells in an amorphous medium to grow into

13

the desired global configuration via replication and local
interaction. Kondacs’ scheme is regenerative, especially
with respect to random cell death. Clement and Nag-
pal (Clement & Nagpal, 2003) also develop an algorithm
to create regenerating spatial patterns. They introduce
the concept of active gradients to implement self-repairing
topologies.

The ideas described here address problems a bit different
from those treated in both the above cited works. Firstly,
the proposed regenerative scheme will work for both two
and three dimensional shapes. Secondly, the shapes gen-
erated will be dynamic since the cells are mobile and
regeneration takes place while the shape is developing.
And thirdly, the development scheme is intended to allow
a more accurate modeling of the morphogenesis patterns
found in nature. A closer modeling will provide deeper in-
sight into some puzzling questions in theoretical morpho-
genesis and pattern formation, such as the question of how
deuterostomes evolved from protostomes (Sussman, 2005).

4. Growing and regenerating shapes
The central idea in our scheme is that cells can denote de-
velopmental processes in addition to points in space. We
will call such cells organizers. The state of an organizer
is a recursive program that creates other organizers. Thus,
one could think of our system as a layer of amorphous pro-
grams with each organizer in one layer containing the em-
bryo for some of the organizers in the next layer, with the
final layer consisting of the cells that make up the desired
shape.

In the actual implementation, all the organizers have a
physical presence. In the beginning of the self-assembly
process, there exists a single organizer at stage-one. This
organizer is the embryo for stage-one. There also exists
an external gradient field, and the stage-one embryo moves
toward higher concentrations of this morphogen. When
the embryo has reached the maximum, it stops moving
and starts replicating to produce other stage-one organiz-
ers. (The children of an organizer might be placed in the
direction of a gradient field; thus, a colony of organizers
can grow toward an increasing gradient.) At some point
determined by its state, a stage-one organizer starts produc-
ing stage-two organizers. Thus, every stage-one organizer
becomes an embryo for stage-two. This process recurses
with each stage-n organizer replicating into other stage-n
organizers and then, at some point, becoming embryos for
stage-(n + 1). At any point, an organizer can secrete mor-
phogens to set up gradient fields, query local morphogen
values, move toward higher values of a morphogen, or kill
itself (mimicking apoptosis in biological cells). Organizers
also have a physical property called adhesiveness which de-
termines how an organizer physically adheres to its neigh-

bors.

Regeneration is made easier because organizers can re-
generate all the organizers in the stages subsequent to it.
Growth is modular instead of incremental. At each stage,
regeneration might take place by the active gradient scheme
of (Clement & Nagpal, 2003) or by the reference-point
competition scheme of (Kondacs, 2003). These schemes
have to be modified to take into fact that the cells are mo-
bile. The multiple growth stages can account for a wide
range of types of cell deaths. Since the organizers oper-
ate asynchronously, regeneration on multiple stages could
be occurring at the same time. Also, note that if after de-
velopment, the capabilities of the lower stages are perma-
nently discarded, then some gross region deaths cannot be
repaired while most minor ones can. This is similar to what
happens in newts, for example.

5. Future Work and Acknowledgments
The ideas described above are in the process of being im-
plemented. So, they will surely undergo some revisions as
new problems and issues are discovered. Also, much as in
(Clement & Nagpal, 2003), the regeneration process fails
if the embryo of the very first stage is removed. A way to
replace the stage-one embryo would make the regeneration
process more complete.

I would like to thank Gerry Sussman and Hal Abelson
greatly for helping me understand the issues in amorphous
computing and for encouraging me to work on this prob-
lem.

References
Abelson, H., Allen, D., Coore, D., Hanson, C., Homsy,

G., Knight, T., Nagpal, R., Rauch, E., Sussman, G., &
Weiss, R. (2000). Amorphous computing. Communica-
tions of the ACM, 43.

Clement, L., & Nagpal, R. (2003). Self-assembly and self-
repairing topologies. Workshop on Adaptability in Multi-
Agent Systems, RoboCup Australian Open.

Kondacs, A. (2003). Biologically-inspired self-assembly
of two-dimensional shapes using global-to-local compi-
lation. International Joint Conference on Artificial Intel-
ligence.

Nüsslein-Volhard, C. (1996). Gradients that organize em-
bryo development. Scientific American.

Slack, J. (1991). From egg to embryo. Cambridge, UK:
Cambridge University Press.

Sussman, G. (2005). Two Ways to Make a Tube from a
Bag. Unpublished manuscript.

14

A Prototype Web User Interface for Scalable Medical Alert and Response Technology

Sharon H. Chou CNORAHS@MIT.EDU
MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar St., Cambridge MA, 02139 USA

We present a prototype web application for the Scalable
Medical Alert and Response Technology (SMART) [1]. The
project aims to wirelessly monitor vital signs and locations
of otherwise unattended patients in the waiting area of an
emergency department. Waiting patients would feel secure
that their condition is being monitored even when a
caregiver is unavailable. Caregivers will be alerted in real-
time to problems occurring in the waiting room, while
threshold values for patient alerts and priorities can be
dynamically adjusted. We hope to gain some insights from
deployment in the emergency room settings, which could be
extended to disaster situations where patients drastically
outnumber available caregivers. This application is currently
in development and will be tested in actual emergency
rooms in the near future.

SMART Central system description

The system links caregivers, patients, a streaming database
that continuously updates patient status, and a processor that
analyzes the patient data for alarm conditions. Alarm
conditions include high heart rate, low heart rate and low
SpO2 (blood oxygenation level). When an alarm condition is
detected, it is dispatched to an available caregiver.
Caregivers each have a PDA (HP iPAQ) that allows them to
see the roster of patients and to click through to see a
patient's vital signs in real-time. Patients wear a similar
PDA as an interface for vital signs monitoring (EKG leads
and oximetry sensors to measure SpO2). A cricket location
system tracks the patients and caregivers. [2]

Web User Interface Implementation

The web application facilitates patient monitoring for
caregivers by providing a GUI to display relevant
information of registered patients and physicians. The main
page at http://nms.lcs.mit.edu/~cnorahs/smart-main.cgi is
the portal for relevant information on physicians and
patients registered with SMART Central, and it:

1. Display a roster of all the patients with their names, ID
numbers, age, gender, ESI (Emergency Severity Level),
heart rates, and SpO2.

2. Search the patient database by last name, age range, or
ESI.

3. Register new patients and store their information in the
PostgreSQL database.

4. De-register patients and remove them from the
database.

5. Display all the physicians with their names, ID, and
locations

6. ~ 8. Search, register and de-register physicians

9. ~ 10. User surveys for both physicians and patients.

Clicking on the “All Registered Patients” link displays as
below:

15

The text, tables and buttons were coded in HTML. The CGI
scripts for sorting, searching, and communicating with the
PostgreSQL database were written in Python.

Clicking on the column header buttons sorts the roster by
that column. The text to be sorted is passed as a hidden
string variable to the reloaded HTML page, where the CGI
script would parse the string and display it in a table format.
The figure above comes up after clicking on the “Last
Name” button.

The columns for heart rate (HR) and SpO2 automatically
update at preset intervals (i.e. 30 seconds). The data arrives
in continuous streams from the patient’s sensor leads (or the
PostgreSQL database files in the simulated case). To enable
communication between the data processor and the
monitoring device (or database), we import the Python
socket module into the CGI script. The CGI for the webpage
sends a query to the streaming database or a patient’s iPAQ,
which returns data streams packaged and interpreted by the
Python struct module. The resulting data is displayed on the
patient information webpage. In this example, all the
patients are simulated. Patient #2 (John Jimm) has
streaming data set up (87 beats/min and 97% SpO2).
Software development for the data stream processing was
based on source code by Jason Waterman.

The automatic update function is coded by JavaScript
embedded in the Python CGI. The JS also codes the time
counter for the last update.

Clicking on one of the last names opens a page with more
detailed information about the patient’s alarm conditions,
allergies, and current medications.

A login script [3] provides restricted access for SMART
Central. Only the registered physicians can access the main
page and all the links within. The login script is an open-
source Python utility written by Michael Foord.

Lastly, there are two online user surveys with free-response
and Likert scale questions to gather user feedback from
patients and caregivers. The questions were written by the
clinical decision group at Brigham’s Women Hospital.

Benefits

This system provides an easy-to-use interface for emergency
room caregivers to access patient information from any web
terminal. The automatic page refresh ensures that medical
data is updated frequently and reliably, essential for an
emergency room setting. With the location tracking
functionality implemented, physicians could locate patients
and other physicians quickly.

Challenges

The first major design challenge encountered was
implementing the sorting function. Since HTML is a
stateless language, all the information from the previous

unsorted page must be passed to the sorted page as a hidden
variable. The syntax for hidden variable passing took some
exhaustive search and debugging. Next, parsing the hidden
variable string for display on the sorted page called for
modularized subroutines tested sequentially for robustness.

Secondly, meticulous proofreading was required to combine
CGI code in Python with the JavaScript for automatic page
refresh and time stamps. This was equivalent to making a
Python program generate JavaScript, and involved much
quotation matching for displaying strings.

Another challenge was getting the streaming data from the
Python socket module to work together with web page
refreshes. When the browser sends a query to the
monitoring device, the device would return data to be
interpreted by the Python struct module and displayed on
the browser. This data transfer would result in a few seconds
of delay, making the automatic page reload sometimes
cumbersome. Since speed and accuracy are crucial for the
web application to work in clinical settings, work is
underway to speed up communication between the browser
and the monitoring devices. Simulations had shown the
information to be accurate yet not as efficient as desired.

Alternative Implementation Methods

Instead of Python, Perl, C, or Java could also be used.
Python is a powerful language with versatile string
manipulation functions, ideal for parsing strings in this web
application. Furthermore, its clean syntax was easier to
debug and decreased development time. However, Java or C
might be more compatible with the embedded JavaScript.

Further Developments

• Incorporate location tracking of caregivers as a search
query for patients who need specialized assistance

• Increase performance efficiency of the streaming
PostgreSQL database

Acknowledgements

This prototype was developed under the supervision of
Dorothy Curtis and Prof. John Guttag.

References

[1] SMART Project Overview web page
http://smart.csail.mit.edu/

[2] MIT subcontract technical proposal
http://smart.csail.mit.edu/publications/MIT-tech.doc

[3] Python reference web page
http://www.voidspace.org.uk/python/index.shtml

16

A Usability Evaluation of Two Computer Vision-Based Selection Techniques

Jacob Eisenstein JACOBE@CSAIL.MIT.EDU

MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar Street, Cambridge MA, 02139 USA

1. Introduction

Conventional human-computer interaction techniques have
been optimized for one specific usage case: a stationary
individual whose full attention is devoted to the computer.
The standard input hardware – a mouse and keyboard –
are well-suited for this kind of interaction, but they func-
tion poorly in other usage cases. Desktop computers do
not mesh well with other activities, such as (non-virtual)
socialization, performing household chores, or watching
TV (Norman, 1999).

Ongoing research inCommunication Appliancesfocuses
on designing technology for remote communication that
can be seamlessly integrated into other daily activities. An
interaction scheme that treats a computer as a workstation
is not likely to be successful in this domain. New interac-
tion techniques must be developed and evaluated.

The problem of selecting from a menu of choices is ubiqui-
tous, not only in desktop computer user interfaces, but also
in appliances such as microwave ovens, stereos, and ther-
mostats. Such household items typically provide a custom
interface of physical buttons, either on the device itself or
on a remote control. But anecdotal experience tells us that
as the functionality of these devices becomes more com-
plex, such physical interfaces become increasingly difficult
to use (Nielsen, 2004).

Computer-vision based interaction has been proposed as a
solution (Freeman et al., 2000). Using a camera to track
either an object or the user’s body, there is no need to type
or use a mouse; the user need not even approach the com-
puter at all. At the same time, there is no complicated hard-
ware interface to learn, and no remote control to find buried
under the couch cushions. While vision-based interaction
offers promising solutions for this usage case, our under-
standing of the usability principles of such interfaces is still
at an early stage. This paper describes an empirical eval-
uation of two different computer vision-based interaction
techniques for the problem of making a selection from a
menu.

2. Selection Techniques

Two selection techniques have been implemented, using
the OpenCV computer vision library. The first –motion
selectors– is modeled after the Sony EyeToy. The user
triggers a selector by waving a hand or otherwise creat-
ing motion within the selector. A meter increases with the
amount of motion detected, and the selector is triggered
when a threshold is reached. While the Sony EyeToy uses
simple image differencing to detect motion, the system im-
plemented for this experiment uses optical flow detection,
which was thought to be more accurate.

Figure 1 demonstrates the motion selectors. This set of im-
ages are taken from the video that the participant himself
actually observed while performing this experiment. As
discussed above, the visual feedback of the system state is
considered an important part of this interaction technique.
In part (a), the desired target selector flashes, indicating
the participant should select it. In part (b), the participant
moves his hand towards the selector. Once the participant
has reached the selector, he moves his hand within it (part
(c)), and the activation level rises. When the activation level
reaches the top in part (d), the selector is activated, and
flashes to indicate this.

The second selection technique –tracking selectors– re-
quires that the user place a real color ball within the selec-
tor. The ball is tracked using the camshift algorithm,with
the backprojection computed by a set of histograms at sev-
eral levels of precision in the YCrCb color space.

The system’s guess of the location of the tracked object is
indicated by an ellipse. The tracker is enable to assess its
level of confidence in its own estimate, using goodness-of-
fit metrics based on the size, shape, and color of the esti-
mated location and boundary of the tracked object. A high
level of certainty is indicated to the user by coloring the el-
lipse green; a low level is indicated by coloring the ellipse
yellow.

Figure 2 shows several images of the tracker selectors,
again taken directly from the video feed seen by the par-
ticipant. In part (a), the system is not yet sure of the lo-
cation of the tracked ball, as indicated by the large ellipse,
which is colored yellow. As the participant moves towards

17

(a) (b)

(c) (d)

Figure 1. Motion selectors

the target, the tracker focuses in on the location, and ellipse
becomes green (part (b)). In part (c), the system momentar-
ily becomes confused, possibly because the tracked object
is being moved very quickly, and the ellipse again turns yel-
low to indicate this. Without being instructed to do so, the
user holds the ball still for an instant, enabling the system
to recover. The selector is triggered instantaneously when
the user moves the tracked object into it in part (d).

3. Experiment

An experiment was conducted to compare the speed, accu-
racy, and likability of the two techniques. Twelve people
participated in this study, and none was previously familiar
with either selection technique.

Participants were told that the goal of the experiment was
to see how fast they could select a targeted button. The
targeted button was indicated by making it blink. Partici-
pants were told to go as fast as possible, as long as errors
were kept within reason. Participants underwent an initial
training period in which they were allowed as many trials
as they felt they needed to learn how to use each selection
technique.

For both selection techniques, the buttons were laid out in
an semi-ellipse, such that no button would come closer than
15 pixels from the edge of the screen. The entire exper-
imental procedure was automated. Participants were in-
structed to keep their hands in their laps until one of the
buttons started blinking; then they were to activate that but-

ton as quickly as possible. Afterwards, they were to return
their hands to their lap. The system also enforced rest peri-
ods to prevent fatigue.

After this initial training period, six experimental blocks
were conducted. Each block consisted of twenty trials of a
single selection technique. Alternating blocks of each in-
teraction technique were used, and the ordering was coun-
terbalanced across participants. Within each block, the
number of selectors was varied between 2,5,11, and 21; an
equal number of each type was given within each block,
and the order was determined randomly. Similarly, the lo-
cation of the target button was varied, and each participant
experienced an equal distribution across the semi-ellipse of
buttons. The following results were logged: intended tar-
get, actual selection, and elapsed time for the trial.

4. Results

A two-factor within-participant analysis was used to ana-
lyze the effects of the selection technique and the number
of selectors on two dependent variables: error rate, and se-
lection time. Results are reported as statistically significant
whenp < .05.

The choice between motion selectors and tracking selectors
did not significantly impact on the error rate, but the num-
ber of selectors did. The interaction between the number
of selectors and the selection technique was also observed
to have a statistically significant effect on error rate. These
results are described in Table 1.

18

(a) (b)

(c) (d)

Figure 2. Tracking selectors

num. selectors→ 2 5 11 21
motion selectors 0 0 7 37
tracking selectors 0 0 1 20

Table 1. distribution of errors

tracking motion no pref
Which is faster? 10 1 1
Which is more accurate? 9 3 0
Which did you prefer? 6 5 1

Table 2. qualitative results

Users were significantly faster when using the tracking se-
lectors, compared to the motion selectors. The average se-
lection time was 1.94 seconds with the motion selectors,
compared to 1.63 seconds with the tracking selectors. Al-
though the average selection time increased monotonically
with the number of selectors, this effect was not found to
be significant. There were also no significant interactions
between the two factors.

As described in Table 2, most of the participants believed
the tracking selectors were faster and more accurate, but
were more evenly divided as to which method they pre-
ferred.

5. Discussion

The tracking-based selection technique was not observed
to be worse on any measure than the motion-based selec-

tion technique. It was observed to be faster, and to produce
fewer errors when the number of selectors was very large.

As suggested by the qualitative results, speed and accu-
racy are not the only considerations that shape the partic-
ipants’ preferences. Both techniques have strengths and
weaknesses which are more difficult to quantify in a con-
trolled experiment. The tracking-based technique is robust
to background movement, but was found to be not partic-
ularly robust to lighting changes. The motion-based tech-
nique does not require to user to keep a tracked object, but
we had to go to great lengths to eliminate background mo-
tion that might confuse the system. A longer-term longitu-
dinal study of how each system is actually used is necessary
to assess the role of these factors.

6. Acknowledgements

This research was performed under the supervision of Wendy
Mackay at the In Situ research group of INRIA.

References
Freeman, W. T., Beardsley, P. A., Kage, H., Tanaka, K.-I., Kyuma,

K., & Weissman, C. D. (2000). Computer vision for computer
interaction.SIGGRAPH Comput. Graph., 33, 65–68.

Nielsen, J. (2004). Remote control anarchy.
http://www.useit.com/alertbox/20040607.html.

Norman, D. (1999).The invisible computer. The MIT Press.

19

20

Proovy: A Simple Proof Checker for Higher Order Procedures in Agent
Planning

Harold Fox HFOX@CSAIL.MIT.EDU

MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar Street, Cambridge MA, 02139 USA

1. Introduction

When designing an intelligent agent, flexibility and intro-
spection are critical attributes. That is, an agent’s behavior
should be dynamic and capable of change. Moreover, it
should also be able to analyze its own behavior, so that it
can diagnose failures and possibly even reprogram itself.

We have developed a simple, functional language, Proo,
which can describe a wide range of agent behavior. Addi-
tionally, it allows the specification of theorems with check-
able proofs. These theorems can formally prove that a
given agent’s behavior meets a given set of requirements
in the context of a given environment.

The particular environments we are studying are determin-
istic, fully observable, and higher-order. We are motivated
by the problem of getting an agent to learn how to operate
a human computer interface such as a program for coordi-
nating mobile robots. The assumptions of determinism and
full observability are reasonable as a first approximation,
since user interfaces strive to be predictable without hidden
state. However, the agent’s perception of the environment
needs to be higher order, because it needs to model a soft-
ware program, which is logically complex.

To be precise, the environment consists of a set of statesE .
An agent consists of a set of actionsA. Each actionAi, is a
function fromE to E . It manipulates the state of the world,
producing a new state. An agent behavior,B, is a mapping
from statesE to action sequences inA∗. A goal state of a
behavior,g, is a state such thatB(g) = (). Proo allows us
to define these actions and behaviors and prove properties
about them.

Proovy is a first step of a research agenda to develop agents
that can learn their own behaviors to act in a virtual world.
Because we want our agents to be introspective, we want
them to produce proofs that their behaviors are correct.
Such behaviors and proofs would be represented inter-
nally using Proo constructs. Furthermore, the background
knowledge that the agent would need to perform effectively
in different domains can also be encoded and verified using
Proo and Proovy.

