
The Simulated Evolution
of

Robot Perception

Martin C. Martin

A Dissertation Submitted in Partial Fulfillment

of the Requirements for the Degree of

Doctor of Philosophy

in the field of

Robotics

Carnegie Mellon University
Pittsburgh, PA

Thesis Committee:

Hans Moravec, chair
Peter Cariani

Illah Nourbakhsh
Simon Penny

© 2001 Martin C. Martin

���

Abstract
This dissertation tackles the problem of using genetic programming to
create the vision subsystem of a reactive obstacle avoidance algorithm
for a mobile robot. To focus the search on computationally efficient
algorithms while dealing images from a non-toy problem, the represen-
tation restricts computation to be over a window which moves vertically
over the image.

The evolved programs estimated the distance to the nearest object
in various directions, given only a camera image as input. Using a typi-
cal supervised learning framework, images of the environment were
collected from the robot’s camera and the correct distance in various
directions determined by hand. Evolving programs were evaluated on
this fixed training set and compared to the hand determined answers.
Once the evolution was complete, obstacle avoidance programs were
written to use the best evolved programs, and the combined system used
to control a robot.

The approach can be seen as automating the iterative design pro-
cess. A researcher’s main contribution is typically at a high level—
techniques and frameworks—yet most time is spent on an example
problem, trying different instantiations until one works. When faced
with such a problem, one can usually think of a half dozen very different
approaches, and even write them out in pseudo code. The technique
proposed here can be seen as searching the space spanned by that
pseudo code.

In a series of experiments, programs were evolved in three different
ways for two different environments to both create working systems and
push the limits of the approach. Even in this nascent form, the evolved
programs work about as well as existing, hand written systems. They
used a number of architectures, including a recurrent mathematical for-
mula and a series of if statements similar to a decision tree but with
non-linear relations between as many as five image statistics. They suc-
cessfully coded around peculiarities of the imaging process and
exploited regularities of the environment. Finally, when given a repre-
sentation so general as to cause the genetic algorithm to fail, and hand
constructed rough answer was used as a “seed,” which the genetic algo-
rithm successively modified to cut its error rate by a factor of 5.8.

This dissertation grew out of my conviction that critiques of Artifi-
cial Intelligence can be viewed constructively, as intellectual light-
houses to guide us closer to the fundamental nature of thought, to the
real problems at the heart of intelligence. To not address them, to work
on techniques with fundamental flaws, would be fooling oneself no mat-
ter how impressive the demonstrations. There seems to be something
fundamental about AI that we are all missing, and I believe these cri-
tiques bring us closer to it.

This dissertation describes the experiments and their results, dis-
cusses ways to develop them further, then presents critiques of AI and
discusses the potential of this approach to overcome those critiques.

�

Acknowledgements
First and foremost I would most like to thank Hans Moravec, my advi-
sor and friend, for his support and encouragement. He has been kind
enough to give me the one thing I desired most: the freedom to follow
my own ideas, although they must have seemed to come from another
planet. His wit and humour brightened hours of fascinating discussion
about computers, the nature of reality, the culture and events of the 60s
and 70s, and occasionally, robotics.

Illah Nourbakhsh was a fabulous resource, always able to provide a
deep insight no matter how brief the discussion. This work wouldn’t
have succeeded as well as it did if it wasn’t for his thoughtful guidance.
I am also grateful to Peter Cariani for his valuable comments and engag-
ing discussion. His breadth of knowledge—from cybernetics to the
mechanics of biological vision to how to write a dissertation—has
helped my thinking both here and on larger issues. Simon Penny pro-
vided friendship and a sympathetic view, especially for the broad
strokes in the last chapter. Whenever I disparaged at what a technical
audience would make of that chapter, I needed only think of Simon’s
belief that technology can and should be aware of the culture surround-
ing it.

Peeter Piegaze was not only a cohort in my first explorations into
genetic programming and computer vision as an undergrad, but a good
friend who, like me, enjoyed few things more than an evening discuss-
ing philosophy over a few pints. Sven Dickenson and John Tsotsos not
only provided me my first research opportunity and coached me through
it, but supported me in applying for graduate school and again when
searching for a faculty position. Their kindness will never be forgotten.

Jesse Eusades was not only a witty office mate who exposed me to
new music and fashion, but a good friend, always ready to help out,
whether with a drive home or to give up his Saturday to fix the robot
when this dissertation was already late. Dottie Marsh was always ready
with a laugh, and could perform administrative miracles getting me
reimbursements from whatever scraps of paper I managed to save. I
was lucky enough to have Marce Zaragoza and Suzanne Lyons Muth as
guardian angels, heading off more administrative problems at the pass
than I probably ever want to know.

Several friends shared in the growing up I did over those years, and
in my staying young. Garth Zeglin was there from the beginning to the
end, and was always ready to grab a pint and talk of computers, politics,
and life. John Murphy dragged me out, against my better judgement
and to my great benefit, to go dancing and have fun; I dragged him into
the lab to play Doom. And while Matt Deans and I only got to know
each other for a short time before I left, he was always ready with a
laugh and his friendship.

Finally, I would like to thank my family. My brother has always
shared my love of computers, and I will always be grateful that he has
shown me new ways to enjoy them. And it was my parents’ high expec-
tations of me in everything I did that led me to never compromise in my
work. This dissertation would not have been possible without them.

��������

Abstract iii
Acknowledgements v

1 Overview 1

Part I • Motivations
2 Related Work 13
3 Technical Framework 27

Part II • Experiments
4 Data Collection 39
5 Offline Learning: Basics 49
6 Expanded Representation 63
7 Focused Representation 79
8 Online Validation 105

Part III • Reflections
9 Discussion 117
10 Philosophy & Manifesto 133

References 155

�

���	�
��

Introduction
Artificial Intelligence (AI), the scientific and engineering endeavour of
creating a machine that can think, has made great advances over the
decades. Computers have beaten the best human chess players, speech
recognition systems allow computers to respond to voice commands,
and robots give tours of museums, reliably navigating rooms full of peo-
ple.

