
Why Computers Are Too Slow: A Computer Architect’s Perspective

First Author FIRSTAUTHOR@CSAIL.MIT.EDU

Second Author SECONDAUTHOR@CSAIL.MIT.EDU

MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar Street, Cambridge MA, 02139 USA

1. Introduction

Since their introduction, computers have been slow. When
introduced, computers were supposed to make calculations
run faster, but to this day, computer architects and compiler
writers have failed at making all computation instantly fast.
Most humans think it would be good enough to make com-
putation fast enough that they cannot determine when the
computer is computing. This is a selfish goal because it
does not take into account that alien species or robots may
have different notions of how fast “instantly fast” is. In this
paper we advocate that all computations that ever could be
done should be so fast that even fast robots won’t notice
that computation is going on.

2. Related Work

There have been many approaches to making computation
faster. One field that has focused on making computation
faster is computer architecture. There is a bunch of research
on computer architecture. In these works(?; ?), people have
tried to make computers run faster.

3. System Overview

3.1 Hardware

The hardware that we used to implement this system is a
Intel 8051. To increase the clock speed, we have cooled it
with liquid Nitrogen and put it in a warp field to make it run
faster. Inside of the warp field, time runs in an accelerated
manner. To properly interface from non-accelerated time
to accelerated time, a photon speed gasket was designed.
Figure?? shows a block diagram of our hardware setup.

3.2 Software

In order to run all computation “instantly fast” for ultra fast
robots, we have developed software that is able to run in
constant time. While it is well known that P==NP, polyno-
mial time algorithms are not fast enough for large problem
sizes. Thus we have designed a compiler that is able to
take polynomial time algorithms and transform them into

constant time algorithms. To allow for quick application
development and code reuse, we use the ‘C’ programming
language for all code development. The Constant Compiler
developed in a partnership with Spanuza Research trans-
forms all of the non-constant time algorithms to constant
time equivalents all in constant time. This research required
an exponential amount of time to perform.

4. Future Work

In the future we plan to make computers smaller such that
all ants in the world can carry at least three of them on their
back. And we will nominate you, yes you, as Imperator of
Rome! Hail Caesar!