2. Related Work

Proof assistants or interactive theorem provers are a well-
established area of computer science used to prove mathe-
matical theorems and verify the logical correctness of crit-
ical systems like computer chips (Kaufmann et al., 2000).

We are interested in a proof language where facts and im-
plications can be written down clearly in a logical sequence
as they would be in a mathematics text. Because proving
theorems is not the final goal of this research, we need
a system that can concisely represent proofs produced by
an agent problem solver and check them in batch. The
most advanced work in this area is the proof language
Athena (Arkoudas, 2000). However, unlike Athena and
the other denotational proof languages, Proovy is not con-
cerned with the formal semantics of what makes one state-
ment provable and another not. So, Proovy can apply mul-
tiple tactics at a time, searching a deep array of possibili-
ties to match a given statement to TRUE. Its proofs can be
shorter and more succinct.

Theorem provers have been used as the foundation of
classical artificial intelligence planning (Fikes & Nilsson,
1971) from the beginning. However, planning has always
been considered as a problem in first order logic. Little
work has been done in worlds where an agent’s actions
have consequences that cannot be represented in first order
logic.

3. The Proo Language

Proo is a simple language for defining functions and writing
theorems. Its function notation is derived from Scheme,
although the top level organization has its own syntax. It is
a pure functional language with no side effects, so there is
no notion of time or program execution. Objects consist of
primitives, conses, and lambda functions.

Functions do not need to specify the types of their argu-
ments, so any expression is syntactically legal and equality
is determined by simple symbol comparison. Because of
the unsoundness of the untyped lambda calculus, Proo is
also not logically sound. Through paradoxical examples,

21

Figure 1.Proof of a lemma allowing proof by contradiction
theorem ctrdict (all (a) (-> (-> a F) (not a)))

(lambda (a) {
ctrdict.1 : (if (-> a F) {

ctrdict.2 : (-> (not F) (not a)) [ctrpos ctrdict.1];
(not a) [ctrdict.2];

});
});

one can prove that true is false. However, this is not as se-
rious a problem as it would be for an official mathematical
theorem prover. Since the human knowledge encoding and
the automated reasoning are under our control, we can so-
cially enforce that they not produce lambda functions that
lead to paradoxes.

Proo does not allow recursive functions. To get the same
behavior, there is a special operator called suchthat, which
allows a prover to refer to an object that uniquely satisfies
a particular property. For example, factorial would be de-
fined in the following way:

Factorial := (suchthat (lambda (f)
(= (f n)

(if (= n 0) 0 (f (- n 1))))))

suchthat allows us to define a wider class of logical
functions than traditional programming languages.

Theorems are defined with a claim and a proof (see fig-
ure 1). The proof consists of a sequence of facts with each
fact deducible from previous facts in the proof as well as
prior theorems, axioms, and definitions. The proof writer
must specifically state the prior facts needed to prove a
given fact. This enables the proof checker to constrain its
search, so proofs can be shorter with fewer intermediate
steps explicitly written down.

4. The Proovy Proof Checker

At its core, the proof checker uses a matching engine which
takes two expressions and a list of free variables and at-
tempts to find a binding to make the two expressions equal.
It uses general rewrite rules that specify how a pair of ex-
pressions can be made to equal each other. When proving
a fact, the proof checker attempts to match the fact with T,
the truth primitive.

Whenever a match fails, the proof checker will use its cur-
rent implication rules and attempt to match the predicate
of each implication toT. When a binding matches success-
fully, the checker adds the consequence of the implication
as a new rule to the matcher.

5. Using Proo To Specify Agent Behavior

With suitable lemmas and definitions, we can define an
agent’s actions. As a basic example, consider a 1x5 one-
dimensional world of bits. All of the bits are set to0 except
for an active bit set to1. The agent has two actions,LEFT
and RIGHT, which move the active bit coordinate down
and up respectively. We can define the functions thus:

out := (lambda (n)
(lambda (i) (if (= i n) 1 0)));

down := (lambda (n) (if (= n 0) 0 (- n 1)));
up := (lambda (n) (if (= n 4) 4 (+ n 1)));
inv := (lambda (f) (lambda (y)

(suchthat (lambda (x) (= y (f x))))));
LEFT := (lambda (s)

(out (down ((inv out) s))));
RIGHT := (lambda (s)

(out (up ((inv out) s))));

We can similarly define agent behaviors to produce se-
quences of actions given a particular goal state. With these
definitions, we can prove that the action sequence produced
by a behavior will correctly reach any goal state from any
input state.

The meta-knowledge provided by Proo lets programmers
formally describe and analyze agent behavior. In the future,
we hope to be able to build agents that could discover their
own behaviors from such action descriptions. Agents could
then know why they were acting in a certain way instead of
just instinctively reacting to the world.

References

Arkoudas, K. (2000).Denotational proof languages. Doc-
toral dissertation, MIT.

Fikes, R. E., & Nilsson, N. J. (1971). STRIPS: A new ap-
proach to the application of theorem proving to problem
solving. Artificial Intelligence(pp. 189–208).

Kaufmann, M., Manolios, P., & Moore, J. S. (2000).
Computer-aided reasoning: An approach. Kluwer Aca-
demic Publishers.

22

Hierarchical Recursive Feature Elimination: A Proposed Method for Reducing
the Set of Features Used in an EEG-based Epileptic Seizure Detector

Elena Leah Glassman ELG@CSAIL.MIT.EDU

Networks and Mobile Systems Group, MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar Street,
Cambridge, MA 02139 USA

1. Introduction
This research is concerned with reducing the number of
channels and features computed from each channel of
an EEG-based, patient-specific epileptic seizure detec-
tor (Shoeb, 2003), while still maintaining performance.
The current Recursive Feature Elimination (RFE) (Guyon
et al., 2002) implementation we employ can significantly
reduce the number of channels (and therefore electrodes)
within practical time constraints. Yet RFE, an SVM-based
greedy feature elimination algorithm that has become an
established method for feature selection, can be computa-
tionally expensive. Numerous methods have been intro-
duced to make RFE run within practical time constraints,
such as E-RFE (Furlanello et al., 2003b), SQRT-RFE, and
1-RFE (Furlanello et al., 2003a).

The proposed hierarchical RFE method is another approach
to speeding up the RFE process, which it is hoped will en-
able the removal of not only channels but individual fea-
tures computed from the channels as well. Such a reduction
will decrease overall computational complexity and power
consumption, which will be especially important for mo-
bile seizure detector systems

2. Background
The electroencephalogram (EEG) is an electrical record of
brain activity that is collected using an array of electrodes
uniformly distributed on a subject’s scalp. The seizure de-
tector (Shoeb, 2003) declares onsets based on a collective
examination of features extracted from 21 EEG channels.
A channel is defined as the difference between a pair of
(typically adjacent) electrodes. The detector is trained and
tested on the dataset collected by Shoeb.

RFE uses the internal workings of a Support Vector Ma-
chine (SVM) to rank features. An SVM is trained on fea-
ture vectors derived from examples of two classes. The
apparent importance of each feature is derived from the ori-
entation of the class-separating hyperplane. The feature(s)
with the least apparent importance are removed. The re-

maining features are used to retrain the SVM for the next
iteration. The process is repeated recursively until some
stopping criterion is met (Guyon et al., 2002).

3. Motivation and Proposed Method
Since the number of features (4 per channel, 84 total) is
large, the existing system does elimination on a channel-
by-channel basis (Lal et al., 2004) At each iteration, the
channel whose features contribute least to discrimination
between the seizure and non-seizure classes is removed. If
one begins with 21 channels and stops when all but one
have been eliminated, the process takes one to three hours
for each patient on a state-of-the-art desktop computer but
can take as many as seven hours for patients with a rela-
tively large amount of recorded data or whose seizure and
normal data are particularly hard to discriminate between
Using this process to eliminate features individually would
increase the processing time by a factor of four. Posed as
a search space problem, how can this space, which is too
large, be effectively narrowed?

Because the patient-specific detector is trained on only one
patient’s data, the number of data points is small; the ra-
tio of abnormal (seizure) class data points to features is
roughly 1:1. The recommended ratio of data points to fea-
tures is at least 10:1 (Jain et al., 2000) Whittling down the
channels to the best subset is, consequently, vulnerable to
random variation, possibly causing unimportant channels
to be kept while important channels are eliminated. This
would be evident if a patient’s seizures were localized to
one side of the head, and the final selected subset included
an electrode from the opposite hemisphere.

To prevent this and integrate a priori knowledge, one can
consider meta-features: groups of spatially similar chan-
nels. Constraining the selection of channels by grouping
them based on anatomical information could make the pro-
cess more robust.

This paper proposes an algorithm for finding a robust sub-
set of channels, disregarding the unnecessary features from

23

those channels, and completing the process within prac-
tical time constraints. The algorithm takes advantage of
the data’s hierarchical structure by first performing recur-
sive group elimination until a stopping criterion (such as a
threshold of performance) is met. Then recursive channel
elimination is performed on the channels remaining after
eliminating unnecessary groups. Finally, recursive feature
elimination is performed on the features from the remain-
ing channels. The same stopping criterion is used at each
level. This algorithm will be referred to in the rest of this
paper as Hierarchical Recursive Feature Elimination or H-
RFE.

4. Related Work
Though a literature search for hierarchical feature selection
retrieves many papers using this terminology, it was only
after this paper’s submission that a manuscript (Dijck et al.,
2005) was found, still in press, proposing hierarchical fea-
ture selection in a manner similar to H-RFE. The main dif-
ference is that the method proposed by Dijck et al. bundles
correlated features instead of using a priori knowledge to
bundle features (which will not necessarily be correlated).

Since H-RFE is a multiresolution feature selection method
by which it is possible to zoom in on a subset of features
and potentially narrow the search space rapidly, it is similar
to methods that remove an exponentially decreasing num-
ber of electrodes at each iteration. Yet H-RFE incorporates
scale: it transitions from eliminating groups of channels
(low resolution) to individual features (high resolution).

This proposed method is similar to Entropy-based RFE
(E-RFE) in its ability to automatically adapt to the
data (Furlanello et al., 2003b). With E-RFE, the number
of features removed in any one iteration is based upon the
percentage of features determined to be unimportant. If a
data-based stopping criterion is used, H-RFE will adapt to
the data as well, determining at each scale when no further
elements should be eliminated and it is necessary to recurse
down to a finer scale.

5. Initial Results and Future Work
Though H-RFE has not yet been completely implemented,
its operation on a single (channel) scale is functional and
has been applied to twenty patients’ data. The stopping cri-
terion is based on the margin, or distance between classes’
support vectors, in the feature space of the SVM used to
rank the features, as well as cross-validation accuracy.

For the twenty patients analyzed so far, the number of chan-
nels was reduced, on average, from 21 to 8.35. Compared
to the original 21-channel seizure detectors, the reduced-
channel detectors had a 12 percent increase in latency (0.9

seconds), with an 11 percent decrease in false alarms and
12 percent increase in misses, on average (results pooled
across all patients). Eventually, using the full multiscale
implementation of H-RFE, it may be possible, as a result
of narrowing the search space through the use of multiple
scales (such as groups of channels), to eliminate superflu-
ous features from the remaining channels within a practical
amount of time. Though the concept of hierarchical feature
selection has already been recently proposed, this method
of bundling features–not based on statistical correlations,
which are vulnerable to random variation when analyzing
small datasets, but on a priori knowledge–may be partic-
ularly suited to problems in which the data lends itself to
hierarchical organization.

6. Acknowledgements
I gratefully acknowledge many helpful discussions with
Dorothy Curtis, Martin Glassman, Prof. John Guttag,
Daniel Leeds, Eugene Shih, Ali Shoeb, and Zeeshan Syed.

References
Dijck, G. V., Hulle, M. M. V., & Wevers, M. (2005). Hi-

erarchical feature subset selection for features computed
from the continuous wavelet transform. Proc. 2005 IEEE
Workshop on Machine Learning for Signal Processing.
Mystic, Connecticut, USA. In press.

Furlanello, C., Serafini, M., Merler, S., & Jurman, G.
(2003a). An accelerated procedure for recursive feature
ranking on microarray data. Neural Networks, 16, 641–
648.

Furlanello, C., Serafini, M., Merler, S., & Jurman, G.
(2003b). Entropy-Based Gene Ranking without Selec-
tion Bias for the Predictive Classification of Microarray
Data. BMC Bioinformatics, 54.

Guyon, I., Weston, J., Barnhill, S., & Vapnik, V. (2002).
Gene selection for cancer classification using support
vector machines. Machine Learning, 46, 389–422.

Jain, A. K., Duin, R. P. W., & Mao, J. (2000). Statistical
pattern recognition: A review. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 22, 4–37.

Lal, T. N., Schroder, M., Hinterberger, T., Weston, J., Bog-
dan, M., Birbaumer, N., & Scholkopf, B. (2004). Sup-
port vector channel selection in BCI. IEEE Transactions
on Biomedical Engineering, 51, 1003–1010.

Shoeb, A. H. (2003). Patient-specific seizure onset detec-
tion. Master’s thesis, Massachusetts Institute of Tech-
nology.

24

Dynamic Variable Comparability Analysis for C and C++ Programs

Philip J. Guo PGBOVINE@CSAIL.MIT.EDU

Stephen McCamant SMCC@CSAIL.MIT.EDU

MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar Street, Cambridge MA, 02139 USA

1. Introduction

Languages like C and C++ provide programmers with only
a few basic types (e.g.,int, float). Programmers often
use these types to hold semantically unrelated values, so
types typically capture only a portion of the programmer’s
intent. For example, a programmer may use theint type
to represent array indices, sensor measurements, the cur-
rent time, or other unrelated quantities.pair<int,int>
can represent the coordinates of a point, a quotient and re-
mainder returned from a division procedure, etc. The use
of a single programming language representation type for
these conceptually distinct values obscures the differences
among the values.

int main() {
int year = 2005;
int winterDays = 58;
int summerDays = 307;
compute(year, winterDays, summerDays);
return 0;

}

int compute(int yr, int d1, int d2) {
if (yr % 4)
return d1 + d2;

else
return d1 + d2 + 1;

}

In the program above, the three variables inmain all have
the same type,int, but two of them hold related quanti-
ties (numbers of days), as can be determined by the fact
that they interact when the program adds them, whereas
the other contains a conceptually distinct quantity (a year).
day andyear, theabstract typesthat the programmer most
likely intended to convey in the program, are both repre-
sented asint.

A variable comparability analysis aims to automatically in-
fer when sets of variables with the same representation type
actually belong to the same abstract type. Sets of variables
with the same abstract type are said to becomparable. This
analysis could make the code’s intention clearer, prevent
errors, ease understanding, and assist automated program
analysis tools. In the past, it has been performed statically

using type inference, but we propose to perform a dynamic
comparability analysis by observing interactions of values
at run-time. We believe that a dynamic analysis can yield
more precise results with greater scalability, given an exe-
cution which provides adequate coverage. We have imple-
mented a tool called DynComp which performs this analy-
sis for C and C++ programs.

2. Application to Invariant Detection

One specific application of a comparability analysis is to
improve the performance and results of the Daikon invari-
ant detector (Ernst, 2000). Daikon analyzes program value
traces to infer properties that hold over all observed ex-
ecutions. Without comparability information, Daikon at-
tempts to infer invariants over all sets of variables with the
same representation type, which is expensive and likely to
produce invariants that are not meaningful. For the above
example, Daikon may state thatwinterDays < year.
While this invariant is true, it is most likely not meaning-
ful because the two variables belong to different abstract
types (they are not comparable). Comparability informa-
tion indicates which pairs of variables should be analyzed
for potential invariants, which both improves Daikon’s per-
formance and helps it produce more meaningful results.

3. Static Analysis: Lackwit

The Lackwit tool (O’Callahan & Jackson, 1997) performs
a static source code analysis on C programs to determine
when two variables have the same abstract type. It performs
type inference to give two variables the same abstract type
if their values may interact at any time during execution via
a program operation such as+ or =. Because it does not ac-
tually execute the program, it must make conservative esti-
mates regarding whether variables may interact, which may
lead to imprecise results with fewer abstract types than ac-
tually present in the program. Also, though it is sound with
respect to a large subset of C, this subset does not cover
all the features used in real programs: it may miss interac-
tions that result from some kinds of pointer arithmetic, and
it does not track control flow through function pointers.

25

4. Proposed Dynamic Analysis

We propose a dynamic approach for computing whether
two variables are comparable at program points such as
procedure entries and exits. The analysis conceptually
computes abstract types for values, then converts the infor-
mation into sets of comparable variables at each program
point (calledcomparability sets). It consists of a value
analysis which occurs throughout execution and a variable
analysis which occurs during each program point.

The value analysis maintains, for each value in memory and
registers, a tag representing its abstract type. It associates a
fresh abstract type with each new value created during ex-
ecution. For a primitive representation type such asint,
new values are instances of literals and values read from
a file. Only values of primitive types receive tags; structs
and arrays are treated as collections of primitive types. Two
values have the same abstract type if they interact by being
arguments to the same program operation such as+ or =.
This is a transitive notion; in the codea+b; b+c, the val-
ues ofa andc have the same abstract type. Each program
operation on two values unifies their abstract types, using
an efficient union-find data structure, and gives the result
the same abstract type.

The variable analysis is intended to report, for any pair of
variables at a given program point, whether those variables
ever held values of the same abstract type at that program
point. The abstract type information that is maintained for
values must be converted into abstract types for variables
each time a program point is executed. In order to accom-
modate this, the analysis keeps a second variable-based set
of abstract type information (independently for each pro-
gram point) and merges the value-based information into
that data structure at each execution of the program point.
We are currently experimenting with several algorithms for
this operation, each with different degrees of precision ver-
sus performance.

4.1 Implementation: DynComp

We have implemented a tool called DynComp for perform-
ing dynamic comparability analysis of C and C++ pro-
grams. It is built upon a framework based on dynamic
binary instrumentation using Valgrind (Nethercote & Se-
ward, 2003). It maintains a numeric tag along with each
byte of memory and each register which represents the ab-
stract type of the value stored in that location. The value
analysis is performed by instrumenting every machine in-
struction in which values interact to unify their tags in the
union-find data structure. The variable analysis is per-
formed by pausing the program’s normal execution dur-
ing program points, reading the tags of the values held by
relevant variables, and translating the abstract types repre-
sented by these tags to the abstract types of the variables.

4.2 Advantages of Our Dynamic Approach

Our dynamic approach has the potential to produce more
precise results than static analysis because it need not apply
approximations of run-time behavior but can observe ac-
tual behavior. Whereas a static tool must infer whether two
variables could ever possibly interact and become compa-
rable on any possible execution (usually by making conser-
vative estimates), our dynamic analysis (given a test suite
with adequate coverage) can tell exactly whether the two
variables are comparable during actual executions.

Furthermore, our use of dynamic binary instrumentation
results in a tool that can be more robust than Lackwit’s
source-based static approach because it only needs to deal
with value interactions in memory and registers, which
have relatively simple semantics. We do not need to handle
complex source code constructs (such as pointer arithmetic,
function pointers, or type casts) or analyze the source of or
make hand-written summaries for library code (which of-
ten includes difficult-to-analyze constructs), requirements
which are often difficult to implement robustly.

5. Experimental Results and Future Work

DynComp has been tested to work on moderately-sized C
and C++ programs (around 10,000 lines of code). In quan-
titative evaluations, DynComp usually produces smaller
comparability sets than Lackwit and allows Daikon to run
faster and generate fewer invariants. In qualitative evalua-
tions, the sets that DynComp produces more closely match
programmer-intendedabstract typesbecause it does not
have to make approximations about run-time behavior.

DynComp’s scalability is currently limited by the memory
overhead of maintaining tags, but we are currently working
on garbage collection and various optimizations to over-
come this limitation. In the meantime, another member of
our research group is working on a Java implementation of
dynamic comparability analysis.