Yet the original goal of human-level mental competency has proven
elusive. Perception is a key cognitive ability, and human perception has
been shown to use very subtle and complex mechanisms, so vision
seems as good a place as any to look for intelligence. Various authors
have argued that embodiment and perception are key, and this disserta-
tion does just that, creating a visually guided mobile robot.

 Creating systems of the subtlety and complexity of human vision
has proven difficult to do by hand, so this dissertation uses Evolutionary
Computation (EC) to create the vision subsystem, automating the pro-
cess of testing and revising algorithms so common in robotics. These
points are expanded at the end of this chapter and in the “Philosophy &
Manifesto” chapter. Non-technical readers, and those primarily inter-
ested in the broader implications of this dissertation, would do well to
read that chapter first.

Motivations
The use of EC to create control programs for mobile robots is not new.
The field, approximately 10 years old and known as Evolutionary
Robotics, evaluates potential control programs by setting the robot to a
task and seeing how well the program achieves it. This happens either
in simulation or on a real robot, although the results are always vali-
dated on a real robot.

Previous evolutionary robotics work has incorporated video as a
sensor, but to do so has forced the image through a huge bottleneck, to
either three or sixteen pixels. With such a low resolution, only problems
in carefully constructed worlds were possible.

For the robot to be truly embodied in a real world environment, and
to avoid all manner of obstacles using only vision, it requires more com-
plex algorithms that respond to a larger part of the image. Simulating
real images to the required fidelity would be a thesis in itself, if even
possible at the speeds needed to support simulated evolution. However,
evolving on the real robot is also not possible, since this limits the num-
ber of evaluations, and hence the complexity of what can be evolved.

In addition, without specifying any a priori structure for the
evolved programs, the problem becomes many orders of magnitude
harder than previous work. The input, essentially the amount of light in
various directions, is simply too distantly related to the output, i.e. the
direction to travel.

For both these reasons, the control program was divided into two
components, the vision subsystem and the navigation subsystem. The

�

�

interface between the two was completely specified: the vision algo-
rithm takes in an image and a direction, and returns an estimate to the
nearest obstacle in that direction. The navigation algorithm starts with a
number of such estimates from the current image, and computes a direc-
tion to travel.

While specified, this interface is not arbitrary. Sonar and laser
range finders, by far the most popular sensors, return distances, and the
number of such estimates per image, six for training and twelve while
controlling the robot, are a minimal representation of the environment
compared to the dense depth map typically used in stereo based naviga-
tion. This minimal representation was inspired by arguments that repre-
sentation should be used sparingly.

This division into vision and navigation subsystems led to con-
structing the control program in two steps; see Figure 1. The vision sub-
system is constructed first, then the navigation algorithm is constructed
to handle the sorts of errors made by the vision algorithm. Lessons
learned about which errors are easy to compensate for and which are
more difficult can guide the design of the next version of the vision sys-
tem.

The vision system is constructed through a similar “generate and
test” paradigm, see Figure 2. Since this loop happens as one step within
the previous loop, it is called the “inner loop,” whereas the loop in Fig-
ure 1 is referred to as the “outer loop.”

For the person constructing the system, there
is another asymmetry between the two sub-
systems: the vision subsystem is much harder to
create. The output of the vision subsystem is the
estimated distance to the first obstacle in various
directions, and in this way similar to sonar. The
navigation subsystem can therefore adapt designs
created for sonar. When it comes to navigation,
sonar is a much more common sensor than vision,
so navigation from this type of data is well under-
stood. In contrast, while there has been much
work on computer vision, there has been little
applying it to obstacle avoidance on a mobile
robot.

For this reason, the core of this dissertation is
the development of the vision subsystem. Two
traversals through the outer loop were made, that
is, the vision subsystem was developed by making
many passes through the inner loop, then fixed. A
navigation subsystem was then created, and
finally the entire control program was evaluated
by using it to control the robot in a real world
environment. Reflecting on the difficulties and
successes along the way led to changes in the
vision framework, which lead to a new navigation

algorithm and a second round of validation on the robot. Suggestions
for a third iteration are presented.

In constructing the vision subsystem, the inner loop is automated
using evolutionary computation. Potential programs are given an image
and column location as input, and produce a single real-valued output,
which is interpreted as the pixel location of the lowest non-ground pixel

Create
Vision

Subsystem

Create
Navigation
Subsystem

Evaluate
Performance

Figure 1: The Outer Loop. First,
the vision subsystem is created in
isolation. Then the vision system is
fixed and used in the construction of
the navigation system. The perfor-
mance of the resulting robot is used
to guide the next version of the vi-
sion system.

Create
Navigation
Subsystem

Evaluate
Performance

Create
Potential
Vision

Subsystem

Evaluate

Figure 2: The Outer and Inner Loops. The “Create Vision
Subsystem” step has been expanded with its own generate-and-
test loop, implemented with a genetic algorithm.

Inner Loop

Outer Loop

Genetic Algorithm
Off Robot, Faster
Than Real Time

Hand Written
Evaluated On
Robot In Real Time

�

within that column. (See Figure 3.) Assuming objects touch the ground
and that the ground is roughly flat, the lowest non-ground pixel can be
easily converted to a distance from the robot. No state is maintained
from one image to the next or between columns within an image, which
means all programs are reactive.

A traditional supervised learning framework was used. To collect a
training set, the robot navigates using sonar and passively collects a
video stream. In each of six columns of each image, the correct answer,
i.e. the location of the lowest non-ground pixel, was determined by a
human and recorded. The fitness of a potential algorithm was simply
how close it came to the human-provided result. Thus, one pass through
the outer loop follows the four phases of Figure 4.