References

Ernst, M. D. (2000).Dynamically discovering likely pro-
gram invariants. Doctoral dissertation, University of
Washington Department of Computer Science and En-
gineering, Seattle, Washington.

Nethercote, N., & Seward, J. (2003). Valgrind: A program
supervision framework.Proceedings of the Third Work-
shop on Runtime Verification. Boulder, Colorado, USA.

O’Callahan, R., & Jackson, D. (1997). Lackwit: A program
understanding tool based on type inference.Proceedings
of the 19th International Conference on Software Engi-
neering(pp. 338–348). Boston, MA.

26

A Scalable Mixed-Level Framework for Dynamic Analysis of C/C++ Programs

Philip J. Guo PGBOVINE@CSAIL.MIT.EDU

Stephen McCamant SMCC@CSAIL.MIT.EDU

MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar Street, Cambridge MA, 02139 USA

1. Introduction

Many kinds of dynamic program analyses, such as run-
time data structure repair (Demsky et al., 2004) and in-
variant detection (Ernst, 2000), are interested in observ-
ing the contents of data structures during execution. There
is a large number and variety of programs written in C
and C++ which make compelling and practical real-world
test subjects for these analyses. However, it is often diffi-
cult to create robust and scalable implementations of these
analyses because the traditionally-preferred approach of
source-code modification suffers from many limitations.
Its complement, a binary-based approach, is often inade-
quate as well because it cannot access source-level infor-
mation about data structures which these analyses require.

To overcome the limitations of previous approaches, we
have built a framework based on amixed-levelapproach
which uses both binary and source-level information at run
time. Our framework enables the implementation of dy-
namic analyses that areeasy to use— working directly on
a program’s binary without the need to deal with source
code,robust— avoiding output of garbage data and crashes
caused by unsafe memory operations, andscalable— op-
erating on programs as large as 1 million lines of code.

We have used this framework to build a value profiling
tool named Kvasir, which outputs run-time contents of data
structures to a trace file for applications such as invariant
detection, and compared it against its source-based prede-
cessor to show the advantages of our mixed-level approach.

2. Limitations of a Source-Based Approach

A source-based approach works by inserting extra state-
ments into the target program’s source code so that when
the instrumented code is compiled and executed, the pro-
gram runs normally and outputs the desired data, usually to
a trace file for further analysis. Here are some limitations:

1. Usability: A source-based tool is often difficult to use
on real-world programs because a user must instru-
ment every source file and then compile the instru-
mented source into a binary. It can be time-consuming

to figure out exactly which files to instrument and
compile because many real-world programs have their
source code spread throughout multiple directories
and utilize sophisticated compilation configurations.

2. Robustness & Scalability: It is difficult to make a ro-
bust and scalable source-based tool for programs writ-
ten in a memory-unsafe language like C or C++ due
to dynamic memory allocation and pointer manipula-
tion. It is impossible to determine run-time properties
of dynamically-allocated data at the time the source
code is instrumented. For instance, anint* pointer
may be uninitialized, initialized to point to one inte-
ger, or initialized to point to an array of unknown size.
In order for a source-based tool to insert in statements
to observe the values which this pointer refers to at run
time, it must maintain metadata such as initialization
state and array size. This can be difficult to correctly
implement, as it involves transforming all code related
to pointer operations to also update their metadata.

The complexities of parsing C (and especially C++)
code presents another barrier to scalability. The parser
must properly account for various dialects and stan-
dards (e.g., K&R, ANSI) and complex source-code
constructs (e.g., function pointers, C++ templates)
which are likely to arise in many real-world programs.

Previous research in our group used a source-based ap-
proach to implement the Dfec value profiling tool (Morse,
2002). Our experiences with using and debugging Dfec
confirm the aforementioned limitations.

3. Mixed-Level Approach and Framework

When implementing Kvasir, the successor to Dfec, we
adopted a new mixed-level approach which combines
binary-level instrumentation with source-level constructs
extracted from a program’s debugging information. The
framework we developed can be utilized to build a wide
range of dynamic analyses, of which Kvasir is the first.
It consists of three parts: dynamic binary instrumenta-
tion using Valgrind (Nethercote & Seward, 2003), mem-
ory safety checking using the Valgrind Memcheck tool,

27

and data structure traversal using debugging information.
These components work together to provide a framework
which overcomes limitations of source-based approaches:

1. Usability: A user of a tool built upon this framework
simply needs to run it on a binary file compiled with
debugging information. There are no worries about
which source files to instrument or compile. We uti-
lize Valgrind to re-write the target program’s binary to
insert the appropriate instrumentation instructions at
run time. In order to gather source-level information
about variable names, types, and locations, we use the
debugging information compiled into the binary.

2. Robustness & Scalability: In order to ensure that
an analysis does not crash the target program or out-
put garbage values, we utilize the Valgrind Memcheck
tool to keep run-time metadata about which bytes of
memory have been allocated and/or initialized. This
metadata is updated during every machine instruc-
tion that operates on memory. Memcheck’s mem-
ory checking is far more robust than the source-based
metadata approach because it works directly on the bi-
nary level, thus avoiding source-level complexities.

Furthermore, working on the binary level greatly im-
proves robustness and scalability because the seman-
tics of machine instructions are much simpler than that
of source code. The source-level description of data
has a complex structure in terms of pointers, arrays,
and structures, but the machine-level representation is
as a flat memory with load and store operations.

When source-level information is required, though,
instead of gathering it from the source code, we utilize
debugging information, which is much easier to parse
and more dialect and language-independent. With
such type, size, and location information, our frame-
work allows tools to observe the run-time values of
variables, arrays, and recursively traverse inside of
structs. Memcheck allows tools to discover array sizes
at run time and determine which values are initialized,
thus preventing the output of garbage values.

4. Evaluation of Kvasir Value Profiling Tool

Kvasir, built upon our mixed-level framework, works by
instrumenting the program’s binary to pause execution at
function entrances and exits. At those times, it traverses
through data structures to output their contents to a trace
file. It works on many large C and C++ programs such as
povray, perl, xemacs, andgcc. Kvasir provides selec-
tive tracing functionality to control which variables to ob-
serve and at which times the observations should be made,
which is useful for tracing selected parts of large programs.
For example, a CSAIL research project on data structure

repair (Demsky et al., 2004) used Kvasir to trace the evo-
lution of flight information data structures in the air traffic
control program CTAS (1 million lines of code) and a map
in the server for the strategy game Freeciv (50,000 lines).

Kvasir has two main limitations: First, Kvasir only works
on x86/Linux programs because Valgrind only supports
x86/Linux. However, most open-source C/C++ programs
can be compiled for this platform. Secondly, programs
running under Kvasir suffer a performance slowdown of
around 80 times during normal execution without any out-
put. There is an additional slowdown proportional to the
amount of trace data outputted. However, by selecting a
small subset of functions and variables to trace, it is possi-
ble to run Kvasir on large, interactive GUI programs such
as CTAS at reasonable levels of speed and responsiveness.

Kvasir’s usability, robustness, and scalability far surpass
that of its source-based predecessor Dfec, which could only
work without crashing on small to mid-sized programs, and
usually only after hours of work massaging the source code
so that Dfec could accept it as input. The largest program
that Dfec worked on wasflex (12,000 lines), but only af-
ter weeks of effort to modify its source code. In contrast,
we can downloadflex, compile it with debugging infor-
mation, and run Kvasir on it, all within half an hour.

5. Future Work

Both our mixed-level framework and the Kvasir tool are
under active development, especially to improve C++ sup-
port. If you have a research project that requires a tool to
observe or modify data structures within large C or C++
programs at run time and would like to use our framework
or the Kvasir tool, please contact us. We plan to add new
features based on user interests and requirements.

References

Demsky, B., Ernst, M. D., & Rinard, M. (2004). Automatic
inference and enforcement of data structure consistency
constraints (in preparation).

Ernst, M. D. (2000).Dynamically discovering likely pro-
gram invariants. Doctoral dissertation, University of
Washington Department of Computer Science and En-
gineering, Seattle, Washington.

Morse, B. (2002). A C/C++ front end for the Daikon dy-
namic invariant detection system. Master’s thesis, MIT
Department of Electrical Engineering and Computer Sci-
ence, Cambridge, MA.

Nethercote, N., & Seward, J. (2003). Valgrind: A program
supervision framework.Proceedings of the Third Work-
shop on Runtime Verification. Boulder, Colorado, USA.

28

A Scalable Architecture for Network Fault Diagnosis in the Knowledge Plane

George J. Lee GJL@MIT.EDU

Peyman Faratin PEYMAN@MIT.EDU

Steven Bauer BAUER@MIT.EDU

MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar Street, Cambridge MA, 02139 USA

1. Introduction

The Internet enables a wide variety of devices to commu-
nicate with one another, but both the distributed adminis-
tration of the Internet and the complex interactions among
failures make problems difficult to diagnose. To address
this problem, we propose an architecture for distributed
network fault diagnosis that allows data providers, diag-
nosis providers, and users to exchange information in a
standard way. We see this diagnostic architecture as one
aspect of the Knowledge Plane (KP)(Clark et al., 2003), a
platform which will enable automated network diagnosis,
management, configuration, and repair. A general architec-
ture for distributed diagnosis will allow different diagnosis
providers, such as intrusion detection systems and domain-
specific failure diagnosis systems, to interoperate and ex-
change data from different sources such as network moni-
tors and Internet tomography systems. Designing such an
architecture is difficult because it must be able to support a
wide range of data and diagnostic methods as well as scale
to large networks with unpredictable network faults poten-
tially affecting millions of users. In this paper we describe
an approach for addressing these challenges using an exten-
sible ontology and a scalable routing protocol and present
the results of some preliminary experiments.

There has been some related work in networks for exchang-
ing diagnostic information. Wawrzoniak et al. developed
Sophia, a system for distributed storage, querying, and pro-
cessing of data about networks (Wawrzoniak et al., 2004).
Thaler and Ravishankar describe an architecture for diag-
nosing faults using a network of experts (Thaler & Ravis-
hankar, 2004). Gruschke describes how an event manage-
ment system can use dependency graphs for diagnosis (Gr-
uschke, 1998). Unlike previous work, we consider how to
handle large volumes of diagnostic requests by reasoning
about the effects of individual network failures.

2. An Agent Architecture for Fault Diagnosis

Our goal is to design a network architecture that allows dis-
tributed diagnosis for a wide range of faults. As a start-

ing point, we consider how to diagnose reachability faults
in which a user cannot complete a network task because
they cannot reach some destination. Reachability faults
may result from a variety of causes, including physical net-
work cable disconnection, network misconfiguration, ac-
cess provider failures, routing failures, and software fail-
ures.

In order to automatically collect data about faults, perform
diagnosis, and convey diagnoses to users affected by faults,
we developed a diagnostic architecture comprising a net-
work of intelligent agents. Each agent may request infor-
mation from other agents and respond to such requests. In
this network architecture, user agents make requests for
diagnosis, and diagnosis agents request data from data
agents in order to respond to user agent requests.

3. Scalable Routing Using Aggregation

Our architecture must address the issue of scalability. In
large networks such as the Internet, a single serious net-
work fault may affect millions of users. To successfully
diagnose such faults, our architecture uses aggregation to
greatly reduce the number of messages required for diag-
nosis. Instead of performing a full diagnosis for every re-
quest, an agent may determine that multiple requests may
be aggregated and answered using existing knowledge.

In order to maximize the effectiveness of aggregation,
agents route requests and responses according to the Inter-
net autonomous system (AS) topology. For each AS, there
exists a diagnostic agent that knows about failures within
that AS. A diagnostic request from a user agent first trav-
els to the diagnostic agent for the user’s access provider
AS. If the diagnostic agent does not have enough informa-
tion to respond, then it forwards the request to the agent
for the next AS along the AS path towards the unreachable
destination. When an agent has enough information to pro-
duce a diagnosis, it sends a response that travels along the
reverse path of the request, allowing each agent along the
path to store the data in the response. Routing along the
AS path ensures that if a fault occurs somewhere along the

29

U1 to MIT

Route from
U2 to ISP

requires

provides

ISP
U2’s Local
Network

U2 to Yahoo

Route from
ISP to Yahoo

Route from
U1 to ISP

Route from
ISP to MIT

U1’s Local
Network

Figure 1. Inferring failures using a dependency graph

AS path, data is collected from every agent with informa-
tion about a fault while minimizing the average number of
requests each agent handles.

In order to aggregate effectively, however, an agent must be
able to determine whether it can satisfy multiple requests
using existing knowledge. To address this problem, we pro-
pose an ontology that allows agents to describe the depen-
dencies between different network components and infer
all the network failures that may result from a failed com-
ponent. This ontology defines components and dependen-
cies, where components may require multiple dependen-
cies. A dependency is satisfied if and only if there exists
a component that provides that dependency. A component
functions if and only if it has not failed and all the depen-
dencies it requires are satisfied. This dependency graph is
distributed: each diagnostic agent may define its own local
dependency model and incorporate additional dependency
information from other agents.

Figure 1 depicts a simple example of how an agent might
use a dependency graph for aggregation. The shaded and
unshaded ellipses represent components and dependencies,
and the solid and dotted lines indicate required and pro-
vided dependencies, respectively. To reach their destina-
tions, users U1 and U2 must be able to reach their ISP,
and their ISP must be able to reach their respective des-
tinations. Since both users share the same ISP, if their
ISP fails, then a diagnostic agent can infer that neither user
can reach their desired destinations. An actual dependency
graph would also model dependencies among many other
types of networking components, including DNS, network
applications, and link-layer components.

To illustrate the potential benefit of aggregation, we con-
ducted simulations of our routing protocol using an ac-
tual AS topology consisting of 8504 nodes using data from
Skitter1. Figure 2 plots the average number of requests an
agent receives based on its distance from the agent of the
AS responsible for the failure, where the point “0 hops”
represents the responsible agent. In this simulation, the
failure affects 1,000,000 users, each of whom makes a diag-
nostic request. Without aggregation, the responsible agent

1http://www.caida.org/tools/measurement/skitter/

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 1 2 3 4 5 6 7

A
vg

 n
um

be
r

of
 m

es
sa

ge
s

re
ce

iv
ed

Hops away from responsible agent

Perfect Aggregation
No Aggregation

Figure 2. Message Distribution

receives one request from every user agent. With perfect
aggregation, if agents can accurately respond to requests
using existing knowledge, the agent for the responsible AS
only receives at most one request from each of its neighbor-
ing agents. The benefit of aggregation diminishes farther
away from the responsible agent because the distant agents
receive fewer requests and hence have fewer opportunities
for aggregation. This plot shows that an effective ontology
and intelligent aggregation can greatly reduce the average
number of requests agents process.

4. Conclusion and Future Work

In this paper we proposed an architecture for distributed
network fault diagnosis that represents data using an ex-
tensible ontology and routes requests and responses using
aggregation to reduce the average number of requests an
agent must process. We are currently developing a proto-
type of this architecture and plan to conduct more experi-
ments to determine how well it performs under a variety of
realistic failure cases.

References

Clark, D. D., Partridge, C., Ramming, J. C., & Wroclawski,
J. T. (2003). A knowledge plane for the internet. Pro-
ceedings of SIGCOMM ’03.

Gruschke, B. (1998). Integrated event management: Event
correlation using dependency graphs. Proceedings of
DSOM ’98.

Thaler, D. G., & Ravishankar, C. V. (2004). An architecture
for inter-domain troubleshooting. Journal of Network
and Systems Management, 12.

Wawrzoniak, M., Peterson, L., & Roscoe, T. (2004).
Sophia: an information plane for networked systems.
SIGCOMM Comput. Commun. Rev., 34, 15–20.

30

JCilk’s Support for Speculative Computation

I-Ting Angelina Lee ANGELEE@MIT.EDU

MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar Street, Cambridge MA, 02139 USA

1. Introduction

JCilk is a Java-based multithreaded language that extends
the semantics of Java [Gosling et al., 2000] by introduc-
ing “Cilk-like” [Supercomputing, 2001, Frigo et al., 1998]
parallel programming primitives. JCilk supplies Java with
procedure-call semantics for concurrent subcomputations
and, more importantly, integrates exception handling with
multithreading by defining semantics consistent with Java’s
existing semantics of exception handling.

JCilk’s strategy of integrating multithreading with Java’s
exception semantics yields some surprising semantic syn-
ergies. In particular, JCilk supports an implicit abort mech-
anism as part of JCilk’s exception semantics: when multi-
ple subcomputations are executed in parallel, an exception
thrown by one subcomputation signals its sibling computa-
tions to abort. This implicit abort yields a clean semantics
in which only a single exception from the enclosing try
block is handled.

In ordinary Java, an exception causes a nonlocal transfer
of control to the catch clause of the nearest dynamically
enclosing try statement whose catch clause handles
the exception. The Java Language Specification [Gosling
et al., 2000, pp. 219–220] states,

“During the process of throwing an excep-
tion, the Java virtual machine abruptly com-
pletes, one by one, any expressions, statements,
method and constructor invocations, initializers,
and field initialization expressions that have be-
gun but not completed execution in the current
thread. This process continues until a handler is
found that indicates that it handles that particular
exception by naming the class of the exception or
a superclass of the class of the exception.”

In JCilk, we have striven to preserve these semantics while
extending them to cope gracefully with the parallelism pro-
vided by the Cilk primitives. Specifically, JCilk extends the
notion of “abruptly completes” to encompass the implicit
aborting of any side computations that have been spawned
off and on which the “abrupt completion” semantics of the
Java exception-handling mechanism depends.

This implicit abort mechanism allows speculative computa-
tion, which is required by some parallel search algorithms,
such as branch-and-bound and heuristic search [Dailey &
Leiserson, 2002]. In these algorithms, some computations
may be spawned off speculatively, but are later found to be
unnecessary. In such cases, one wishes to terminate these
extraneous computations as soon as possible so that they
do not consume system resources.

It turns out that the exception-based abort mechanism pro-
vided by JCilk is cleaner to code with than the inlet-based
one provided by Cilk. Specifically, JCilk extends Java’s ex-
ception semantics to allow exceptions to be passed from a
spawned method to its parent in a natural way so that the
need for Cilk’s aborting constructs, inlet and abort, is
obviated.

This paper presents how JCilk supports speculative com-
putation with its exception-based abort mechanism. The
paper first summarizes the basic syntax and semantics in
JCilk, and then gives a motivational example of how the
Queens puzzle with speculative computation can be imple-
mented in JCilk.

The work described in this paper represents joint research
with John S. Danaher and Charles E. Leiserson.

2. The JCilk language

The philosophy behind our JCilk extension to Java fol-
lows that of the Cilk extension to C: the multithreaded lan-
guage should be a true semantic parallel extension of the
base language. JCilk extends Java1 by adding new key-
words that allow the program to execute in parallel. If the
JCilk keywords for parallel control are elided from a JCilk
program, however, a syntactically correct Java program re-
sults, which we call the serial elision of the JCilk program.
JCilk is a faithful extension of Java, because the serial eli-
sion of a JCilk program is a correct (but not necessarily
sole) interpretation of the program’s parallel semantics.

To be specific, JCilk introduces three new keywords —

1Actually, JCilk extends the serial portion of the Java lan-
guage, and it omits entirely Java’s multithreaded support as pro-
vided by the Thread class.

31

1 cilk int f1() {
2 int w, x, y, z;
3 cilk try {
4 w = spawn A();
5 x = spawn B();
6 } catch(Exception e) {
7 w = x = 0;
8 }
9 y = spawn C();

10 z = D();
11 sync;
12 return w + x + y + z;
13 }

Figure 1: A simple JCilk program.

cilk, spawn, and sync — which are the same keywords
used to extend C into Cilk, and they have essentially the
same meaning in JCilk as they do in Cilk.

Analogous to Cilk, in JCilk the keyword cilk is used as
a method modifier to declare the method to be a cilk
method, which is analogous to a regular Java method ex-
cept that it can be spawned off to execute in parallel. When
a parent method spawns a child method, which is accom-
plished by preceding the method call with the spawn key-
word, the parent can continue to execute in parallel with
its spawned child. The sync keyword acts as a local bar-
rier. The JCilk runtime system ensures that program con-
trol cannot go beyond a sync statement until all previously
spawned children have terminated. In general, until a cilk
method executes a sync statement, it cannot safely use re-
sults returned by previously spawned children.

Different from Cilk, however, in JCilk the cilk keyword
can also be used as a modifier for a try statement. JCilk
enforces the constraint that spawn and sync keywords
can only be used within a cilk try block, but not within
an ordinary try block. Placing spawn or sync key-
words within a catch or finally clause is illegal in
JCilk, whether the catch or finally clause belongs to
a cilk try statement or to an ordinary try statement.
The reason try blocks containing spawn and sync must
be declared cilk is that when an exception occurs, these
try statements may contain multiple threads of control
during exception handling. Although the JCilk compiler
could detect and automatically insert a cilk keyword be-
fore a try statement containing spawn or sync, we feel
the programmer should be explicitly aware of the inherent
parallelism. We disallow spawn and sync within catch
or finally clauses for implementation simplicity, but we
might consider revisiting this decision if a need arises.

To illustrate how we have introduced these Cilk primitives
into Java, first consider the JCilk program in Figure 1 and
assume that no exception happens during execution. The
method f1 spawns off methods A and B to run in parallel

in lines 4 and 5. After spawning A and B, the execution of
f1 continues to spawn off C in parallel in line 9 and call
method D normally in line 10. Then the execution waits at
the sync in line 11 until all the subcomputations A, B, and
C have completed. When they all complete, assuming that
no exception occurs, f1 computes the sum of their returned
values as its returned value in line 12.

What happens, however, when an exception occurs during
execution? When an exception is thrown, JCilk “semisyn-
chronously” aborts the side computations of the exception,
which include any method that is dynamically enclosed by
the catch clause of the cilk try statement that handles
the exception. Consider the same program in Figure 1 again
and assume that an exceptions occurs during execution. If
A throws an exception after f1 has spawned B, B and all
its subcomputations are automatically aborted. Similarly,
if B throws an exception while A is still executing, A and
all its subcomputations are automatically aborted. In ei-
ther cases, once all computations dynamically enclosed by
the catching cilk try have terminated (either by throw-
ing exception of by aborting), the corresponding catch
clause or finally clause (if any) is then executed. On the
other hand, if C throws an exception, which is not caught
anywhere within method f1, all A, B, and their subcompu-
tations are aborted, and the exception is propagated up to
f1’s parent, as the reason why f1 is terminated.

This implicit abort is performed semisynchronously, that
is, when a computation is aborted, the abort happens only
after each spawn, sync, or cilk try statement. JCilk’s
semantics for semisynchronous aborts simplify the reason-
ing about program behavior when an abort occurs, lim-
iting the reasoning to those points where parallel control
must be understood anyway. In addition, JCilk provides
for aborts themselves to be caught by defining a new sub-
class of Throwable, called CilkAbort, thereby allow-
ing programmers to clean up an aborted subcomputation.

3. The Queens problem

Figure 2 illustrates how the so-called Queens puzzle can
be programmed in JCilk. The program would be an ordi-
nary Java program if the three keywords cilk, spawn,
and sync were elided, but the JCilk semantics make this
code a highly parallel program. This JCilk program serves
as an example of how speculative applications can be coded
in JCilk in a relatively simple fashion compared to in Cilk
or in Java.

This implementation uses a speculative parallel search and
exploits JCilk’s implicit abort semantics to avoid extrane-
ous computation. The program spawns many branches in
the hopes of finding a safe configuration of the n queens.
When such a configuration is discovered, some outstand-

32

1 public class Queens {
2 private int n;

...
3 private cilk void
4 q(int[] cfg, int r) throws Result {
5 if(r == n) {
6 throw new Result(cfg);
7 }

8 for(int c=0; c<n; c++) {
9 int[] ncfg = new int[n];

10 System.arraycopy(cfg, 0,
11 ncfg, 0, n);
12 ncfg[r] = c;

13 if(safe(r, c, ncfg)) {
14 spawn q(ncfg, r+1);
15 }
16 }
17 sync;
18 }

19 public static cilk void
20 main(String argv[]) {

...
21 int n = Integer.parseInt(argv[0]);
22 int[] cfg = new int[n];
23 int[] ans = null;

24 cilk try {
25 spawn (new Queens(n)).q(cfg, 0);
26 } catch(Result e) {
27 ans = (int[]) e.getValue();
28 }
29 sync;

30 if(ans != null) {
31 System.out.print("Solution: ");
32 for(int i = 0; i < n; i++) {
33 System.out.print(ans[i] + " ");
34 }
35 System.out.print("\n");
36 }

...
37 }
38 }

Figure 2: The Queens problem coded in JCilk. The program
searches in parallel for a single solution to the problem of placing
n queens on an n-by-n chessboard so that none attacks another.
The search quits when any of its parallel branches finds a safe
placement. The method safe determines whether it is possible
to place a new queen on the board in a particular square. The
Result exception (which inherits from class Exception) is
used to notify the main method when a result is found.

ing q methods might still be executing; those subsearches
are now redundant and should be aborted. JCilk’s excep-
tion mechanism facilitates programming this strategy: an
exception thrown by a computation automatically aborts
all sibling computations and their children dynamically en-
closed in the catching cilk try block. In this exam-
ple, the branch that found the legal placement throws the
Result exception, which propagates all the way up to the
main method and aborts all outstanding q methods auto-
matically. A sync statement (line 29 in the mainmethod)
is presented before it proceeds to print out the solution to
ensure that all side computations have terminated.

4. Project progress

We have developed a solid set of semantics that extends
Java’s exception mechanism to handle gracefully the par-
allelism introduced by spawn and sync. We have also
built a working version of the JCilk system, including both
the compiler and the runtime system, which supports the
semantics that we have designed. The system implementa-
tion serves as an important foundation for JCilk’s semantic
design. Only after implementing the actual system, can we
be certain that our semantic design is “reasonable” and not
just some semantics on paper.

Several applications are developed in JCilk to demonstrate
the expressive of JCilk’s features, including Queen’s puz-
zle, parallel alpha-beta search, and LU Decomposition.
The next goal of the project is to improve the system perfor-
mance and to integrate JCilk’s threading model with other
modern language features in Java.

References

Dailey, D., & Leiserson, C. E. (2002). Using Cilk to write
multiprocessor chess programs. The Journal of the In-
ternational Computer Chess Association.

Frigo, M., Leiserson, C. E., & Randall, K. H. (1998).
The implementation of the Cilk-5 multithreaded lan-
guage. Proceedings of the ACM SIGPLAN ’98 Confer-
ence on Programming Language Design and Implemen-
tation (pp. 212–223). Montreal, Quebec, Canada. Pro-
ceedings published ACM SIGPLAN Notices, Vol. 33,
No. 5, May, 1998.

Gosling, J., Joy, B., Steele, G., & Bracha, G. (2000). The
Java language specification second edition. Boston,
Massachusetts: Addison-Wesley.

Supercomputing (2001). Cilk 5.3.2 reference manual. Su-
percomputing Technologies Group,, MIT Laboratory for
Computer Science, 545 Technology Square, Cambridge,
Massachusetts 02139.

33

34

The Effect of Neighborhood Boundaries on Nearness

Gary Look GARYL@CSAIL.MIT.EDU

MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar Street, Cambridge MA, 02139 USA

1. Motivation

The notion of “nearness” is a key feature used by location-
based services, yet it has not received a rigorous treatment
in the ubiquitous computing (ubicomp) literature. Usually,
location-based services such as MapQuest address the near-
ness issue by assuming a fixed radius around a location,
and treating all places within that radius as near. How-
ever, personal experience suggests that each person has
their own perception of what places are “near,” and that,
when mapped out, these places would form a shape that is
very different from a circle.

For example, one of the main entrances to the MIT campus
is located at 77 Massachusetts Avenue (Mass Ave). My
barber is located in Cambridge’s Central Square neighbor-
hood, 0.8 miles from 77 Mass Ave. From 77 Mass Ave, I
consider my barber near enough that I wouldn’t mind walk-
ing to his shop. On the other hand, there is a Virgin Music
store located in the other direction along Mass Ave, across
the Harvard Bridge in Boston. Yet, even though I know
this store is also 0.8 miles away from 77 Mass Ave, I do
not consider it near enough for me to walk to it.

This research investigates what factors influence a per-
son’s perception of nearness. Specifically, I am looking at
how nearness is influenced by a person’s familiarity with a
neighborhood and shaped by the boundaries that define that
neighborhood. My goal is to incorporate these factors into
a model of an individual’s sense of nearness. My claim
is that the features that are used as neighborhood bound-
aries — topography, major streets, demographics — are all
identifiable and can be used to objectively explain individ-
ual differences in the seemingly subjective assessment of
nearness. Moreover, I claim this holds as the scale space
under consideration changes.

2. Approach

My research is divided into two major sub-areas. The first
area is identifying where different neighborhoods are lo-
cated and what features of the urban landscape people use
to define neighborhood boundaries. I am particularly inter-
ested in how local neighborhoods, those without formally
dictated boundaries (for example, Boston’s Back Bay, or

Cambridge’s Harvard Square) are defined. The second area
of work is to identify which of these features shape the area
that a person considers to be nearby. I have just started this
line of research, and in this abstract, I will focus the discus-
sion on the second area.

As illustrated in the anecdotal example at the start of this
abstract, I believe that nearness is in large part shaped by
the number and type of boundaries between two places. A
place P that is x miles from reference place R and in the
same neighborhood as R may be considered near R. How-
ever, another place P ′ that is also x miles from R but in
another neighborhood may not seem near due to the num-
ber of boundaries separating P ′ from R. However, near-
ness is also influenced by the places we frequent, and this
would reduce the cumulative effect of boundary crossings
on our perception of nearness and thus explain individual
differences in the nearness perception.

As a first step in this research, I conducted a study in which
I asked people to imagine they are at different subway
stops. Then, without the aid of a map, I presented a list of
places and asked “If a person comes up to you on foot and
asks you which of these places are near the T stop where
you are, how would you respond?” Figure 1 shows a map
of one subway stop and some of the places on the list for
that subway stop. After participants completed the survey,
I then presented them a map of the Boston-Cambridge area
and asked them to sketch the boundaries to a number of
neighborhoods. The goal of this survey is to provide in-
sight into a number of questions:

• Is there a consistent set of features that both de-
fine neighborhood boundaries and influence a person’s
perception of nearness? Do neighborhood boundaries
that are less distinct (such as the boundary between
Central and Harvard Squares) have a different effect
on our sense of nearness than those boundaries that
are more distinct?

• For a given individual, can the criteria used to define
what is near one particular location be used to deter-
mine what that person would consider to be near an-
other location? Can this criteria be generalized across
individuals?

35

Figure 1. The triangle in the center of this map is the location of
the Central T stop. Each of the circles mark a place for which I
ask “ Is this place near the Central T stop?” This is for the reader’s
visualization only; study participants were not provided a map.

• How does a person’s perception of nearness change
from place to place? Does the shape and size of the
region considered near remain constant, or does it
change? If we centered the nearness region around
the reference subway stop, is the region symmetrical?
What would explain asymmetries?

I am currently analyzing the data from this study. The first
part of my analysis compares how well different models
predict which places a person considers to be near a partic-
ular subway stop. The models I am considering are:

1. “As the crow flies” models, that consider all places
within a certain distance near

2. “Actual distance” models, that predict nearness based
on the actual length of the route between two places

3. Individual-defined, neighborhood-based models that
use the neighborhood boundary sketches people drew

4. Street-defined, neighborhood-based models that use
areas enclosed by major streets

To measure goodness-of-fit of these different models, I will
compare the recall and precision of each of these models
on the survey data I collected. Recall would be the fraction
of all near places (as defined by each individual’s survey
results) a model is able to identify. Precision is the ratio of
correctly identified near places (again, as defined by each
individual) to all places the model classified as near.

3. Related Work

Denofsky proposed three different thresholds that could be
applied when determining if two items are near one an-
other (Denofsky, 1976). These thresholds are an absolute
range threshold, that uses the maximum possible distance
between two items; an object size threshold that takes into
account the largest dimensions of the items under consider-
ation; and a “standard” threshold that looks at the distance
between “adjacent” pairs of items in the same area as the
pair of items under consideration. Like Denofsky, I treat
nearness as a context-sensitive metric, but instead of look-
ing at relative distance as the influencing factor, I use a per-
son’s familiarity with a region and the boundaries between
regions as features that influence the sense of nearness.

The neighborhood boundary sketching part of my study is
patterned after Montello’s study of vague spatial referents
(Montello et al., 2003). This study investigated various
behavioral methods for identifying informally defined ar-
eas such as “downtown.” In addition to developing various
methodologies for determining the referents of such areas,
Montello also found that some regions had a defining core
location that was not necessarily located in the centroid of
the region. Part of my future work will look into program-
matically identifying the boundaries to neighborhoods like
these and the core locations around which they are built.

4. Contribution

Despite the various computing infrastructures available for
providing accurate and precise location information, ubi-
comp applications still need to account for a person’s per-
ceived notion of nearness. Although these notions may be
incorrect or based on incomplete information, having ap-
plications simply provide an objective ground truth with
regards to distance is not sufficient. In order to provide per-
sonalized location-based recommendations, ubicomp ap-
plications need to understand the reasoning process a per-
son uses to determine if something is nearby. Understand-
ing this process allows us to do two things. First, it im-
proves the relevance of suggestions produced by location-
based applications. Second, by understanding the process,
it makes it easier for applications to correct people’s spatial
misconceptions.

References

Denofsky, M. E. (1976). How near is near? Master’s thesis,
Massachesetts Institute of Technology. MIT AI/TR 344.

Montello, D. R., Goodchild, M. F., Gottsegen, J., & Fohl,
P. (2003). Where’s downtown?: Behavioral methods for
determining referents of vague spatial queries. Spatial
Cognition and Computation, 3, 185–204.

36

Hypernyms as Answer Types

Gregory Marton GREMIO@CSAIL.MIT.EDU

Stefanie Tellex STEFIE10@ALUM .MIT.EDU

Aaron Fernandes ADFERNAN@ALUM .MIT.EDU

Boris Katz BORIS@CSAIL.MIT.EDU

MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar Street, Cambridge MA, 02139 USA

1. Introduction

A system that answers questions automatically with just the
right information will return answers of the correct type.
The question itself often specifies the answer type it ex-
pects. When answering a question like “What flowers did
Van Gogh paint?”, we prefer answers that are members of
the class of flowers, e.g. tulips, begonias, or sunflowers,
over other things Van Gogh might paint, like “watercolors”.

The answer type is also a poor search term: for the question
“What countries produce coffee?”, answers may be of the
form “Brazil produces coffee”, far from any mention of the
term “country”.

2. Related Work

The first Answer Type Identification systems used named
entity categories to require, for example,person or
organization types for “Who” questions, anddate
or time types for “When” questions (Hirschman &
Gaizauskas, 2001).

Today’s top systems use answer type taxonomies with hun-
dreds to thousands of entries (Voorhees, 2004; Hovy et al.,
2001; Hovy et al., 2002; Katz et al., 2003; Katz et al.,
2004), allowing systems to answer questions that, for ex-
ample, start with “Which countries” or “What president”.

Separately, others have explored automatic identification of
hypernym–hyponym (henceforth “class”–“member”) rela-
tions in large bodies of text (Hearst, 1992; Carballo, 1999;
Gruenstein, 2001; Snow et al., ; Pantel, 2005). Phrases in
English like “corn, wheat, and other staple crops” identify
corn and wheat as members of the class of “staple crops”.
For the most part, these techniques have been used to aug-
ment WordNet, a machine–readable lexicon of English that
encodes, among other things, these class–member rela-
tions.

Harabagiuet al. (Pasca & Harabagiu, 2001) observed that
answer types can be identified with WordNet classes, and
their members can be used as a set of possible answers.

Fleischman (Fleischman et al., 2003) used automatic class
identification to answer “Who isP?” with the automatically
extracted classes of whichP is a member. We are the first
to put together these two ideas: to automatically identify
classes in the same text that we will answer questions on,
and to use those classes as answer types. The class informa-
tion we extract also turns out to be instrumental in a number
of related question–answering tasks.

3. Approach

We build on the observation that classes are answer types
and their members are good candidate answers, and we use
automatic class identification techniques to identify over a
million classes and their members. These enable us to ac-
curately answer questions with much more specific answer
types than those previously available. Examples include:
“Which non–OPEC countries ...” and “Which former Yu-
goslav President ... ”.

3.1 Candidate Classes

Aaron Fernandes extended (Fernandes, 2004) Fleischman
et al.’s work (Fleischman et al., 2003) on finding definitions
from applying only to person names, to applying to most
noun phrases. He generated candidate class–member pairs
like those in Figure 1.

3.2 Aggregating Classes

Marton and Tellex then aggregated these class–member
candidate pairsπ, using a probability of correctness
Freq(π) based on the number of times a pair occurred in
the corpus, and on the precisionp(z) of each patternz: 1

Freq(π) =
∑

z p(z) ∗ count(π)∑
z(p(z) ∗

∑
i count(i))

1The numerator is an expectation of timesπ was correctly
seen;i in the denominator iterates over all pairs observed with
the patternz, making the denominator a normalizing constant.
p(z) was estimated for eachz from at least 100 examples.

37

Pattern cue p(z) Frequency Example
common noun then name 0.75 2,125,812 PresidentClinton

apposition marked by commas 0.89 625,962 Noemi Sanin , a former foreign minister,
plural then like 0.42 158,167 immunisable diseaseslike polio .
such as or suchX as 0.47 118,684 stinging insects, such asbees , wasps , hornets andred ants ,
called or also called 0.70 14,066 a gamecalledTightrope walker

named then proper name 0.64 8,992 an ArmeniannamedWilhelm Vigen

known as, also known as 0.68 8,199 low-tariff trade rightsknown asmost-favored-nation status

Figure 1. Examples of the seven patterns expressing class–member relations. Precision (p(z)) and Frequency of each pattern are shown
for a million–article body of newspaper text, along with an exampleclassandmember in context.

4. Progress

We have collected class–member pairs from the AQUAINT
corpus2 of English newspaper text using the patterns de-
scribed above, yielding 2.3 million candidate categories.
Precision, measured using human correctness judgements,
is around 50%. We measured recall using the NIST TREC
2003 and 2004 Question Answering Track3 data. The first
form of recall that we measured tested the coverage of cat-
egories: of the focus–phrases of questions asked (“Which
flowersdid Van Gogh paint”), around 91% were candidate
categories in our list (95% for 2005). The second form of
recall tested the coverage of members: for each question,
about 30% of the known answers were members of a class
associated with the question’s focus phrase.4

5. Future Work

We will integrate this work with our question–answering
system in a number of ways:

• If the answer type in a question (between theWh–
word and the verb) matches a class, then we will use
members of that class as search terms, and we will
prefer those members as answers to the question.

• Categories may appear elsewhere in the question, as
in the question: “Whichoil companiesdrill in non–
OPEC countries?”. When we identify such cate-
gories, we will again use members as search terms.

• In a conversation, a question might refer to a contex-
tual topic by one of its classes. For example, if “Conde
Nast” is under discussion, one must know that it is a
publishing company in order to understand the ques-
tion: “Who is the publishing company’s CEO?”

2http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?
catalogId=LDC2002T31

3http://trec.nist.gov/
4Answers for 2005 will not become available until November.

Automatic Hypernym Extraction and Automatic Question
Answering have been areas of intense study since the
1990s. Question answering is most often applied to a par-
ticular body of text. This work lets an automatic system
read that text to learn the class information it needs to an-
swer questions about the knowledge within.

References

Carballo, S. (1999). Automatic construction of a
hypernym-labeled noun hierarchy from text.ACL1999.