As for which EC framework to use, genetic programming (GP) is attrac-
tive in this setup because it uses a representation close to traditional pro-
gramming languages. As programmers, we feel it is a natural
representation for algorithms. For example, when sitting down to write
a program by hand, most programmers would not simply adjust the
weights of a neural network, but instead use variables, control flow, and
the other standard features of a programming language. In addition, as
programmers we are very familiar with such a representation, which
helps us understand the evolved algorithms. Finally, existing computer
vision algorithms are expressed in this format, making them easier to

incorporate into the framework. In fact, no other machine
learning framework uses a programming language as its repre-
sentation, nor allows such a range of architectures to be
searched. For example, neural networks, both feedforward and
recurrent, can be represented in GP, along with many other
learning frameworks. Once the general representation was
decided, evolutionary computing was the only choice.

The most general and straight forward way of incorporated
image information into GP is to simply allow it to access indi-
vidual pixels and give it some looping constructs. However,
with the limited computing power of today’s computers, it
would take a long time to find even a simple algorithm that
examines the correct location in the image.

To give the representation a little more structure, successful
visual obstacle avoidance algorithms were examined and a
common building block was found. In all these existing system
the bulk of run time was spent performing a computation over a
rectangular window which iterated over a column or row of the
image.

Thus, a new type of node was created, an iterate node,
whose arguments determine the size of the rectangle, its initial
location, the direction and distance to iterate, and finally a piece

of code to execute at each location. This last piece of code had access to
the results of various image operators over the window.

In addition to the iterate node and its associated image operator
nodes, standard mathematical functions were provided, as well as flow
control and five floating point memory registers, with associated read
and write nodes.

Figure 3: What is computed. For a
given column of the image, the
evolved vision subsystems compute
the boundary between the ground
(lower line) and a non-ground object
(upper line). If there is more than
one such boundary, the lowest is de-
sired. This is done independently
for six columns in the image.

F
F
c

Record Video

Learn Offline

Build Navigation

Validate Online

Genetic Algorithm

Robot, Real Time

By Hand

Robot, Real Time

Figure 4: The four phases of one pass through
the outer loop. First, a set of representative
images are collected. Then the inner loop, an
offline genetic algorithm, creates a vision sub-
system. Next, a navigation system is written by a
human programmer. Finally, both systems are
used to control the robot.

�

Experiments
The robot used in this work (next page, at left) is 60cm by 75cm (2feet
by 2.5feet), with a camera mounted at about eye height. For data col-
lection, a simple wandering algorithm was developed that used sonar to

avoid obstacles. The robot was run in two different build-
ings and the camera’s video stream recorded.

The different environments presented slightly different
challenges. While both were composed mainly of a texture-
less carpet, the FRC hallway contained two turns and
burned out fluorescent lights in one part of the hallway.
The NSH run included a person visible for several frames
and a stripe of red carpet, which showed up as black in the
camera.

Expanded Representation
Two sets of experiments were performed, one for each
cycle through the outer loop. While there were a host of
smaller differences, the main difference was in how much
of the loop was under genetic control. In the first set of
experiments the iterate nodes could move horizontally or
vertically and had five arguments that determined the size
of the window, the horizontal and vertical start location, the
ending location, and finally the code to execute at each
step. Each individual had three iteration branches, and an
additional fourth branch that combined the results of the
other three.

In this condition the evolutionary computation discov-
ered vision algorithms that did only slightly better than the
best constant approximation. That is, the program which
ignored the image and always returned the bottom of the
image did only slightly worse than the best evolved pro-
gram. This was true despite a population size of 10,000
individuals run for 51 generations and a maximum size for
individuals of 6000 nodes.

However, when a poorly performing hand written pro-
gram was used to seed the population, the evolutionary

computation was able to successively modify it to produce a very suc-
cessful algorithm. The best such algorithm achieved an average error of
only 2.4 pixels/column (the error in each column was limited to 20 pix-
els), and got 60% of fitness cases within 2 pixels of the human provided
“correct” answer. Subjectively, the vast majority of fitness cases were
handled more than well enough for obstacle avoidance, and the errors
did not follow any particular pattern, suggesting a simple filter would
eliminate most of them.

A navigation algorithm was then written which used the best
evolved vision algorithm to control the robot. While it was run several
times during development, no formal attempt was made to determine
mean time between failures or failure modes. However, it did succeed
in navigating the FRC hallway, making turns and avoiding previously
unseen obstacles. This experience provided some small changes to the
vision framework, such as moving the camera to the front of the robot
and rotating it downward a little further, in order to image the area just
in front of the wheels. Reflection on the successes and failures of the

�

entire process were then used to guide a redesign of the vision frame-
work.

Focused Representation
While many aspects of the seed were modified by the evolutionary com-
putation, others were not. In particular, the successful evolved algo-
rithms all iterated vertically, from the bottom of the image to the top or
vice versa. Therefore, horizontal iteration was eliminated and the iterate
node simplified to take only three arguments: the window size, the hori-
zontal location in which to iterate, and the code to execute at every step.
The result producing branch, which had simply returned the result of a
single iteration branch, was also eliminated.

To reflect this main difference between the two passes through the
outer loop, the first set of experiments were dubbed the expanded repre-
sentation, and the second set the focused representation. In the experi-
ments on the focused representation, three separate experiments were
run, the first using data from the Field Robotics Center (FRC), the sec-
ond from Newell Simon Hall (NSH), and the third from both.

All three experiments produced individuals which achieved a fit-
ness of greater than 85%. They did this despite burned out lights and
other effects that caused the carpet’s average intensity to vary from zero
to at least 140s out of 255; despite large gradients caused by imaging
artifacts; despite moiré patterns of image noise; and despite the shadow
of the robot.