Fernandes, A. (2004). Answering definitional questions be-
fore they are asked. Master’s thesis, MIT.

Fleischman, M., Hovy, E., & Echihabi, A. (2003). Off-
line strategies for online question answering: Answering
questions before they are asked.ACL2003.

Gruenstein, A. (2001). Learning hypernyms from corpora.
Hearst, M. (1992). Automatic acquisition of hyponyms

from large text corpora.14th COLING conference.
Hirschman, L., & Gaizauskas, R. (2001). Natural language

question answering: The view from here.Natural Lan-
guage Engineering.

Hovy, E., Hermjakob, U., & Lin, C.-Y. (2001). The use of
external knowledge in factoid QA.TREC-10.

Hovy, E., Hermjakob, U., & Ravichandran, D. (2002).
A question/answer typology with surface text patterns.
HLT2002.

Katz, B., et al. (2003). Integrating web-based and corpus-
based techniques for question answering.TREC-12.

Katz, B., et al. (2004). Answering multiple questions on a
topic from heterogeneous resources.TREC-13.

Pantel, P. (2005). Inducing ontological co-occurrence vec-
tors. ACL2003.

Pasca, M., & Harabagiu, S. (2001). The informative
role of WordNet in open-domain question answering.
NAACL 2001 Workshop on WordNet and Other Lexical
Resources(pp. 138–143).

Snow, R., Jurafsky, D., & Ng, A. Y. Learning syntactic
patterns for automatic hypernym discovery.NIPS2004.

Voorhees, E. (2004). Overview of the TREC 2004 question
answering track.

38

English-to-English Statistical Machine Translation: Why and How

Ali Mohammad ALAWI @CSAIL.MIT.EDU

Federico Mora FEDERICO@CSAIL.MIT.EDU

MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar Street, Cambridge MA, 02139 USA

1. Introduction

Machine translation, the task of generating tools to trans-
late or to help translate text from one natural language into
another by means of a computerized system, has been the
subject of intense research over the past five decades. It is
one of the earliest proposed uses for the computer and, to
date, one of the most dramatic failures of the field. From
the beginning, computer scientists promised imminent per-
fect translation and have been consequently punished by
grant committees for their failure to deliver (J. Pierce,
1966). In the past, techniques in machine translation fol-
lowed the most popular techniques in artificial intelligence;
it is not surprising, therefore, that for some time machine
translation efforts were directed primarily in the construc-
tion of monolithic rule-based systems (Jordan & Benoit,
1999; D. J. Arnold, 1994). This effort in the research com-
munity continued until the turn-of-the-century, when it was
abandoned with the advent of successful machine learning
methods based on simple statistical models and large train-
ing sets.

The success of simple statistical methods over intricate and
massive rule-based systems is ultimately due to our inabil-
ity to plan for all natural language text in a set of rules. Nat-
ural language is an imprecise method of communication; it
is ambiguous and largely unstructured, and is therefore the
most expressive form of communication extant. Any set of
rules tends to be fragile; a small set can usually yield sur-
prisingly good results, but improvement beyond that point
is suprisingly difficult (almost impossible). This is our un-
derstanding for why statistical methods are more successful
in practice.

Despite this, statistical methods have their limitations. To
date, state-of-the-art statistical methods have very little lin-
guistic motivation, and, although they are able to handle
complex sentences in a more robust (albeit dissatisfactory)
fashion, they often make very common errors that could be
fixed by very simple linguistic rules if a way could only be
found to introduce such rules without introducing the no-
torious fragility that accompanies them; this is one popular
avenue of current research. Rule-based methods, on the
other hand, are generally quite heavily linguistically moti-

vated.

Although further development of rule-based systems is
considered a misplaced effort in the academic community,
commercial systems are still largely based on this paradigm
and are in widespread use in the industry. The poor perfor-
mance of commercial machine translation systems is now
a contemptuous by-word of popular culture. At the same
time, quite a lot of literature exists due to the more than
forty years of concentrated research in this direction. It
is natural to ask, then, if some technique might be found
to combine the sophisticated linguistic analysis of the rule-
based systems with the robustness of the statistical systems.
This is the topic of this paper.

2. Methods and Madness

Statistical machine translation systems are based on the fol-
lowing idea (we will make the canonical assumption that
we wish to translate French sentences into English): let us
assume that, when French people speak French, they are
thinking of an English sentence; they perform some ran-
dom, noisy procedure on the English, and spit out their
French sentence. Our goal is to recover the English sen-
tence. So, there is some distributionP (e|f) and we wish
find the maximum-likelihood hidden English sentencee
given an observed French sentencef . We use Bayes’ rule
and arrive at the following:

arg max
e

P (e|f) = arg max
e

P (f |e)P (e)
P (f)

= arg max
e

P (f |e)P (e),

where we can omit theP (f) since f is fixed. We
call P (f |e) the translation modelandP (e) the language
model. It is this formulation that allows us to use very sim-
ple translation models and still achieve decent translations.
This is very intuitive: if one wishes to translate French to
English, it is better if they are native speakers of English
and know a little French than if they are native speakers of
French and know a little English.

There has been much work in developing both good trans-
lation models and good language models. The most so-

39

phisticated language models, in practice, never do much
better than a simple trigram model, where one assumes that
English is a Markov process with a history of two words.
This is a recurring theme in Natural Language Processing:
it’s really easy to get a very competitive baseline that is
nowhere close to perfect or even useful in practice.

3. Our Technique

Our technique is very simple and intuitive. We will start
with the normal input to a statistical model: a large set of
corresponding sentences in French and English, called a
parallel corpus. We translate the French sentences into En-
glish using our rule-based system, then train our statistical
system on the new parallel corpus of machine-generated vs
human-generated English. Our translation model need not
be terribly sophisticated here, obviously, as we are translat-
ing within one language and expect little reordering to be
successful. It is our language model that will do the work
here: fixing minor grammatical errors by considering word
movement, insertion, and deletion against its “knowledge”
of the English language.

4. Results

We tested our technique on the German-English EU-
ROPARL corpus (Kohn, 2003), a collection human-
generated parallel text from the European Parliament. Our
rule-based system is the popular SYSTRAN, used without
permission via google (Google, 2005). The statistical ma-
chine translation technique was IBM Model 2 (P. Brown,
1993) with one-dimensional gaussian alignments (Moham-
mad & Collins, 2005). The results are shown in Table 1.

Technique BLEU Score

SYSTRAN 0.13
IBM2+1dG 0.20
IBM2+1dG + SYSTRAN 0.19

Table 1.Results from the individual and combined systems. Note
that google does very poorly compared to the statistical model;
this is almost certainly due to the general domain intended use of
google and the (complex, but still) domain-specific training of the
statistical models.

The vast success of the two statistical models over the rule-
based model is most likely due to the fact that SYSTRAN’s
system is built with no domain-specific knowledge what-
soever, whereas the entirety of both statistical systems’
knowledge of language is based on the EUROPARL cor-
pus. Though the European Parliament is the medium of
discussion in a wide array of domains and the origin of a
variety of complex sentence structures, it is still a restricted
domain and this is an advantage.

5. Future Work

Certainly a promising avenue of future research is in lan-
guage models improved beyond the trigram model, particu-
larly models that incorporate long-range measures of gram-
maticality. This could be used, perhaps to improve English
produced by those who are not strong in the ways of the
pen.

Furthermore, since we believe that the improvement was
due primarily to the language model, we can also hope that
a highly simplified, static translation model could replace
the IBM Model 2, in effect producing better translations in
restricted domainswithout a parallel corpus(whence we
could not make use of statistical systems).

An interesting possible application of this kind of trans-
lation is in reproducing language evolution to, say, recast
Hamlet in modern English. It is certainly possible that a
language’s development could be modeled by simply de-
veloping a sequence of language models building up to the
current version and by allowing limited word movement
and word changes even without a parallel corpus.

6. Conclusions

We have demonstrated a way of combining a general-
purpose rule-based system with a simple statistical model
to garner robustness and significant improvements in trans-
lation quality in restricted domains.

References

D. J. Arnold,et al. (1994).Machine translation: An intro-
ductory guide. Blackwells-NCC, London.

Google (2005). Google language tools.http://google.com/.

J. Pierce,et al. (1966).Automatic language processing ad-
visory committee.

Jordan, B. D. P., & Benoit, J. (1999). A suvey of current
paradigms in machine translation.Advances in Comput-
ers, 49, 1–68.

Kohn, P. (2003). European parliament corpus.
http://www.statmt.org/europarl/.

Mohammad, A., & Collins, M. J. (2005). Gaussian align-
ments in statistical translation models.Thesis.

P. Brown,et al. (1993). The mathematics of statistical ma-
chine translation: Parameter estimation.Association for
Computational Linguistics, 263–311.

40

Using Structured, Knowledge-Rich Corpora in Question Answering

Federico Mora FEDERICO@CSAIL.MIT.EDU

Jesse Louis-Rosenberg JESSEL@CSAIL.MIT.EDU

Gregory Marton GREMIO@CSAIL.MIT.EDU

Boris Katz BORIS@CSAIL.MIT.EDU

MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar Street, Cambridge MA, 02139 USA

1. Introduction

“Question answering (QA) is a type of information retrieval.
Given a collection of documents (such as the World Wide Web or
a local collection) the system should be able to retrieve answers
to questions posed in natural language. QA is regarded as requir-
ing more complex natural language processing techniques than
other types of information retrieval such as document retrieval,
and it is sometimes regarded as the next step beyond search en-
gines” (Wikipedia, 2005).

To answer domain-independent questions precisely, one re-
quires an extensive and accurate corpus from which to ex-
tract answers. These two aspects are often at odds with
each other: large corpora (like the Web) often contain much
incorrect data, while smaller corpora such as encyclopedias
and dictionaries are generally too limited in scope.

Wikipedia, an online encyclopedia created by volunteers
across the web, provides a well-structured, wide-coverage
corpus available for free. It contains over 600,000 articles,
which are updated daily. Because it provides such a large
domain of knowledge-rich articles, it serves as a excellent
corpus for question answering.

2. Approach

We incorporate Wikipedia as a source in our question an-
swering system for the TREC 2005 QA track using various
orthogonal methods (Katz et al., 2004). The TREC 2005
QA track divides questions into three categories: list, defi-
nition and factoid. These questions are clustered into small
groups, each of which is about the same topic (Voorhees,
2004). The answers to these questions must be found with
AQUAINT, a corpus of newspaper articles from 1998 to
2000. We integrated Wikipedia into our list and definition
answering system. Our factoid system was unaltered, but
there has been previous work using Wikipedia for factoid
questions (Ahn et al., 2004).

2.1 Finding a Wikipedia Article

The first step in employing the Wikipedia for a question
is finding the relevant article for a topic. Topics in previ-
ous years were restricted to simple noun phrases, and over
90% of them appeared in the Wikipedia in some form. Of
the 75 topics this year, 10 were “event” noun phrases like
“1998 Nagano Olympics” and 4 were headline-like events,
like “Liberty Bell 7 space capsule recovered from ocean”.
Fewer of these appear in the Wikipedia. We found the cor-
rect Wikipedia article for 87% of the noun phrase topics,
for 70% of the noun phrase event topics, and none of the
headline topics — 81% accuracy overall.

A topic was often listed as a Wikipedia title. If not, we tried
several variants: removing pluralization and allowing non-
capitalized words in the body instead of the title. If all of
those, and some combinations, failed to find an article, then
we took the top Google result when searching Wikipedia,
and took the top available article from the main namespace.

Sometimes this best Google article had only a few para-
graphs on the desired topic. If fewer than 25% of the para-
graphs contained words from the topic, then only those
paragraphs that did contain some topic word were selected.
We used Google to find 39 of the Wikipedia topics; all 14
misidentifications were among these.

2.2 Lists

List questions ask for a list of entities that satisfy some con-
dition, for example, “What diseases are prions associated
with?”. We must return members of the class of diseases,
and ideally only those that involve prions. Wikipedia helps
by providing members of many classes, and by offering
synonyms for key terms. Having class-member relations
is crucial also because answers often do not have the class
name (“disease”) near the answer (“Prions are known to
cause Creutzfeld-Jacob syndrome”).

Wikipedia provides class-member relations in three dif-
ferent forms: First there are entire articles that are just
lists, whose titles are the class name (the article, “prizes,

41

medals and awards”) (48,412 class-member pairs); second,
some articles have lists within them, (“Nirvana (band)” has
“discography”) (166,263 pairs); third, articles may mention
a Category, for example the “Line Feed” article is a mem-
ber of the category “Control characters”, but we deemed
these too dirty for immediate use.

Our baseline system used only about 3000 lists — in com-
parison, over 200,000 manually-compiled lists made many
more answer types available.

Wikipedia also provides synonyms in its Redirect struc-
ture and subtitles. For instance, we can expand “disease”
to “medical condition”, “Woodrow Wilson Guthrie” to
“Woody Guthrie” and “Woodie Guthrie”, and “Nagano” to
“Nagano, Japan”. These manually constructed synonyms
can significantly aid recall.

2.3 Definitions

Definition questions ask for any additional interesting in-
formation that can be found on a topic, without repeating
any previous answers. Encyclopedia entries aim to have the
definitional content we want, so we can recast the problem
as trying to find the Wikipedia content in the newspaper
articles.

System Definition Passage
without
Wikipedia

“was born 86 years ago in Okemah, Okla., to a
couple of staunch Democrats”

synonymy “folk singer”
Bleu and
anaphora

“His most famous folk song – ’This Land is Your
Land’ – is not the patriotic ditty it appears.”

Table 1. Definition answers for the topic “Woodrow Wilson
Guthrie”: Which answers are most essential and descriptive?

We used Wikipedia synonymy to help match variants of
the topic; for example “folk singer” is mentioned with
“Woody” Guthrie but not with “Woodrow Wilson Guthrie”.
We boosted keywords from the Wikipedia article, and in
one run we applied Bleu (Papineni et al., 2002) as a sim-
ilarity metric with sentences from the Wikipedia article to
identify definitional information. These strategies helped
us find nuggets that are more essential to the topic.

3. Results

Table 1 shows results on the TREC 2004 QA question set.

Lists restrict the space of possible answers, so it is to be ex-
pected that our 2005 system with Wikipedia lists should
have higher precision and lower recall than the baseline
2005 system. In the disease example from above, having
a list keeps us from having to guess any noun phrase, but

Run Recall Precision F-measure(β = 1)
2004 0.125 0.185 0.132
2005 0.315 0.123 0.155
2005+wiki 0.237 0.163 0.170

Table 2. 2004—last year’s results; 2005—improved system, same
lists; 2005+wiki—improved system, adding lists from Wikipedia

some diseases may be missing from our list.

Why then is the difference so small (non-significant), given
such a huge gain in knowledge of answer types? The lists
we knew best weren’t the lists being asked about. Over the
75 questions, only 83 Wikipedia lists were used at all, and
most of these were either augmenting existing lists (“coun-
tries by continent” duplicates “countries”) or incorrectly
used. Only 3 lists contributed meaningfully to the system.

Definition results improved qualitatively with Wikipedia
strategies, but reliable quantitative evaluation is elusive.

Our preliminary1 results indicate that Wikipedia has im-
proved QA recall through synonymy, and QA precision by
guiding our search for answers in the corpus.

4. Future Work

The Wikipedia has untapped structure that promises to be
useful:

• Use structured information from tables and fields.
• Build class-member relations from Wikipedia cate-

gories.
• Use class-member relations from Wikipedia for other

tasks like anaphora resolution, duplicate detection,
disambiguation, and query expansion.

• Incorporate Wikipedia into our factoid system.

References

Ahn, D., et al. (2004). Using wikipedia at the TREC QA
track. Proceedings of the TREC-13 Conference.

Katz, B., et al. (2002). Omnibase: Uniform access to het-
erogeneous data for question answering.NLDB 2002.

Katz, B., et al. (2004). Answering multiple questions on a
topic from heterogeneous resources.TREC-13.

Papineni, K., et al. (2002). Bleu: a method for automatic
evaluation of machine translation.ACL2002.

Voorhees, E. (2004). Overview of the TREC 2004 question
answering track.

Wikipedia (2005). Question answering.Wikipedia.

1official judgements will not be available until November

42

A Synthetic Lattice for Structure Determination of Uncharacterized Proteins

Julie E. Norville NORVILLE@CSAIL.MIT.EDU

MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar Street, Cambridge MA, 02139 USA

1. Introduction

Proteins are constructed from amino acid chains which are
folded into complex three-dimensional structures. Struc-
tural knowledge provides a molecular snapshot of the pro-
tein. Molecular pictures can assist scientists who wish to
understand proteins, engineers who wish to modify either
the proteins’ structures or functions, and drug designers
who wish to cause large effects within an organism due
to small perturbations involving proteins at the molecular
scale. The structure of many proteins remains unexplored.
In order to determine a protein’s structure it is not sufficient
to examine only one molecule because it will be destroyed
during the imaging process. Instead, one must examine an
ensemble of molecules. One type of easily interpreted en-
semble of molecules for structural determination is a crys-
talline lattice.

Unfortunately, protein crystallization is an art rather than a
science. The target protein is screened against a diverse ar-
ray of solutions until crystals are observed. Usually the first
crystals that appear are not suitable for structure determina-
tion. To grow larger or more ordered crystals, it is usually
necessary to change the pH, ionic strength, or temperature
from the starting conditions. The process is painful, unreli-
able, and time consuming, and membrane proteins, which
do not readily dissolve in water, are even more difficult to
crystallize.

This paper describes a general method for preparing two-
dimensional crystals from either monomeric proteins or
symmetric protein complexes. Though formation of pro-
tein crystals is challenging, several classes of proteins
form two-dimensional crystalline arrays in nature. I pro-
pose using such a natural crystalline array as a tem-
plate; proteins can be bound to this lattice, using the nat-
ural structure of the array to form two-dimensional crys-
tals. While common structural determination techniques
require three-dimensional crystals, there are standard meth-
ods for which two-dimensional crystals are sufficient (Mu-
rata et al., 2000), (Saibil, 2000). In each of the following
sections, the key parameter is that the three-dimensional
structure of the target protein is undetermined.

Figure 1.The protein we are using forms a crystalline lattice.

2. Making a Crystal out of a Crystalline
Protein

A crystalline lattice is an ordered ensemble of molecules
sufficient for structural determination. In this case the nat-
ural crystalline lattice will act as a support scaffold for the
target molecule. Together they will create a new ”syn-
thetic” crystalline lattice. There exist natural proteins that
form crystalline lattices. In some cases practical concerns
prohibit the use of certain crystalline lattices. For exam-
ple, a number of membrane proteins form two-dimensional
crystalline lattices. However, they are hard to produce. In
addition, other proteins require being at the right state be-
fore they can be formed into a lattice. Instead it was de-
sirable to choose a protein that could be purified in large
quantities and easily forms a lattice. S-layer proteins, or
surface layer proteins, are a class of proteins that satisfy
many of the criteria for an ideal crystalline lattice scaffold.
In nature these proteins exist as a crystalline sheet on the
outermost layer of many types of bacteria (Sleytr & Sara,
1997). The s-layer protein that best met these first condi-
tions,SbpAdid not yet have a determined structure. Thus,
now that we have mastered the purification of the protein,
we are currently in the process of determining its structure

43

from two-dimensional crystals.

3. Choosing a Target Protein

The choice of the scaffold lattice constrains the choice of
target protein for structure determination. It must fit within
the lattice of the crystalline scaffold formed by the pro-
tein SbpA. SbpAis a tetrameric protein with a unit cell of
size 13nm. Thus the target protein must either be less than
6.5nm X 6.5nm in size or it must be a symmetric tetramer
smaller than 13 nm in size. Proteins that do not fit within
these constraints would require a different crystalline scaf-
fold. (The class of S-layer proteins provides many possi-
ble candidates with different lattice spacing and symmetry
groups.) The dimensions of the target protein can be de-
termined by examining single particles with electron mi-
croscopy. Symmetry can be determined using a combina-
tion of gel electrophoresis and analytical centrifugation.