In all three experiments, the best individuals were more than good
enough for navigation. Once again the vast majority of columns were
interpreted correctly and with one exception errors were transient. The
one exception was the stripe of red carpet in Newell Simon Hall, which
was uniformly considered an obstacle, at least when near the robot. The
best individual from the FRC runs, for example, could distinguish carpet
from wall or door at the bottom of the image, and find the boundary
between ground and non-ground, despite a burned out fluorescent light
at the beginning of the run, carpet intensities that vary from black to at
least the 140s out of 255, the shadow of the robot and large artificial
gradient intensities on the carpet due to problems in the digitizing soft-
ware.

The best individuals from the three experiments were simplified to
discover how they worked. Evolution had exploited a number of tech-
niques, including a sequence of if-then conditions similar to a decision
tree but involving non-linear combinations of up to five different image
terminals. In another case, a recurrent mathematical expression was
evaluated once at each location of the window. In all cases, the bottom
of the image was handled using different code than the rest of the image.
This reflects a natural dichotomy in the images: at the bottom of the
image a program must detect the presence or absence of an object, but in
the middle of an image it must detect the transition between ground and
non-ground. The mechanisms for this varied; in the FRC experiment it
used two different branches for the two conditions, whereas in the NSH
and combined experiments a multitude of if statements were used to run
different code at different locations. Interestingly, the raw image was
never used, although the median filtered image was. All directional gra-
dients of the image intensity were used except the vertical.

�

Online Validation
A navigation subsystem was then created by hand which chose a direc-
tion to move based on the output of the vision subsystem. This sub-
system was very similar to the one used during data collection, except
that its inputs came from vision, not sonar. The three different vision
subsystems, one from each experiment, all used the same navigation
subsystem.

The robot was then run in the same environment(s) it was trained
in. Videos of this online validation can be found at www.metahu-
man.org/Martin/Dissertation. These routes retraced the path of the train-
ing set and then continued much further. They included views of the
same hallway from the opposite direction, as well as similar areas never
seen during training. Objects were present that were not present during
training, such as chairs, trash cans and people.

In general, the navigation system worked rather well. It used the
same camera that was used for data collection, in the same location and
orientation. The evolved algorithms worked well despite months of
wear & tear on the carpet. Most errors were transient, lasting 1 or 2
frames, even when the camera was stationary. It worked on a range of
iris settings and camera tilts. It did not overfit to column location, and
twice as many columns were used during navigation as were used for
data collection.

There were a few persistent errors. It was sensitive to small strips
of paper or shiny pieces of metal. The red carpet, which was handled
poorly even on the training data, was classified as an obstacle when
nearby, causing the navigation to consistently treat it as a wall. Other
errors would fool the navigation system only occasionally, although
these were responsible for most collisions. Overall system perfor-
mance, specifically time to collision, is roughly comparable to the pub-
lished performance of hand-written systems.

Not surprisingly, the vision subsystem from the combined data set
performed a little worse in each environment than the subsystem devel-
oped from only that data set. This produced a measurable but small
drop in performance. It did not have a new class of error, but instead
was more likely to make one of the errors made by the other vision sub-
systems.

Reflections
In presentations of this work to date, people have asked “would I recom-
mend my approach to others?” The answer depends on exactly how the
question is intended.

For someone whose main goal is to create a working robot as
quickly as possible, and wants to reproduce this work with a different
robot and environment, the answer is a close no. While the resulting
programs work approximately as well as hand constructed programs,
hand constructed programs are in all probability easier to write.

However, for a researcher looking for a new way to create visually
guided robots, the answer is an unqualified yes. In fact, at least two
groups are now interested in refining the ideas in this dissertation. The
evolved systems already performs comparably to other techniques, and
the future work section is full of suggested improvements, many of
them straightforward.

	

The approach has many attractive properties. For most problems
we can think of a number ways to approach them. For example, to visu-
ally track a lecturer from a camera we could use background subtrac-
tion, segmentation based on skin tone, gait analysis, etc. Given pen and
paper we could even write these algorithms out in pseudo code. Genetic
programming, as applied here, can be thought of searching the space of
such pseudo code. This allows researchers to focus on the representa-
tion, leaving the details of how its applied to the evolution. And since
existing vision algorithms are typically expressed as programs, incorpo-
ration of existing knowledge is easier than other forms of machine
learning.

Were the subsystems produced by the evolutionary computing dif-
ferent than those produced by hand? There were certainly superficial
differences, most of which were removed by automatically simplifying
the evolved individuals. Some differences remained, such as complex
nonlinear conditions in the decision tree, or the use of recurrent mathe-
matical expressions. These certainly used more image statistics, and in
more complex combinations, then any previous work. Does this extra
complexity actually lead to increased performance, or is it simply an
awkward way of expressing a simple idea? In other words, could it be
simplified further? Until we can analyze these evolved individuals fur-
ther, we can not know.

However, this dissertation strongly suggests such analysis is possi-
ble. The high level structure of the individuals, be it a decision tree or
recurrent formula, is straightforward, as is the interpretation of the
actions in the decision tree. Thus, great insight can be gained by deter-
mining where the various conditions are true or false. Similarly, looking
at how the variables in the recurrent expression change over time can
shed light on how they work. That the analysis of individuals reduces to
such simple tasks is a strong argument that the inner workings of
evolved individuals are most likely within our grasp.

 Even if no fundamentally new algorithms were evolved in this dis-
sertation, greater computing power or modifications to the evolutionary
framework may produce solutions of unmatched subtlety or complexity,
beyond the limits of what people could produce.

Perhaps most importantly, this dissertation demonstrates that the
proposed research program works. In other words, we can use genetic
programming to create a vision subsystem, and such a subsystem can be
used for robot obstacle avoidance. We can also learn enough from
doing it that we can improve the system, increasing its performance
greatly.

Future Work
Several improvements suggest themselves. The errors in the vision sub-
system, apart from the red carpet, happened in locations or objects that
were not present during training. Therefore, a more diverse training set
would likely overcome these.