4. Binding the Target Protein to the
Crystalline Lattice

There are many ways in which the target protein can be
bound to the crystalline lattice. A suitable binder must at-
tach the target to the lattice so that it assumes one position.
Currently it is unclear whether to use a structurally flexible
binder that would it allow the target protein to find its own
spatial equilibrium or to use a structurally rigid binder that
will constrain the target protein in place. I am currently us-
ing a strategy in which a small peptide tag which binds to
the crystalline lattice is genetically engineered onto the tar-
get protein. Ideally the binding tag will bring the target pro-
tein down to specific positions on the scaffold lattice. Cur-
rently we are in the process of finding a small peptide that
binds to the crystalline lattice using the technique called
phage display. Phage display allows one to select binding
sequences from a library of 109 possible sequences. The
phage display determined tag could be bound to the target
protein in either a structurally loose or constrained fashion
and has the possibility of being genetically engineered onto
many types of target proteins.

5. Conclusions and Remaining Challenges

This paper provides the starting point for building synthetic
crystals for structure determination. Currently, we will
need to complete the structural determination of the pro-
tein SbpAwhich forms the crystalline lattice. If it does not
diffract to high resolution, then another crystalline protein
may be more suitable. We will also need to explore exper-
imentally the binders which will connect the target protein
and the lattice.

6. Acknowledgements

I thank my advisors Angela Belcher and Tom Knight. For
assistance with the AFM imaging ofSbpA, shown in the
figure I thank Dan Solis. The author received graduate
fellowships from the National Science Foundation, Merck,
and Vinton Hayes. This work is supported by a Packard
Fellowship, DARPA/ONR N00014-01-1-1060, and SRC
task ID 1267.001.

References

Murata, K., Mitsuoka, K., Hirai, T., Walz, T., Agre, P., Hey-
mann, J., Engel, A., & Fujiyoshi, Y. (2000). Structural
determinants of water permeation through aquaporin-1.
Nature, 407, 599–605.

Saibil, H. (2000). Macromolecular structure determination
by cryo-electron microscopy.Acta Cryst. D, 56, 1215–
1222.

Sleytr, U., & Sara, M. (1997). Bacterial and archaeal S-
layer proteins: structure-function relationships and their
biotechnological applications.Trends in Biotechnology,
15, 20–26.

44

A Come-from-Behind Win or a Blown-Save Loss: Perspectives in Baseball

Alice Oh AOH@CSAIL.MIT.EDU

MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar Street, Cambridge MA, 02139 USA

1. Introduction

One can say a baseball game was a come-from-behind win
or a blown-save loss. It all depends on who you are and
how you view the event. The goal of our HiT (Highlights in
Two) Project is to recreate a multimedia highlight summary
of a baseball game from different perspectives, such that
the users can view the event with their preferred bias. As
the first step in automatically generating biased multimedia
highlights, this paper presents the results of the analyses of
bias in written media.

As an example of bias in the media, let us look at how me-
dia describes the fifth game of the American League Cham-
pionship Series (ALCS) of 2004 between the Boston Red
Sox and the New York Yankees. The Boston Globe and
the New York Times featured headlines, respectively, “Two
wins in hand, two to go”, and “Yankees lead series, 3-2”.
The unbiased fact was that the New York Yankees had won
the first three games of the best-of-seven series, then the
Red Sox won the next two games. The biased interpreta-
tions were that, for a New Yorker, the Yankees were still
up by one game, but for a Bostonian, the Red Sox had just
won two games. The divergence of perspective does not
end there. What follow the headlines are two articles that
hardly seem to describe the same event. Besides these two
game wrap-up articles, the two newspapers, as well as other
online sports websites, such as ESPN (www.espn.com) and
MLB (www.mlb.com) feature many articles presenting in-
depth analyses from a variety of perspectives.

As such, sports fans have many choices for written media,
but they have very few choices for visual media. Local
and national sports channels broadcast actual games and/or
highlights, but they only offer one perspective. The Internet
offers more flexibility, such as MLB.com where users may
search for short video clips, but those discontinuous and
out-of-context clips do not satisfy the user’s needs for a
biased analysis or an insightful story of the game. The HiT
Project is directly aimed at those needs of the users.

2. Related Work

There have been many recent successes in multimedia anal-
ysis and modeling. In the sports video domain, research

systems successfully analyze videos of soccer (Xie et al.,
2004), baseball (Zhang & Chang, 2002), and other sports.
The outputs from these systems vary in the level of domain
specificity and semantic detail, but a typical classification
algorithm produces an index of all events in a sports video
such as play/break, score/batter change/base change. Such
successes naturally lead to the next step of developing a
system for automatic highlight generation.

Tailoring multimedia summaries to a specific user based on
a user preference model has been an active area of research,
particularly in the broadcast news domain (cf. (Maybury
et al., 2004)) where they retrieve news stories that are of
interest to a user. Our problem is different from the broad-
cast news domain in that the individual events we retrieve
for the user need to be connected together to make one con-
tinuous story. Babaguchi et al. (Babaguchi et al., 2004)
have done extensive research on generating video abstracts
based on personal preferences, but our system goes beyond
theirs in two ways. First, we infer the significance of the
events based on context-dependent semantic features. For
example, in a high-scoring baseball game, a one-run home
run in the first inning may not be significant, but a two-
run walk-off single in the ninth inning is probably much
more significant. Secondly, we focus on the overall story
that matches a user’s perspective, as opposed to selecting
individual events based on user preferences.

3. Biases in Media

Although sports journalists stay true to the facts when they
report on baseball games, many local newspapers and tele-
vision broadcasts spin the stories to cater to the local au-
dience. To understand how they actually do this, we ana-
lyzed articles from several local newspapers and compared
them among themselves and against the Associated Press
(AP) articles to quantify how “bias” is realized. We looked
at three articles per game for six games: April 20, 25, 26
between the Boston Red Sox and the Baltimore Orioles,
and May 13, 14, 15 between the Red Sox and the Seattle
Mariners. We used articles in the Boston Globe for Red
Sox coverage, Baltimore Sun for the Orioles coverage, and
the Seattle Times for the Mariners coverage. We used the
AP articles as the neutral counterpart.

45

Newspaper Bos Bal Bos Bal
(Game) (Norm) (Norm)

Sun (3 Games) 91 128 0.83 1.52
Globe (3 Games) 145 52 1.33 0.62

AP (3 Games) 109 84 1.00 1.00

Table 1. Word counts of player and coaching staff names.

3.1 Bias in Discussing Players

The articles showed significant differences on three dimen-
sions. First, the local articles covered more content on their
home team’s players compared to the AP articles. This is
evidenced by the difference between the word count of the
home team player names and the word count of the other
team player names. Table 1 shows the comparison of the
word counts between the Baltimore Sun articles and the
Boston Globe articles. The first two columns show the raw
counts, and the next two columns show the counts nor-
malized to the counts in the AP articles. To save space,
we present only the total counts, but all three games dis-
play consistent differences. The counts and the normalized
counts clearly show that the Baltimore Sun writes more
about the Orioles players, and the Boston Globe writes
more about the Red Sox players. The Seattle Times arti-
cles and the Boston Globe articles between the Mariners
and the Red Sox showed similar biases. A chi-square anal-
ysis shows significant difference between the Globe and the
Sun at p < 0.001, also significant differences between the
AP and the Globe, AP and the Sun, both at p < 0.01.

3.2 Bias in Choosing Events

Second, the local papers discussed more of their home
team’s successes than the neutral AP articles. To see this,
we can dissect the events of each game into three cate-
gories: events that are included in all three articles, events
in the home team’s articles, and events in the visiting team’s
articles. For a given event, we can say it is a local-positive
if it is an offensive play that led to, or could have led to
scoring (e.g., a hit, a walk), or if it is a defensive play that
prevented the other team from scoring, (e.g., a strike out, a
double play). On the ten games we analyzed with three ar-
ticles each, the home team’s newspaper discussed 17 local-
positive events on average, compared to 12 local-negative
events. The AP articles did not show any significant differ-
ence in their coverage of one team versus the other. A t-test
shows a significant difference between the Globe and the
Sun articles at p < 0.01.

3.3 Bias in Interpreting Plays

Third, the local articles describe the events of the game
with more focus on the home team’s players. This bias is
difficult to quantify because it is often reflected in the subtle
nuances of the language used. The following shows one of

the more straightforward examples of how a play was de-
scribed by the three articles. The first is from the AP article
and shows the objective account of two Seattle home runs.
“Richie Sexson and Raul Ibanez added solo home runs for
Seattle in the third inning, the first time the Mariners hit
consecutive homers this season.”

The Boston Globe, interprets the same home runs as the
pitcher’s mistakes. “Gonzalez gave up back-to-back home
runs leading off the third to Sexson and Raul Ibanez.”

The Seattle Times attributes the home runs to the bat-
ters’ performance, further elaborating with the appropri-
ate statistics and highlighting the Mariners’ lead. “In the
bottom of the inning, Sexson led off with his 10th homer,
putting him on pace for 46 for the season, and Ibanez hit
his fifth for a 5-4 Seattle lead.”

Although there are many ways to express the different in-
terpretations, the most frequent ways are putting the home
team’s player as the subject, providing statistics that high-
light the home team player’s strengths, and mentioning
scores when home team has captured the lead or has caught
up to within a small margin.

4. Future Work

The next step is to apply the analyses in creating a system
for generating highlights. As an intermediate step, we have
also collected audio highlights from local radio stations and
plan to do similar analyses. We have built a prototype sys-
tem, and a demo will be shown at the CSW.

References

Babaguchi, N., Kawai, Y., & Kitahashi, T. (2004). Per-
sonalized abstraction of braodcasted american football
video by highlight selection. IEEE Transactions on Mul-
timedia, 6, 575–586.

Maybury, M., Greiff, W., Boykin, S., Ponte, J., McHenry,
C., & Ferro, L. (2004). Personalcasting: Tailored broad-
cast news. User Modeling and User-Adapted Interac-
tion, 14, 119–144.

Xie, L., Xu, P., & Chang, S. (2004). Structure analysis of
soccer video with domain knowledge and hidden markov
models. Pattern Recognition Letters, 25, 767–775.

Zhang, D., & Chang, S. (2002). Event detection in baseball
video using superimposed caption recognition. Proceed-
ings of ACM Multimedia’02 (pp. 315–318).

Zhou, W., Vellaikal, A., & Kuo, C. (2000). Rule-based
video classification system for basketball video index-
ing. Proceedings of ACM Multimedia Workshop (pp.
213–216).

46

Incremental Optimization of Large Robot-Acquired Maps

Edwin Olson EOLSON@MIT.EDU

MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar Street, Cambridge MA, 02139 USA

1. Introduction
Many robotics applications require the robot to build a map
of its environment. We consider the problem of Simulta-
neous Localization and Mapping (SLAM), i.e., building a
map of an environment while exploring it for the first time.
SLAM algorithms approach this by identifying features in
the environment (e.g., the corner of a desk) and determining
the relative positions of features. A robot’s sensors are im-
perfect, so the relative position of one feature to another is
almost always considered probabilistically– typically with
a Gaussian distribution.

We can think about the map as a graph: features are nodes
in the graph, and measurements which relate two features
are edges. Each edge represents a rigid-body transforma-
tion and its uncertainty. We make the realistic assumption
that each edge represents an independent constraint.

The heart of the SLAM problem is to determine the “best”
map, the physical locations of features such that the con-
straints have maximum probability. We consider the case
where the features are locations visited by the robot; as
shown by (Montemerlo, 2003), positions of other features
can be efficiently computed once the robot trajectory is
known.

The classical method for SLAM problems is the Extended
Kalman Filter (EKF). However, the EKF has several unde-
sirable aspects: for N features it is O(N2) in space and
time. It also performs poorly in the presence of highly
non-linear constraints. The latter is true because the EKF
commits to a linearization point at the time each constraint
is incorporated; if the point at which the linearization oc-
curred was inaccurate, linearization errors are introduced
that cannot be undone later. In the SLAM problem, the ori-
entation of the robot appears in most of the constraint equa-
tions in sine and cosine operations, which result in sub-
stantial linearization errors when the heading is not well-
known. Sparse Extended Information Filters (SEIFs) also
suffer from linearization errors, and incur O(N3) costs
when computing the state estimate.

In this paper, we present an algorithm for optimizing pose
graphs that is dramatically faster than the published state of
the art. The improved performance arises from two sepa-

(a)

(b)

(c)

(d)

Figure 1. Sample synthetic problem. 3500 nodes with 2100 addi-
tional loop closures (A is 10500× 10500, J is 16797× 10500).
Poses are shown as dots, lines represent constraints. Subplot (a)
shows the ground truth map, (b) shows the simulated corrupted
raw data, (c) shows the result of Duckett’s Gauss-Siedel after 30
seconds of CPU time, and (d) shows the results of our method
after convergence (about 10 seconds). The convergence rates for
this experiment are shown in Fig. 3

47

rate ideas:

• The use of a different state representation which leads
to a Jacobian that is better-suited to local iterative
methods

• A variant of Stochastic Gradient Descent (SGD), a lo-
cal iterative optimization method which escapes local
minima more readily than Gradient Descent, Conju-
gate Gradient Descent, or Gauss-Seidel. Our variant
exploits additional information available in the SLAM
problem, allowing Newton steps rather than simple
gradient steps.

2. Derivation
The maximum likelihood map can be incrementally com-
puted using an iterative numerical approach. This approach
has a number of distinct advantages: memory grows only
as O(N + E) (for N features and E edges), it can relin-
earize observations as the state estimate changes, and the
incremental nature of the optimization means that an ap-
proximate map is always available for online path planning
and exploration. The full state covariance never needs to
be explicitly computed, however it can be reconstructed if
necessary. A family of such approaches has been studied
before (Duckett et al., 2000) and improved (Frese et al.,
2005).

Before proceeding, we show how the graph can be opti-
mized by solving a linear problem (Ax = b).

If x is the state vector representing robot poses, and f()
represents the constraint equations with expected values u
and variances Σ, we can write:

−log P (x) ∝ (f(x)− u)T Σ−1(f(x)− u) (1)

We proceed by linearizing f(x) = F |x + J |x∆x, using
matrices F |x and J |x. At any particular iteration, we will
simply write F and J , and will use d = ∆x. We also set
r = u− F , the residual. Eqn 1 then becomes:

−log P (x) ∝ (Jd− r)T Σ−1(Jd− r)
= dT JT Σ−1Jd− 2dT JT Σ−1r + rT Σ−1r

We wish to improve our map by finding a d that maximizes
the probability. Differentiating with respect to d and setting
to zero, we find that:

(JT Σ−1J)d = JT Σ−1r (2)

This is the elementary Ax = b linear algebra problem. If
we solved for d directly (via inversion of A, or better by
LU decomposition), we would have the method of nonlin-
ear least squares. However, the size of A makes a direct
solution impractical. Instead, we will estimate d.

When the state estimate is corrupted by significant noise,
the local gradient will typically not point in the direction
of the global minimum. Consequently, gradient methods
typically fail to achieve a satisfactory solution.

In the SLAM problem, individual constraints all result in
quadratic surfaces, ideal for optimization. It is only the sum
of a number of constraints that leads to difficulties, so we
propose using iterative methods that operate on only one
constraint at a time. The optimal d can be written in terms
of the sums of individual constraints by rewriting Eqn. 2
as:

d = (JT Σ−1J)−1
∑

JT
i Σ−1

i ri (3)

Naturally, we still cannot invert the information matrix
(JT Σ−1J), but we can approximate the inverse using its
diagonal elements; this approximation preserves the local
gradient of the cost function. This is roughly equivalent to
Jacobi Preconditioning, which uses the same approxima-
tion.

The canonical Stochastic Gradient Descent algorithm iter-
atively evaluates the gradient for each constraint (one con-
straint per iteration) and moves x in the opposite direction
at a rate proportional to the learning rate. In the SLAM
context, we can do better; we know what step size corre-
sponds to a Newton step– a step that obliterates the resid-
ual of a given constraint. We still employ a learning rate
parameter in order to ensure convergence, but the Newton
step serves as an upper bound. While extensive research
has been done in the area of learning rate schedules, we
have found that a simple harmonic series (1/t) as originally
suggested by (Robbins & Monro, 1951) works well.

3. State Space Representation
Previous authors used the absolute global position for their
state space; i.e., the state vector was composed of (x, y, θ)
values. The Jacobian of a rigid-body constraint between
two poses is consequently sparse, acting like a “spring”
connecting just those two poses. However, in addition to
a loop-closure constraint, there is a segment of the robot’s
path that connects any two poses. For example, in Fig. 2,
a loop constraint exists between poses A and D, but there
is an additional path between A and D that goes through
poses B and C.

If we alter the relative alignment of poses A and D in order

48

Figure 2. A simple pose graph. Optimizing constraint 4 typically
has an effect on nodes B and C, in addition to A and D. Our pro-
posed state space representation causes this dependency to appear
in the Jacobian of constraint 4. This leads to more rapid conver-
gence when using local iterative methods.

to reduce the error of constraint 4, poses B and C will also
adjust position so that the total error will be reduced (due
to the effects of constraints 1, 2, and 3.) Iterative methods,
which use only a subset of the constraint information on
each step, are unlikely to properly adjust B and C when
they adjust constraint 4, since the effects of constraint 4 on
nodes B and C appear in different rows of the Jacobian.
This means that iterative updates to the state vector will be
of poorer quality.

The Jacobian is a function of not just the constraint, but also
the state space representation. If we change the state space
representation, we can achieve a Jacobian that does cap-
ture the impact of moving two distant nodes on the nodes
between them.

We use the incremental global position state space, in
which the position of nodes is given relative to the previ-
ous node in the robot’s trajectory, i.e.:

x =

x0

y0

θ0

x1 − x0

y1 − y0

θ1 − θ0

...

(4)

The relative position of two nodes is now a function of all
the incremental positions between them, so each row of the
Jacobian now incorporates “springs” for all of the interme-
diate nodes. When J is premultiplied by the approximate
inverse of the information matrix (from Eqn. 3), the “stiff-
nesses” of the intermediate linkages is set according to the
strength of all the constraints which involve each node.

4. Results
With the incremental state space representation, the New-
tonized Stochastic Gradient Descent algorithm estimates
search directions d much more effectively, leading to rapid
convergence, as illustrated in Fig. 1. Gauss-Seidel con-
verges much more slowly.

0 5 10 15 20 25 30 35 40 45
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x 10
11

CPU time (seconds)

−
lo

g(
pr

ob
ab

ili
ty

)

Duckett/(GS)
Proposed Method

Figure 3. Convergence rates for Duckett’s Gauss-Seidel approach
and our method. Our method rapidly escapes local minima, con-
verging quickly to a low-error solution.

Results of our algorithm are shown in Fig. 1. When the
input graph is noisy, our method converges much more
quickly than Gauss-Seidel relaxation, as shown in Fig. 3.

5. Conclusion
We have presented an iterative method for rapidly optimiz-
ing pose graphs, even in the presence of substantial initial-
ization noise. This method shows promise in solving one of
the open problems in SLAM: optimizing pose graphs after
accumulating substantial error.

References
Duckett, T., Marsland, S., & Shapiro, J. (2000). Learning

globally consistent maps by relaxation. Proceedings of
the IEEE International Conference on Robotics and Au-
tomation (ICRA’2000). San Francisco, CA.

Frese, U., Larsson, P., & Duckett, T. (2005). A multi-
level relaxation algorithm for simultaneous localisation
and mapping. IEEE Transactions on Robotics.

Montemerlo, M. (2003). FastSLAM: A factored solution
to the simultaneous localization and mapping problem
with unknown data association. Doctoral dissertation,
Robotics Institute, Carnegie Mellon University, Pitts-
burgh, PA.

Robbins, H., & Monro, S. (1951). A stochastic approxi-
mation method. Annals of Mathematical Statistics, 22,
400–407.

49

50

Reducing Configuration Overhead with Goal-oriented Programming

Justin Mazzola Paluska JMP@MIT.EDU

MIT CSAIL, 32 Vassar Street 32-G788, Cambridge, MA 02139

1. Introduction

Recent years have seen an explosion in the number and di-
versity of consumer-level electronic devices. Many of these
devices work extremely well in one environment in a few
scripted ways, but have the possibility of working in many
other, unanticipated ways if users are willing to expend
considerable effort configuring the devices and connecting
them together. Unfortunately, this effort even confounds
determined users with time and money to hire professional
installers and technical support (Marcus, 2005).

As a motivating example, suppose a user would like to play
a video from her laptop computer. The computer normally
plays video on its own screen and internal speakers, but the
user enjoys the experience more on her television and home
theater system. As such, every time the user wants to watch
a video from the laptop, she user must:

1. Connect the laptop’s television output—if it has one—
to one of television’s inputs,

2. Connect the laptop’s audio outputs to an adapter
bought from RadioShack then that to the speakers’ in-
puts,

3. Activate the inputs of the speakers and television,

4. Start the media player on the computer,

5. Instruct the laptop to render the media to its external
outputs, and

6. Press “play” and hope that the television and computer
agree on aspect ratios and other miscellany.

If the user would rather move the laptop to another room
and play on the laptop’s built-in components, she must re-
configure the laptop once again.

We believe that these configuration hassles can be reduced
most of the time to “just play”.

2. The “Just Play” Proposal

Configuration is difficult because devices usually cannot be
controlled in a standardized way and, as such, leave it up

to users to explicitly mediate between each device. Ide-
ally, users should only need to tell their devices what to do
at a very high level and the system should figure out how
accomplish the low-level details.

We propose the following four part architecture to enable
users to better use their devices by enabling automatic con-
figuration:

A Common Wireless Interface and Control Mechanism
A commoditized wireless medium reduces hardware
connection mismatches to software problems that can
be fixed with filters and adaptor functions.

Low-level Descriptions of Device CapabilitiesA televi-
sion is not just a television, but a display device,NTSC

tuner, audio output device, and a remote control re-
ceiver. These capabilities may be used in a variety of
ways beyond simply watching television.

Specification of High-level User IntentsCurrent sys-
tems don’t know what the user wants to do and as a
result can only do what the user explicitly tells it to
do.

Goal-oriented Configuration System that can match
high-level user intents with recipes for achieving
those intents.

In such a system, the user tells the system to “Play Video”
and the system responds by searching out for a way to “Play
Video” given the resources at hand.

3. Initial Architectural Experiments

We built a prototype “Just Play” system for playing music
using a Mac Mini, a laptop, and a speaker modified with
an 802.11b wireless interface and MP3-to-analog decoding
hardware.

Our prototype uses the O2S Resources (Pham, 2005) over
802.11b wireless networks to provide the first two parts
of the “Just Play” architecture. In particular, the O2S re-
sources framework provides us with a simple discovery
system and a common interface through which to access
devices as objects.

51

to PlayMusic(criteria):
via MP3s:
subgoals:

source = MP3MusicStream(criteria)
sink = AudioSink()

eval:
satisfaction = (source.satisfaction +

sink.satisfaction) / 2
exec:

fader.connect(source, sink)

Figure 1. SamplePlayMusic Technique

3.1 Goal-oriented Programming

For the last two architectural requirements, the prototype
uses an extended version of the O2S Goal-oriented pro-
gramming system. Goal-oriented programming (Mazzola
Paluska, 2004) provides a way of writing applications so
that the algorithms, devices, and resources used can be
evaluated and exchanged for ones with similar functional-
ity as needed. There are two primary abstractions.Goals
act as a specification layer. We use Goals to capture user
and programmer intents. Goals are implemented byTech-
niques, a mixture of declarative statements and arbitrary
code.

Goals are not bound to any particular Technique until run-
time and this binding may change as better devices come
up or the context in which a particular binding choice was
made is no longer valid. The binding of Goals to Tech-
niques is handled by a Planner that cooperates with Tech-
niques to find the best way to satisfy the user’s top level
goals. Techniques may be Goal-oriented by declaring sub-
goals that the Planner recursively tries to satisfy.

3.2 “Just Play” Techniques

Our prototype Techniques use subgoals whenever possible
to allow the Planner more choices in implementation. At
the highest level is thePlayMusic Goal that the user in-
vokes when she wants to listen to music. Figure 1 shows a
sample Technique toPlayMusic via MP3s . A multi-
tude of lower-level Techniques satisfy the subgoals of the
PlayMusic via MP3s Technique down to Techniques
for the capabilities of each device in our system. As new
ways of playing music or new devices come along, we just
add new Techniques to the Planner so it has more choices
in satisfying the user’sPlayMusic Goal.

A Technique may defineeval code that refines the its
satisfaction , or suitability to its Goal. For example,
living room speakers satisfy theAudioSink Goal much
better than do the speakers in a typical laptop, so the liv-
ing room speaker Technique rates itself higher than that for
a laptop speaker. From this evaluation, the Planner can
choose the rightAudioSink for the job at hand. The

Planner also monitorssatisfaction at runtime so if a
device is no longer usable due to power or other problems,
the Planner will notice and switch to new Techniques.

4. Related and Future Work

Configuration is a major burden in Grid Computing and
provides a wealth of related work. For example, HP’s
SmartFrog (Goldsack et al., 2003) also offers a script-based
auto-configuration, but concentrates mainly on starting and
stopping services across the Grid, rather than connecting
them together. Closer to our work is ISI’s Pegasus (Deel-
man et al., 2004), which appliesAI planning algorithms to
generating scientific workflows on the Grid. However, Pe-
gasus is based on moving files and programs around for
execution, not connecting devices.

There are two areas in which we need to extend our pro-
totype. First, we need to find a way to secure devices on
the device network without configuration hassles. Whereas
a laptop and speaker wired together are authenticated to
each other by the wire between them, wireless networks
offer no such authentication. This problem is compounded
if users want to be able to share their device networks or
use devices—such as projectors—that are a part of a shared
infrastructure owned by no one user.

Second, we need to determine how to best give non-
programmers a choice among equally good ways of sat-
isfying a high-level goal. Programmers can write their own
Techniques to do so, but we cannot expect most users to do
this. A simple interface would be to choose a single plan
and switch among them if the user rejects it. Alternatively,
another interface lets users explicitly tell the system to use
a device in a particular way, perhaps using speech recogni-
tion or gesture recognition.

References
Deelman, E., Blythe, J., Gil, Y., Kesselman, C., Mehta, G., Patil,

S., Su, M.-H., Vahi, K., & Livny, M. (2004). Pegasus: Mapping
scientific workflows onto the grid.Lecture Notes in Computer
Science, 3165, 11–20.

Goldsack, P., Guijarro, J., Lain, A., Mechaneau, G., Mur-
ray, P., & Toft, P. (2003). Smartfrog: Configura-
tion and automatic ignition of distributed applications.
http://www.hpl.hp.com/research/smartfrog/papers.htm.

Marcus, A. (2005). The out-of-box home experience: remote
from reality. interactions, 12, 54–56.

Mazzola Paluska, J. (2004). Automatic implementation genera-
tion for pervasive applications. M.eng, Massachusetts Institute
of Technology.

Pham, H. (2005). A distributed object framework for pervasive
computing applications. Master’s thesis, Massachusetts Insti-
tute of Technology.

52

A Distributed Object Framework for Pervasive Computing Applications

Hubert Pham HUBERT@CSAIL.MIT.EDU

MIT CSAIL, 32 Vassar Street, Cambridge MA, 02139 USA

1. Motivation

Robust pervasive computing applications today span het-
erogeneous systems and often need to be dynamic and
adaptive. However, traditional, asynchronous distributed
systems are generally too complex and require developers
to be deeply aware of the intricacies of the underlying sys-
tem and platform. Furthermore, building adaptive applica-
tions also proves difficult because traditional systems tend
to impose a static API between distributed components.
The interfaces are determined at compile-time and provide
no mechanism for changing the relationships between com-
ponents during runtime, such as to adapt to hardware up-
grade or failure.

This paper outlines several desirable traits of an adaptive
software component architecture and presents a new set
of abstractions that streamline development of distributed,
pervasive systems. The current implementation forms the
basis of the component system in O2S (Saif et al., 2003).

1.1 Requirements

The first requirement is a clean and simple component in-
terface, such that the application logic may modify or con-
struct new implementations when adapting to changing en-
vironmental requirements. By separating the programming
interface and the implementation technology, the compo-
nent implementation can still be highly parallel and asyn-
chronous, while a simple interface enables developers to
construct, monitor, and debug these implementations.

Implementation technologies employed in a pervasive envi-
ronment may span many different platforms and languages.
Since the interface presented to the application logic is ab-
stracted from the underlying implementation, the interface
must be platform and language independent to fully capi-
talize on the wide variety of implementations available.

Both the interface and the implementation must be effi-
cient. The interface should promote code reuse, enabling
applications to adapt by re-configuring the overall imple-
mentation using basic, reusable modules. Once the appli-
cation constructs an implementation, it must be efficient
performance-wise to process high-bandwidth data streams.

2. Architecture

While there are many ways to use existing distributed ob-
ject packages to fulfill the architectural requirements, this
paper explores one abstraction that promotes a separation
between policy and mechanism. We believe that an ab-
straction focused on this separation effectively simplifies
the process of developing adaptive, distributed systems.

Three important features characterize the abstraction. First,
the abstraction presents the developer with a simple API
and environment, thereby simplifying the process of cod-
ifying the policy and application-specific logic. Second,
developers use the simple interface to construct the desired
application by connecting together a set of distributed soft-
ware modules from a universe of generic components. Fi-
nally, while separating mechanism from policy may sacri-
fice performance for flexibility, the performance cost does
not debilitate the component layer implementation.

In essence, the basic interface provides a mechanism for
instantiating a collection of components on various hosts
and interconnecting them into a network. The result im-
plements a specific application or functionality; this mech-
anism promotes a circuit-diagram approach to application
construction. The application logic also monitors the op-
eration of the resulting circuit via a stream of high-level
messages generated by the components. These message
streams are used to report component failures, user inputs,
or various resource-specific notifications. The health of de-
vices hosting these components is also transparently mon-
itored; component state updates and debugging output are
collected, filtered, and serialized for presentation to the ap-
plication logic. It thus becomes very natural to express the
necessary logic behind adaptive applications, as the inter-
face frees the developer from the implementation details
that often complicate the model.

2.1 System Architecture

The system architecture comprises four components:

Synchronous Control A standard network object model
(e.g., Remote Procedure Call) provides a synchronous con-
trol layer, which forms the basis of the simple environment

53

for instantiating and connecting distributed modules. The
network object model provides the veneer of a simple, se-
quential, and localized interface for controlling and moni-
toring the parallel, distributed component networks.

Data Streaming The data streaming mechanism connects
components together into a highly parallel, distributed sys-
tem of interconnected components. These data streams by-
pass the RPC system and hence do not incur the associ-
ated overhead. The operation of streams are somewhat au-
tonomous, in that once the network is established, data sim-
ply flows between modules. Data streams are designed for
applications that depend on routing real-time or rich media
data between distributed modules. Streams also encourage
component re-use by providing the mechanism for connect-
ing together generic components to form new applications.

Serial Event Stream To monitor errors or other events
generated by either the data streams or network objects, an
event notification system provides a mechanism for send-
ing serial messages to any network object’s event queue.

Discovery & Health Monitoring Servers hosting net-
work objects can often fail from network, power or hard-
ware failure. The system is designed to detect such failures
and inform the appropriate dependencies of the failed net-
work object. The architecture also provides resource dis-
covery, enabling applications to potentially recover from
failures by discovering and substituting the failed object for
an alternative resource during run-time.

2.2 TheResources Abstraction

The Resources abstraction is a versatile RPC framework
that facilitates the system design. With many traditional
RPC packages, developers must generate client and server
stubs for code modules, with some predetermined notion of
where (which physical hosts) these modules will run. The
amount of manual developer effort renders traditional RPC
system unwieldy for dynamic, pervasive environment. The
Resources abstraction addresses these issues by providing
an extensible and portable network object model that fea-
tures dynamic stub generation, object interning and refer-
ence tracking. One resulting feature is that developers need
not knowa priori where code modules are executed, nor
whether procedures are implemented locally or remotely:
the invocation API is standardized, and the optimal invoca-
tion mechanism is always executed automatically.

3. Implementation Summary

As this architecture is platform and language indepen-
dent, interoperable implementations of the architecture
have been developed for a variety of languages (Java,
Python, C) and platforms (Windows, Linux, Mac OS X).

The Synchronous Control layer is an instantiation of the
Resources abstraction, which makes use of XML-RPC as
the underlying transport mechanism – although the archi-
tecture is compatible with any modern RPC implementa-
tion. Data Streams are implemented as uni-directional TCP
connections but represented as aResource object, allowing
developers to control and wire together these streams. Fi-
nally, special entities, calledRegistry s, monitor health
and provide notification and lookup services.Registry s
monitor liveness of objects via periodic UDP tokens and
notify other objects whenever their dependencies fail.

4. Evaluation

This framework has been used to develop several O2S ap-
plications; the abstraction of separating mechanism and
policy has simplified distributed application development.

Performance-wise, benchmarks suggest a five-fold cost in
using theResources abstraction for network object calls,
when compared to Java RMI (Sun Microsystems, 1994).
However, when streaming a 1MB file between hosts, the
Data Streams implementation introduce some overhead
compared to standard C sockets (two fold) but outperform
RMI by a factor of five. The performance analysis is con-
sistent with the architectural goals of the system; while
RPC is flexible and convenient for constructing, connect-
ing, and controlling distributed modules, we optimize per-
formance for the high-bandwidth data streams.

5. Related & Future Work

Many standard RPC systems, such as Java RMI, CORBA
(Object Management Group, 2001), and JINI (Waldo,
1999) subscribe to the conventional distributed applica-
tion model, where applications are composed of statically-
partitioned client-server modules. With traditional RPC
derivatives, reusing components to construct different ap-
plications is often unwieldy, while adapting distributed ap-
plications by replacing constituent components is difficult.

Future work for this project include a security and authenti-
cation framework, as well as component hot-swapping for
streamlined service upgrade and recovery.

References
Object Management Group (2001).The common object request

broker: Architecture and specification. Object Management
Group. 2.5 edition.

Saif, U., et al. (2003). A case for goal-oriented programming
semantics.Ubicomp 2003.

Sun Microsystems (1994). Java Remote Method Invocation.
http://java.sun.com/rmi/ .

Waldo, J. (1999). The Jini architecture for network-centric com-
puting. Communications of the ACM.

54

Modeling Online Sketching as a Dynamic Process

Tevfik Metin Sezgin MTSEZGIN@CSAIL.MIT.EDU

MIT Computer Science and Artificial Intelligence Laboratory, 32-235 Vassar st., Cambridge MA, 02139 USA

Abstract
Online sketching is an incremental and dynamic
process; sketches are drawn over time, one stroke
at a time, and can be captured with devices such
as Tablet PCs and pen based PDAs. We have
shown that the dynamic properties of the sketch-
ing process contain valuable information that can
aid recognition. We describe a framework that
can handle complex user input. Specifically, we
show how we can take advantage of the regulari-
ties in sketching even when users draw objects in
an interspersed fashion.

1. Introduction

Online sketching is an incremental and dynamic process:
sketches are drawn one stroke at a time and be captured
in devices such as Tablet PCs and pen based PDAs. This
is unlike scanned documents or pictures which only cap-
ture the finished product. The dynamic properties of the
sketching process contain valuable information that can aid
recognition (Sezgin & Davis, 2005). In particular, in a
number of domains the order in which users lay out strokes
during sketching contains patterns and is predictable. We
have presented ways of taking advantage of these regular-
ities to formulate sketch recognition strategies (Sezgin &
Davis, 2005). Here, we describe a framework that can han-
dle more complex user input. Specifically, we show how
we can take advantage of the regularities in sketching even
when users draw objects in an interspersed fashion (e.g.,
start drawing object A, draw B before fully completing A,
come back and complete drawing A).

2. Sketching as a stochastic process

Previous work has shown that in certain domains, stroke
ordering follows predictable patterns and can be modeled
as a Markovian stochastic process. Work in (Sezgin &
Davis, 2005) shows how sketches of mechanical engineer-
ing drawings, course of action diagrams, emoticons and
scenes with stick-figure can be modelled and recognized
using Hidden Markov Models. In these domains, HMM-
based modeling and recognition is possible because objects
are usually drawn one at a time using consistent drawing or-

ders. The HMM-based approach exploits these regularities
to perform very efficient segmentation and recognition.

The HMM-based recognition algorithm scales linearly with
the scene size, but requires each object to be completed be-
fore the next one is drawn. In certain domains, although
there is a preferred stroke ordering, objects can be drawn in
an interspersed fashion. For example, in the domain of cir-
cuit diagrams, people occasionally stop to draw wires con-
nected to the pins of a transistor before they complete the
transistor. One way of thinking about such a drawing sce-
nario is that, instead of a single Markov process, we have
multiple processes that generate observations, and the task
is to separate observations from these processes. We model
such drawing behavior as a multimodal stochastic process
that can switch between different individual Markov pro-
cesses, each of which captures drawing orders for individ-
ual objects. Although the new approach can also be de-
scribed as a HMM, it is more easily described and under-
stood using its dual representation as a dynamic Bayesian
net (DBN).

Our approach to modeling interspersed drawing behavior
is general enough to allow an arbitrary number of objects
in a domain to be drawn in an interspersed fashion, but in
practice people usually intersperse at most two objects. For
example, in the circuit diagrams, unlike other circuit com-
ponents, transistors have three connection points (emmiter,
collector, base), and sometimes people draw the wires con-
necting to these points when the transistor is only par-
tially drawn, causing interspersing of transistor and wire
strokes. We have created a model specialized to handle
interspersing of wires with other components in circuit di-
agram sketches. 1

3. The network structure

Next we introduce our DBN model for circuit diagrams
which handles interspersed drawing orders while still al-
lowing polynomial time inference in the number of strokes.

We model the circuit diagram sketching process using a

1Although it is also possible to have a model general enough
to allow interspersing between any two objects, we use this spe-
cialized model due to the nature of interspersing in our domain.

55

Figure 1. The network structure for two slices of the DBN for modeling circuit diagrams. Contents of the OBS node is shown in Fig. 2.

Figure 2. Details of the observation node. L and RL are Gaussian
nodes that capture length and relative length. O and RO capture
orientation and relative orientation. P/N and Q are mixture param-
eters for the relative features.

DBN (Fig. 1). The square nodes are discrete and the cir-
cular nodes are continuous. All nodes except the OBS node
are hidden. The observation node OBS captures a number
of features computed using the properties of primitives de-
rived from strokes and the details of this node is shown in
Fig. 2.

The hidden nodes in Fig. 1 and their connections specify
the generative process that models the way in which ob-
jects in the domain are drawn. In our domain, we have
five objects: NPN transistors, resistors, capacitors, batter-
ies, and wires. Nodes N, R, C, B and W model the way in
which these objects are drawn. Based on the value of the
MUX node, only one of these processes is activated. The
END node is simply a binary variable that species whether
the latest observation completes drawing of the currently
active object.

4. Node descriptions

We now describe each node in detail. We will adopt the
generative process view of the model and describe the dy-
namics of the model from that perspective, but the reader
should keep in mind that the model is used for assigning
probabilities to series of observations obtained by encod-

ing sketches (inference) and not for generating observation
sequences.