To use a bigger training set without taking more computer time,
only a subset of training images can be used for each evaluation, with
the composition of the subset changing over time. The subset can be
chosen probabilistically, where the probability of being selected is
higher for images that confused the previous generation of vision pro-
grams. Such a setup is called co-evolution and has been shown to be
effective in several problems. In fact, by over-representing difficult

cases, there is reason to believe it may encourage the evolving programs
to handle the red carpet.

Currently the algorithms can not maintain state from one image to
the next, which means that the resulting algorithms are reactive. Adding
a mechanism to maintain state may result in greatly improved, robust
algorithms.

As for the navigation subsystem, the similarly between sonar and
the output of the vision subsystem suggests using techniques that work
with sonar, such as evidence grids, Monte Carlo localization and other
Bayesian techniques, not to mention traditional evolutionary robotics
frameworks such as evolving neural networks. Sensor fusion should be
easy in an evolutionary robotics framework, and combining sonar with
vision could prove an easy and useful first step.

Evolving the vision and navigation subsystems simultaneously
could lead to the development of active vision, wherein a robot avoids
areas where its vision algorithm fails, or views a confusing object from
multiple locations. Perhaps even more exciting would be the inclusion
of a learning algorithm that operates within a single run. While evolu-
tionary computation is probably too slow for this purpose, the parame-
ters and details of a more traditional learning algorithm could be
evolved.

Finally, the analysis and understanding of evolved programs could
provide powerful insight into their workings and the workings of the
evolutionary process itself. Simplifying programs can make them much
easier to understand. While simplifications were partially automated in
this dissertation, it would be interesting to fully automate the process
and apply it to the ancestors of the best evolved individuals, or to runs
that performed poorly, or to other large groups of individuals. The sim-
plifications are close cousins of compiler optimizations. Thus, another
advantage of the representation is that decades of work in compiler opti-
mization can be leveraged. In addition, by looking at which parts of the
program or memory were used in different image locations, new
insights can be gained.

Philosophy and Manifesto
While the author believes that this dissertation stands on its technical
merits alone, the most exciting aspect of the work is that it represents a
first step in a research program which answers the common critiques of
Artificial Intelligence, and thus has the potential to go further than pre-
vious research programs, perhaps achieve the original goal, human-level
artificial intelligence.

Perception is certainly a key mental ability and human perception is
very intricate and subtle. Human vision does not simply recover objec-
tive properties of the image. Computer vision has largely focused on
bottom up processing, but human vision seems to find the best answer
given the sensor data, context, domain knowledge, task knowledge, pre-
vious state, etc. From the bottom up point of view, the vision problem is
under constrained, but it seems better viewed as ‘over suggested.’ This
means it sometimes sees things that are not there, as is demonstrated by
optical illusions. When interpreting an illusion that is a mistake, but in
natural images it is the right thing to do.

These properties of human perception have been known for a long
time, yet have been largely ignored in computer vision of unstructured
scenes. Incorporating them is thought to make a vision subsystem much

�

more complex. Thus, the real problem is complexity. Building a vision
subsystem that is task and context free simplifies the design of complex
systems allowing separation of labour and knowledge and allows one
subsystem to be used in many other systems. It should be noted that the
points in this paragraph are a product of research culture and the fact
that people are creating programs.

While being task and context free is a great way to manage com-
plexity, it comes at a cost. When one system takes the output of another
system at face value, then any errors in the second system mean the pro-
gram is working under false assumptions, so any action is possible.
Also, if you throw away all of the information from your sensors except
its best guess of the range to different locations, you are throwing away
all the information that can help you decide between the alternatives,
and sensor fusion becomes difficult if not impossible.

To summarize, interdependence is good, and readable, conceptually
clear design leads to a context free/task independent approach. This
leads us to the unorthodox conclusion that messy, unreadable, difficult
to understand code is necessary for something with the subtlety and
complexity of the human mind. Therefore, since having people write
the code adds all these constraints, machines should create the design.
This is a relatively novel application of machine learning: designing the
architecture.

This suggests that we explore how evolutionary computation can be
used to create computer vision subsystems. Others have argued for the
importance of embodying intelligence in unstructured real worlds. Thus
we have arrived at our starting point: how to use evolutionary computa-
tion to create robot vision for an unstructured environment.

How To Read This Dissertation
Readers with different backgrounds and interests will find certain chap-
ters of this dissertation more useful than others. What follows are sug-
gestions of what each group should read.

Those interesting in reproducing these results, presumably with a
different robot and environment, should read this overview then the
chapters “Technical Framework,” “Offline Learning: Basics,” “Focused
Representation” and “Online Validation.” Those wishing to extend this
work should read those chapters as well as the “Discussion” chapter. If
more details are desired, either type of reader should consult the
“Related Work,” “Data Collection” and “Expanded Representation”
chapters.

The “Philosophy & Manifesto” chapter should be read and
reflected on by anyone interested in the original goal of artificial intelli-
gence: the understanding and creation of intelligence. This hopefully
includes most people in the field itself, as well as others in computer sci-
ence and elsewhere. It can be read without reading the rest of the disser-
tation or even this overview, in fact, it was the introductory chapter in an
earlier draft.

Part I

Motivations

��

���������	�

This dissertation explores the use of evolutionary computing (EC) to
produce an embodied vision-based robot. Perhaps the most basic com-
petency that an embodied perception system needs is the ability to move
around its environment without bumping into objects. Therefore, the
chosen task is obstacle avoidance using vision. In this task, the robot
uses the output of a video camera to decide which direction to move in
order to avoid any obstacles.

While many people have worked on various vision algorithms, it
turns out only a handful have ever tested them by actually constructing a
working obstacle avoidance system from them. In this chapter, the
existing systems are described, along with other attempts to apply evo-
lutionary computation to robotics.

Evolutionary Robotics
The simulated evolution of executable structures has a long history. In
1950 Turing described the possibility [Computing Machinery and Intel-
ligence], and in 1958 Friedberg [A Learning Machine: Parts I & II]
evolved sequences of machine language instructions that performed
modest computations. Fogel, Owens, and Walsh [1966] introduced
Evolutionary Programming, evolving finite state automata to predict
symbol strings generated from Markov processes, in the 1960s. Holland
[1975] also introduced the bitstring Genetic Algorithm in the 1960s.
However, it was not until the mid 1980s that even toy problems of any
depth could be attempted.

Much of the current work on evolving executable structures follows
the work of John Koza and James Rice [Koza 1992, Koza 1994] under
the name of Genetic Programming (GP). Using a LISP-like representa-
tion, Koza extended the work of Cramer [1985] which demonstrated
that parse trees could provide a natural representation for evolving pro-
grams. Koza applied this technique to a broad range of problems,
including many in robotics, although the two books describe only toy
problems.

Koza and Rice evolved controllers, emergent foraging behaviors,
and subsumption programs among others. While the results were
encouraging, their simulations did not model sensor or actuator noise
and were not intended to be realistic. Other work on evolving programs
to control simulated robots can be found in [Koza 1991], [Langdon
1987, Proceedings of Artificial Life], [Langdon et al. 1991, Proceedings
of Artificial Life II] and [Kinnear 1994b, Advances in Genetic Program-
ming].

In 1992, Rodney Brooks discussed the issues inherent in transfer-
ring programs evolved in simulation to run on a real robot [Artificial
Life and Real Robots]. In particular, he suggested using GP to evolve
behaviors for behavior based robots, an idea he attributes to Chris Lang-
don. In summing up the state of the art, he said “There have been no
reports to date of programs evolved for embodied robots.” That was
soon to change.

�

��

Experiments
Evolutionary Robotics is an infant research field that uses simulated
evolution to produce control programs for real robots. Recent work can
be found in [Husbands et al. 1998, Evolutionary Robotics] and [Nolfi et
al. 2000, Evolutionary Robotics]. Most work uses bitstring genetic
algorithms to evolve recurrent neural nets for obstacle avoidance and
wall following using sonar, proximity or light sensors. Significantly,
recurrent neural networks, where the outputs of later layers can feed
back to earlier layers, are traditionally considered more difficult to train
than feed forward nets, since the derivative of the error is difficult or
impossible to compute analytically. Evolutionary Computation does not
use gradient information, and therefore even exploratory, toy problems
use recurrence.

For example, Miglino et al. [1995] evolved a four-layer recurrent
neural network that allowed a mobile LEGO robot to explore the great-
est percentage of an open area within an allotted number of steps.
Jakobi et al. [1995] evolve arbitrarily recurrent neural networks for
obstacle avoidance and light seeking behaviors for a Khepera robot,
equipped with eight infrared sensors. Meeden [1996] evolved recurrent
neural controllers for a toy car that had to avoid obstacles (walls) while
seeking or avoiding light. For sensors the car was equipped with four
touch sensors and two light sensors. Despite its large turning radius,
lack of position estimation and inability to sense oncoming walls, suc-
cessful programs evolved in a variety of experiments.

Yamauchi and Beer [1994] evolved a continuous-time fully-con-
nected recurrent neural network to recognize a landmark. The robot
moved around the landmark and recorded the readings of a single sonar
sensor over time. When transferred onto their Nomad 200 robot, the
best evolved net correctly classified the landmarks in 17 out of 20 test
trials.

Nordin et al. [1998] report the only work that this author is aware of
that applies genetic programming (as opposed to any other form of evo-
lutionary computation) to real robots. A Khepera robot is used, in a
physical environment constructed especially for the robot. In this envi-
ronment, obstacles and walls are white so they reflect the infrared sen-
sor’s light. They directly manipulate SPARC machine language in
symbolic regression to predict the “goodness” of a move given the cur-
rent sensor values. For obstacle avoidance, the “goodness” of a move is
the state of the robot 300ms in the future, specifically the sum of the
proximity sensors, plus a term to reward it for moving quickly and in a
straight line.

To decide which action to take, they simply predict the goodness of
all possible actions, choosing the one with the best score. The training
data is collected while the genetic programming is running, i.e. the
training set changes during evolution, and the best individual so far is
used to steer the robot. They use a population size of 10,000 and find
that, in runs where perfect behavior is developed, it developed by gener-
ation 50.

Most work evolves robots in simulation, then transfers the best
individuals to real robots. Reynolds [1994] has pointed out that without
adding noise to a simulation, EC will find brittle solutions that would
not work on a real robot. Jakobi et al. [1995] discovered that if there is
significantly more noise in the simulation than on the real robot, new
random strategies become feasible that also do not work in practice.

��

There are no reports of anyone exploring the reverse, i.e. whether
entire classes of solution will not be found because they do not work in
simulation. For example, dead reckoning error may be different on car-
pet then on a hard floor, so one possibility is to try to distinguish
between them based on, say, their visual appearance. If this difference
in error is not modeled in the simulation, such a solution will never be
found. Once evolutionary robotics advances beyond its current basic
stage, programs evolved in simulation may miss many subtle solutions.

As well, there have been no reports of anyone in evolutionary robot-
ics attempting to simulate CCD camera images, either using standard
computer graphics techniques or morphing previously captured images.
A group at the University of Sussex in the U.K. has used video images
to guide their robot [Harvey et al. 1997, The Sussex Approach], but
every video image was first reduced to three real numbers, the average
intensity over three circles. These are significantly easier to simulate
than a full CCD image, especially when the only objects are pure white
on a black background. The location and size of the circles was deter-
mined genetically, as was an artificial neural network to turn the values
into motion commands. Using a population of 30 individuals, they
evolved movement, target finding and the discrimination of a triangle
from a square all within 30 generations. The targets, triangle and square
were all white on a “predominantly dark environment.” Because of the
difficulty of accurately simulating a video image, for example using
computer graphics techniques, all of their evaluations took place on
their robot, a video camera attached to a 2D gantry. The gantry, which
they described as “part way between a mobile robot and simulation,”
allowed them to accurately position the camera anywhere within a rect-
angle.