4.1 The MUX variable

MUX keeps track of the main object the user is drawing
(which can be interspersed with wires if it is a transistor).
The actual observables are generated based on the value of
this node and the individual object process nodes (i.e., N, R

etc.). As a result, if there are N different objects that the
user can draw, then the MUX node has N states. In addition,
this node enters a special state when a pair of objects are
being interspersed. There is a unique state for each pair of
objects that can be interspersed. In our case, because only
wires can be interspersed with transistors, there is only one
such state. This is the state that we enter when the user
starts drawing wires in the middle of a transistor and enter-
ing this state serves as a reminder that after the wires are
drawn, we should complete that transistor that we initially
started. So the MUX state has N +1 states (N for individual
objects and one special state for interspersing wires with
transistors).

MUXt+1 is conditioned on MUXt and ENDt. The reason-
ing behind this conditioning is twofold: if there is no
wire/transistor interspersing, the user may start drawing a
new object only if the previous object is completed, and
the probability of drawing a particular class of object may
depend on the type of the last object.

4.2 The object variables (N, R, C, B and W)

These variables capture how individual objects are gener-
ated. In isolation, each node captures the state transition
dynamics for an object, and when paired with the obser-
vation node, each node can be seen as an HMM that can
generate features for that object. These nodes can change

56

Figure 3. Examples of sketches

state only if they are active (as indicated by the MUX node).
For example, the R node can change state only if the MUX

node is in its resistor state; and in order to handle inter-
spersing the W node can change state only if the MUX node
is in its wire or the user is interspersing wires with tran-
sistors states. State transitions are Markovian, with each
node conditioned on its value from the previous time slice.
Finally the initial frame contains uniform object priors for
the object nodes (N’, R’, C’, B’ and W’)

4.3 The END variable

This discrete binary node is conditioned on one of the ob-
ject variables, (i.e., at any time, only one of the arcs coming
from the object variables is active). The choice of which
parent is active is governed by the value of MUX. This is an
example of the switching parent mechanism of DBNs that
we use. The dotted arrow from MUX to END indicates that
MUX is the parent that controls the switching behavior for
parents of END, and only one of the the dashed arrows from
the object variables to END is active based on the value of
MUX.

4.4 The OBS variable

This is another example where we have switching parent
behavior in our model. As in the END variable, the OBS vari-
able is conditioned on only one of the object variables as
determined by the value of the MUX variable. The details of
the OBS node is shown in Fig. 2 (P/N, Q, L, RL, O and RO). L

and RL are Gaussian nodes that capture length and relative
length. O and RO capture orientation of the current primi-
tive and the relative orientation with respect to the previous
primitive. O and RO are continuous variables modelled as
mixtures of Gaussians, while P/N and Q are the mixture vari-
ables that respectively model positive/negative slope for O

and the quadrant of the current primitive with respect to the
previous primitive for RO.

5. Implementation and results

In order to test our model, we collected circuit diagrams
from electrical engineers. We asked users to draw multi-
ple instances of circuits shown in Fig. 3. We collected ten
examples of each circuit for a total of fifty circuits. Our
current results are limited to data from a single user, but we

believe they serve as a proof of concept.

5.1 Training

In order to train and test our model, we labeled the data
by assigning object labels to groups of strokes. During
training, in addition to the original observable node OBS,
the values of MUX and END nodes were supplied, thus the
only hidden nodes were the individual object nodes.

5.2 Classification

Once the model is trained, classification is performed by
computing the most likely assignment to the MUX variable
in each frame for the observation sequence derived from a
given sketch.

5.3 Recognition performance

We used instances of the first four circuits in Fig. 3 as train-
ing examples and tested our system on all instances of the
last circuit in Fig. 3. With only one example of circuits
1-4, we obtained a 73% correct classification rate. Us-
ing two and three examples of circuits 1-4 resulted in 89%
and 93% correct classification rate consecutively. In cases
where there were interspersing, we were able to detect in-
terspersing 67% of the cases.

These results suggest that even as few as four examples can
yield good recognition rates, and increasing the number of
training examples results in better recognition rates even if
the examples come from the same circuit. In addition the
results suggest that the conceptual mechanism required to
detect interspersed drawing works. We expect the recogni-
tion performance to get better with more training data and
more data collection is currently underway.

Research Support
This research is funded by the MIT iCampus project and
Project Oxygen.

References

Sezgin, T. M., & Davis, R. (2005). HMM-based efficient
sketch recognition. International Conference on Intelli-
gent User Interfaces, San Diego CA January 2005.

57

58

Engineering Transcription-Based Logic

Reshma P. Shetty RSHETTY@MIT.EDU

Thomas F. Knight, Jr. TK@CSAIL.MIT.EDU

MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar Street, Cambridge MA, 02139 USA

1. Introduction

Synthetic biology (http://www.syntheticbiology.org) is an
emerging engineering discipline concerned with the design,
fabrication and analysis of systems built from biological
parts. Similar to the way electrical engineering takes ad-
vantage of the science of physics and chemical engineer-
ing takes advantage of chemistry to develop useful engi-
neered systems, synthetic biology seeks to make use of bi-
ology. The potential application space for synthetic biology
is enormous spanning areas such as chemical energy, ma-
terials and information. However, for the construction of
synthetic biological systems to be routine, biology must be
developed as a technology. Current systems are severely
limited by the lack of many, well-characterized biological
parts and devices.

The focus of this work is on engineering devices capa-
ble of implementing digital logic in cells. In these de-
vices, information is encoded as transcription rates (or the
rate at which DNA is transcribed to RNA). Thus, these
transcription-based logic devices are composed of proteins
that bind to DNA (termed a transcription factor or repres-
sor) thereby regulating the transcription rate of that DNA
(see figure 1). In this work, I describe a model that defines
device behavior in terms of biochemical parameters like
binding affinities and synthesis/degradation rates. Analysis
of the model permits identification of which biochemical
parameters have the greatest influence on device behavior.
I also find target values for the key biochemical parame-
ters. Determination of optimal parameter values informs
the design of novel transcription-based logic devices.

2. Previous work

Current transcription-based logic devices are usually com-
posed of bacterial repressor proteins (Elowitz & Leibler,
2000; Gardner et al., 2000). Since there are a limited num-
ber of these naturally occurring bacterial repressors, the
scale and complexity of the systems that can be assembled
from these devices is limited. To address this limitation, I
will engineer synthetic transcription factors from zinc fin-
ger DNA binding domains and leucine zipper dimerization

domains. Such an implementation change has several ad-
vantages. First, it should enable the eventual construction
of a library of transcription-logic devices since there are
large numbers of both kinds of domains available. Second,
it will add modularity to the design of these devices since
the two functions of the transcription factor, DNA binding
and dimerization, are separated. This separation should en-
able independent tuning of the two domains. Third, since
leucine zippers domains are capable of both homo- and het-
erodimerizing, a wider range of functions can be imple-
mented in transcription-based logic.

The construction of logic devices from zinc fingers and
leucine zippers has been proposed previously (Batten et al.,
2004). This work differs from that presented here in sev-
eral key ways. First, the devices proposed by Battenet al.
encode signals as protein concentrations rather than tran-
scription rates. The advantage of using transcription rates
as the signal carrier is that devices are composable: any de-
vice may be connected to any other device. Devices whose
output is protein concentration can only be connected to de-
vices which take the same protein as input. Second, Batten
et al. ask the question, given typical biological parame-
ter values, what kind of device performance is expected?
In this work, I instead ask, given that I as the device en-
gineer have some measure of control over device design,
how should I design the device in order to achieve the best
possible device performance? By approaching the model
from a purely design perspective, I obtain somewhat differ-
ent results. Based on the results of my model analysis and
previous work on dimeric zinc finger proteins, I have de-
signed a novel implementation of transcription-based logic
devices from zinc fingers and leucine zippers (Pomerantz
et al., 1998).

3. Models inform device design

I develop a model that describes the device output in terms
of the device input and relevant biochemical parameters.
To enable the comparison of different device designs and
to evaluate the affect of varying parameter values on de-
vice performance, I quantify device performance using ex-
isting metrics developed for digital logic devices like noise

59

Figure 1.Schematic diagram of a transcription-based logic de-
vice: an inverter. The input signalΠi causes the transcription of
a gene encoding a repressor protein. The repressor protein dimer-
izes (two proteins bind to each other) and binds to its cognate
promoter regulating the output transcription signalΠo.

margins: the amount of noise a device can tolerate on its in-
put signal without giving an erroneous output signal (Hill,
1968).

Several key observations which inform device design arise
from the model analysis.

1. The parameterαi, defined as the product of the ratio
of mRNA and protein synthesis to their decay rates
and copy number, determines the device input protein
swing (the range of input protein concentration over
which the device operates) as well as the device fan
out (the maximum number of outputs the device can
drive).

2. The protein-protein and protein-DNA binding affini-
ties are the primary determinants of the shape of the
device transfer curve. I obtain approximations for the
values of these binding affinities that lead to good de-
vice behavior. Interestingly, it is not the absolute value
of these parameters that determines device behavior
(as most previous work suggests) but rather their value
relative toαi.

3. Inclusion of nonspecific DNA binding in the model
leads to larger noise margins in the transfer curve.

4. An alternate device design in which several nonfunc-
tional, high affinity protein binding sites are present
yields a substantially improved transfer characteristic
as measured by the noise margin.

4. Design of transcription-based logic devices

Using the model results as a guide, I selected previously
characterized zinc fingers and leucine zippers to construct
an initial set of synthetic transcription factors (Wolfe et al.,
1999; Newman & Keating, 2003). I specify the DNA se-
quences encoding the DNA binding and dimerization do-
mains so that each domain is a separate BioBricks part (see
http://parts.mit.edu for more information). Designing the
synthetic transcription factors in this way allows easy mix-
ing and matching of DNA binding and dimerization do-
mains via BioBricks standard assembly techniques. Previ-
ously, transcription factors were specified as a single Bio-

Bricks part and thus not very modular. Another contribu-
tion of this work is that many of the designed devices use
heterodimerizing leucine zipper domains rather than the
typical homodimerizing domains. Such devices will be ca-
pable of carrying out the logical NAND operation demon-
strating that transcription-based logic is capable of imple-
menting arbitrary logic operations.

5. Future Work

Having completed the DNA sequence specification of my
transcription-based logic devices, I am in the process of
fabricating the synthetic transcription factors (and cognate
promoters) using standard molecular biology techniques.
Analysis of device behavior should either yield working
transcription-based logic devices or shed light on how to
better engineer these devices in the future. Additionally, I
am also developing methods for quantitatively characteriz-
ing device behavior. These methods will use both quantita-
tive RNA measurements to characterize the device transfer
curves and flow cytometry to assess variations in device
performance between different cells. The measured trans-
fer curves can be directly compared to the model results in
order to validate the model. Moreover, insights from the
model should aid in debugging issues in device function.

References

Batten, C., Krashinksky, R., & Knight Jr., T. (2004). A scal-
able cellular logic technology using zinc-finger proteins.
3rd Workshop on Non-Silicon Computing.

Elowitz, M. B., & Leibler, S. (2000). A synthetic oscilla-
tory network of transcriptional regulators.Nature, 403,
335–8.

Gardner, T. S., Cantor, C. R., & Collins, J. J. (2000). Con-
struction of a genetic toggle switch inEscherichia coli.
Nature, 403, 339–42.

Hill, C. F. (1968). Noise margin and noise immunity in
logic circuits.Microelectronics, 1, 16–22.

Newman, J. R. S., & Keating, A. E. (2003). Comprehensive
identification of human bZIP interactions with coiled-
coil arrays.Science, 300, 2097–101.

Pomerantz, J. L., Wolfe, S. A., & Pabo, C. O. (1998).
Structure-based design of a dimeric zinc finger protein.
Biochemistry, 37, 965–70.

Wolfe, S. A., Greisman, H. A., Ramm, E. I., & Pabo, C. O.
(1999). Analysis of zinc fingers optimizedvia phage
display: evaluating the utility of a recognition code.J
Mol Biol, 285, 1917–34.

60

Short
Talk

Abstracts

61

62

Personifying Public Key Infrastructure
Jacob Beal and Justin Mazzola Paluska

We believe cryptography can be visible and comprehensible to the average user by
showing a face for each public key involved in a transaction. Currently, checking to see if
a key is correct requires looking at long strings of alphanumeric characters, and most
browsers display nothing but a lock icon during routine transactions. The result is that
users are largely unaware of the certificates which they interact with, or the trust issues
involved in accepting or rejecting certificates. We propose to fix this by mapping the
signature of a certificate to parameters specifying a realistic computer-generated face to
be displayed during the transaction, salting the mapping with a password to prevent an
attacker from guessing which faces will look similar. When the key changes, the face
changes and the user will likely notice. They then know to be suspicious until they've
developed a good reason to trust the new face.

LabelMe: A Database and Web-Based Tool for Image Annotation
Bryan Russell, Antonio Torralba, Kevin P. Murphy, William T. Freeman

presentation by: Biswajit Bose

Research in object detection and recognition in cluttered scenes requires large image
collections with ground truth labels. The labels should provide information about the
object classes present in each image, as well as their shape and locations, possibly other
attributes such as pose. Such data is useful for testing, as well as for supervised learning.
This project provides a web-based annotation tool that makes it easy to annotate images,
and to instantly share such annotations with the community. This tool, plus an initial set
of 10,000 images (3000 of which have been labeled), can be found at
http://www.csail.mit.edu/~brussell/research/LabelMe/intro.html
or Google search: LabelMe.

63

Object Manipulation and Control for Simulated Characters
Yeuhi Abe

In animation it is important that a character can manipulate objects in its environment.
Motion capture is one way to create high quality animations, but is restricted to static,
prerecord instances of each motion. A good way to ensure physically correct animations
for a wide range of manipulation task is by simulating both the character and the object.
By modeling the character as a set of linked rigid structures, the problem can be
formulated analogously to that of manipulation control in robotics. However, most
manipulation task are only concerned with the motion of one part of the body (e.g. the
hands), leaving the motion of the rest of the body under determined. In other words, the
inherent redundancy in the kinematics of anthropomorphic characters makes the control
problem ill posed. Thus the goal of this project is to develop control algorithms for the
simulation of anthropomorphic characters performing manipulation tasks that incorporate
movement models of human figures to help deal with the redundancy in a realistic
fashion.

Weapons of Mass Construction
Justin Werfel

The goal of my work is to develop systems to automate construction with swarms of
autonomous agents. That is, I want to be able to take an indeterminate number of simple,
identical robots; give them a picture of something I want built; and have them proceed to
reliably build it without further intervention. The approach is to use a partially built
structure as a reference, such that robots capable of only local observations will act to
complete the desired structure, avoiding intermediate configurations where further
progress is blocked. Robots do not explicitly communicate nor coordinate their actions. A
few fixed behaviors are sufficient to produce arbitrary solid structures, without
centralized control or preplanned construction sequences. Adding capabilities to the
building materials can increase the availability of global structural knowledge, thereby
increasing robustness and greatly speeding construction. I'll show simulation results in
two and three dimensions, and a one-robot hardware prototype in two dimensions.

64

Integrating on a Spatial Network Without Coordinates
Jacob Beal

I show how to calculate surface and volume integrals on a space-approximating network
without coordinate or range information. A sensor network might use such integrals to
estimate the number of people in a crowd or the severity of a pollutant spill. The integral
is approximated using Thiessen weights estimated from the neighborhood size and
expected communication range of each node, and has a predictable error due to edge
effects. In simulation, the estimated integral value is within one standard deviation of the
predicted value.

Automatic Human "Diary" Generation
Vivek Kale

Especially with today's complex and fast-paced lifestyles, we need some way of tracking
what one does throughout the day. The Human Dynamics Group at the Media Lab has
recently begun to make this seemingly impossible task into reality. We have implemented
real-time feedback systems to recognize patterns in one's actions, speech, biological
conditions, and even social interactions. This is made possible by cutting edge hardware
and complex algorithmic techniques which can be used to collect and analyze human
events over some period of time. All of this can be achieved with only a small Linux-
based computer the size of one's palm equipped with audio input, camera, motion
sensors, and GPS technology. What makes this groundbreaking is its reliability and
computational speed--making it practical for applications ranging from casual office
meetings to military operations and communications.

65

Modular Static Analysis with Sets and Relations
Viktor Kuncak

Complexity of data structures presents a challenge for current static analyses, forcing
them to report false alarms or miss errors. A static analysis can track properties of a
Java object while it is referenced by a local variable, but when the object is stored in a
data structure, this information is lost, forcing the analysis to make a worst-case
assumption.

I will describe a new system for verifying programs with complex data structures. The
system is based on a methodology for specifying interfaces of data structures by writing
procedure preconditions and postconditions in terms of abstract sets and relations. The
system then separately verifies that 1) each data structure conforms to its interface, 2)
data structure interfaces are used correctly, 3) program satisfies desired high-level
application-specific invariants. The system verifies these conditions by combining
decision procedures, theorem provers and static analyses.

Hierarchical Recursive Feature Elimination: A Proposed
Method for Reducing the Set of Features Used in an EEG-

based Epileptic Seizure Detector
Elena Glassman

This research is concerned with reducing the number of channels (therefore reducing
electrodes) and features computed from each channel of an EEG-based, patient-specific
epileptic seizure detector (Shoeb, 2003), while still maintaining performance. Such a
reduction will decrease overall computational complexity and power consumption and
hopefully increase patient comfort.

A Recursive Feature Elimination (RFE) implementation (Lal et al., 2004), an SVM-based
greedy feature eliminator which eliminates entire channels (groups of features) at a time,
reduced, on average across 20 patients in our dataset, the number of channels from 21 to
8.35.

To circumvent computationally intractable problems resulting from large numbers of
features, the Hierarchical RFE (H-RFE) method is proposed. In H-RFE, RFE is first
applied to remove as many pre-defined groups of spatially similar channels as possible,
then remove as many of the remaining channels as possible, and finally remove as many
features from the remaining channels as possible. Work on its implementation is ongoing.

66

Molecular Simulations
Greg Pintilie

Molecular simulations are used to study and predict the structure and behavior of
molecules. The atoms in a molecule are approximated using spheres. The 3D structure
which minimizes an energy function is obtained using optimization techniques. The
energy function includes terms for forces between atoms, forces due to bonds between
atoms, and other empirical terms. Molecular simulations can be used to study protein
structure, for example to predict how proteins fold or how they bind other molecules.
Much work still needs to be done to improve the accuracy and efficiency of such
methods. Such tools would allow us to better understand how proteins function, and how
to design better drugs for treating various diseases.

Protein Structure Prediction with Multi-Tape Grammars and
Support Vector Machines

Blaise Gassend, Charles O'Donnel, Bill Thies, Marten van Dijk, Srinivas Devadas

Predicting the 3D structure of a protein from the sequence of amino acids that make it up
is a major unsolved problem in biology. Context free grammar methods have had much
success in RNA structure prediction, but are insufficient to capture the two-way long-
range interactions that are present in protein beta sheets. Moreover, the free energy data
of elementary interactions, which is used when optimizing RNA structures, is unavailable
for proteins. To get around these two issues, we want to use multi-tape grammars to
model protein secondary structure, and to use machine learning methods to find pseudo
free energies that are consistent with experimentally observed protein structures. So far,
we have experimented with Support Vector Machine methods on structured output spaces
to learn pseudo free energies in the simplified case of proteins with no beta sheets.

67

A Synthetic Lattice for Structure Determination of
Uncharacterized Proteins

Julie Norville

Proteins are constructed from amino acid chains which are folded into complex three-
dimensional structures. The structure of many proteins remains unknown. In order to
determine a protein's structure it is not sufficient to examine only one molecule because it
will be destroyed during the imaging process. Instead, one must examine an ensemble of
molecules. One type of easily interpreted ensemble of molecules for structural
determination is a crystalline lattice. Currently, a solution with the right pH, ionic
strength, or temperature must be found in order to grow large and well-ordered crystals.
This process is painful, unreliable, and time consuming. In nature, several classes of
proteins have the property of forming two-dimensional crystalline arrays. I propose using
such a natural crystalline array as a template; proteins can be bound to this lattice, using
the natural structure of the array to form two-dimensional crystals. While common
structural determination techniques require three-dimensional crystals, there are standard
methods for which two-dimensional crystals are sufficient.

68