The evolved rectangle/triangle discriminator has an interesting
structure. The rectangle and triangle are in fixed orientations against a
wall, the rectangle axis-aligned, the triangle pointing “up.” The best
individuals used two of the three circles, one directly above the other.
When looking at the rectangle or background, both sensors would have
approximately the same value, but when looking at the triangle, the bot-
tom one would register “white” while the top “dark.” The evolved pro-
grams rotated in the first case, but drove straight in the second.

Smith [1998] evolves an artificial neural network in simulation for
a soccer robot to approach a ball and push it toward a goal. He used a
Khepera robot with a one dimensional auto iris vision system that
returns 16 pixels of greyscale (intensity) information, arranged horizon-
tally. The 16 pixels were actually derived from 64 pixels; Smith does
not say how. This is an important step toward simulating camera
images, but again much easier than simulating a CCD image at, say, 160
x 120 pixels or above.

In order for the best simulated robots to work in the real world, he
found it necessary to force the robot to ignore certain visual features by
making them unreliable. Individuals start scoring around generation 50,
but even by generation 3000 the best individuals score only 25% of the
time in simulation. Of twenty trials on the real robot, the ball was
moved 18 times and the robot scored 4 times.

A few research groups perform all fitness evaluations on the real
robot. Floreano and Mondada [1994] evolve recurrent neural networks
for obstacle avoidance and navigation for the Khepera robot. It took
them 39 minutes per generation of 80 individuals, and after approxi-

��

mately 50 generations the best individuals were near optimal, moved
extremely smoothly, and never bumped into walls or corners.

Naito et al. [1997] evolved the configuration of eight logic elements,
downloading each to the robot and testing it in the real world. Finally,
the Sussex gantry robot [Harvey et al. 1997] mentioned earlier has used
evaluation on the real robot. They used a population size of 30, and
found good solutions after 10 generations.

The only reported example of evolving visual obstacle avoidance
was done by Baluja [1996], who evolved a neural controller that inter-
prets a 15 x 16 pixel image from a camera mounted on a car, similar to
ALVINN [Pomerleau 1989, ALVINN]. The network outputs were inter-
preted as a steering direction, the goal being to keep it on the road.
Training data came from recording human drivers.

In summary, previous experiments in Evolutionary Robotics have
used low bandwidth sensors, such as sonar and proximity sensors.
There were typically less than two dozen such sensors on a robot, and
each returned at most a few readings a second. This is in contrast to
much traditional work in computer perception and robotics which uses
video or scanning laser range finders, that typically have tens to hun-
dreds of thousands of pixels, and are processed at rates up to 10 Hz or
more. Evolutionary Robotics has much to gain by scaling to these data
rich inputs.

In addition, most Evolutionary Robotics has designed algorithms
for real but simplified environments that are relatively easy to simulate.
While evaluating evolved programs on real robots is considered essen-
tial in the field, those environments are typically still tailored for the
robot. The current work extends the state of the art by evolving pro-
grams to interpret large amounts of data from unstructured environ-
ments.

Arguments
Along with systems built, various practitioners have argued for how
they should be built. There are two main “philosophical” papers, one by
the Sussex group, and another by Rodney Brooks. This section
describes the arguments therein, postponing discussion until later chap-
ters.

In [Harvey et al. 1992, Issues in Evolutionary Robotics], the Sussex
group argues against the evolution of computer programs for controlling
mobile robots, preferring artificial neural networks instead. They echo
Varela, Tompson and Rosch in saying that robots are best viewed as
“dynamic systems rather than computational systems that are perturbed
by their interactions with the environment.” They also argue that “the
primitives manipulated during the evolutionary process should be at the
lowest level possible,” because they believe “that any high level seman-
tic groupings necessarily restricts the possibilities available to the evolu-
tionary process.”

The same paper also makes a strong case for evolutionary robotics
using vision, and using real, not simulated, camera images. They argue
that the proximal nature of touch sensors and sonar force robots to
employ primitive navigation strategies such as wall following. In con-
trast, “The need for more sophisticated navigation competencies, which
we take as manifest, is only likely to be overcome fully by an increased
reliance on distal sensors—in particular, vision.” [Emphasis in the orig-
inal.] They also argue that the computational demands of simulating

�	

vision in a useful manner soon become considerable. After discussing
what sort of camera a robot would need, they say “Envisaging what is
necessary for the robot is likely only to be possible after some experi-
ence with it: a circularity which reveals that some iteration is required
between the simulation work and the building of real robots—a pluralist
approach will be the most fruitful.”

In [Brooks 1992, Artificial Life and Real Robots], Brooks argues
for the evolution of behaviors in behavior based systems. He argues
that behavior based robot programs take three orders of magnitude more
memory to represent than programs typically evolved at the time. He
points out the vast difference between simulated robots and physical
robots and their dynamics of interaction with the environment. He
points out the dependence of the structure of the search space on the rep-
resentation used. “Careful design is necessary.” He also argues that
nature co-evolved the hardware and controllers in a way that arguably
cut down the size of its search space.

Interestingly, Brooks also said “to compete with hand coding tech-
niques it will be necessary to automatically evolve programs that are
one to two orders of magnitude more complex then those previously
reported in any domain. Considerable extensions to genetic program-
ming are necessary in order to achieve this goal.” By Moore’s law, two
orders of magnitude would have taken about 10 years, and since the
paper was written in 1991, this places the projected date at 2001—the
year this dissertation will be defended.

With the state of the art in evolutionary robotics now understood, our
attention shifts to more traditional work in vision based obstacle avoid-
ance.

Visual Obstacle Avoidance
Somewhat surprisingly, there have been only a handful of complete sys-
tems that attempt obstacle avoidance using only vision in environments
that were not created for the robot. What is more, it has never been done
reliably: the average distance between failures (i.e. hitting something) is
around 400 to 500 meters, for the best systems. At typical speeds of 30
cm/s, this is less than 30 minutes between failures.

As an aside, average distance between failures is, of course, a horri-
ble metric. A robot that “explores” by travelling in circles could go
indefinitely. And in some environments obstacles may be more com-
mon, or harder to detect, than others. But as with “lines of code” as a
metric for programmer productivity, it predicts more substantial metrics
as long as people’s reward is not based on it. And the main point is
manifest: with the current state of the art, you certainly could not trust a
vision-only robot in an unstructured environment for even a day.

Perhaps one reason for such disappointing performance is that only
a handful of such systems have been built. While there has been much
work on creating vision systems, we can not know how well they will
work or what the failure modes will be until the loop is closed by using
them to control a robot. And most systems which do close the loop use
some range sensor, typically sonar (for indoor, e.g. Xavier & Amelia) or
laser (for outdoor, e.g. Navlabs & Sojourner). Those which close the
loop using vision alone either use stereo vision, optical flow, or more ad
hoc methods. All three categories are described below.

�

Stereo Vision
Stereo vision attempts to tell the distance to part of the environment by
finding the image of it in two (or more) cameras. If we know the loca-
tion and orientation of the cameras and their field of view, and if they
follow a perspective projection, we can triangulate and find the desired
location. If there are only two cameras, they typically share the same
orientation, and are displaced horizontally, like the eyes in our head.

To find the corresponding images, a small window in one image (8
by 8 pixels is typical) is compared against a similarly sized window in
the other image(s). Typically, the second window is moved along a hor-
izontal line, and at each location is compared to the window in the orig-
inal image. The window that is the most similar is assumed to be the
image of the same object. Similarity is usually some context free math-
ematical expression, such as the sum of squared differences of corre-
sponding pixels or a cross correlation.

Other than the need for calibration, which is generally considered
achievable, the main problems encountered with stereo result from mis-
taken correspondences. If a given part of the environment does not have
much visual texture, such as a wall painted a solid color, then any win-
dow on it will look the same as any other window, and stereo will match
noise or intensity of specular reflection. If a pattern repeats throughout
an environment, such as fence posts or a row of filing cabinets, the
wrong one may be selected as a match. Finally, near the boundaries of
objects, the background can be seen by one camera and not the other. In
this case the matching image simply does not exist, and the object in the
mismatch that looks most similar is selected.

Nevertheless, working obstacle avoidance systems have been con-
structed that use stereo vision as their heart. Two of these are described
below.

Larry Matthies’ group at JPL has built a number of complete systems,
all using stereo vision [Matthies et al, 1995, Obstacle Detection for
Unmanned Ground Vehicles]. They first rectify the images, then com-
pute image pyramids, followed by computing the sum of squared differ-
ences, filtering out bad matches using the left-right-line-of-sight
consistency check, then low pass filter and blob filter the disparity map.

Their algorithm has been tested on a number of robots. The Mars
rover test bed vehicle “Robby” accomplished a 100m autonomous run
in sandy terrain interspersed with bushes and mounds of dirt [Matthies
1992, Stereo vision for planetary rovers]. And the JPL HMMWV drove
200m continuously at 1 to 3m/sec while detecting half-meter obstacles
in time to stop. Figure 1 shows results from a test run that travelled
about 200m along a road. From Matthies et al. 1995:

The vehicle was instructed to follow its current head-
ing whenever it could, but to swerve to a new heading
as necessary to avoid obstacles. Two significant
swerves are seen in this run. The first was to avoid a
tree on the right side of the road; the second was to
avoid a bush on the left side of the road, just beyond
the tree. This was a very successful run, and typical
of results obtained in this kind of terrain.

��

Figure 1: Road run with Ranger, covering about 200 meters. At top is an overview of the road travelled. Shown
below are windows of attention from representative intensity images (left side), corresponding range images (right
side), and a composite elevation map from the whole run (center). The white curve and rectangle on the elevation map
represent the vehicle path and the vehicle itself at the end of the run. From Matthies et al. [1995, Obstacle Detection
for Unmanned Ground Vehicles]

��

The HMMWV has also accomplished runs of over 2km without
need for intervention, in natural off-road areas at Fort Hood in Texas
[Matthies, personal communication]. The low pass and blob filtering
mean the system can only detect large obstacles; a sapling in winter, for
example, might go unseen. Unfortunately, nothing more is said about
the performance of the system, or its failure modes. Sadly, this seems to
be the norm in the reporting of such research.

The Ratler trials [Krotkov et al. 1995 and Maimone, 1997] are part of
the Lunar Rover Initiative [Katragadda et al. 1996], aimed at developing
technologies for autonomous and teleoperated exploration of the moon.
Specifically, the goal is a 200km traverse of the lunar surface that would
visit several historical sites. To accomplish this, a stereo algorithm was
developed and implemented on the Ratler vehicle, along with an obsta-
cle avoidance planner and arbiter. After rectification, the normalized
correlation is used to find the stereo match. The match is rejected if the
correlation or the standard deviation is too low, or if the second best cor-
relation is close to the best.

Using this system, Ratler was run at three different planetary analog
sites: the Pittsburgh Slag Heaps, the Robotics Engineering Consortium,
and the Moon Yard. Travelling at 50cm/sec over 6.7km the system had
16 failures, for a mean distance between failures of 417m. No informa-
tion on failure modes is available.

Correlation Based Optical Flow
Correlation based optical flow is similar to stereo, except that the two
images are taken by the same camera at different times, and the separa-
tion between cameras is no longer strictly a sideways translation. It also
is not known very precisely, since even a small wobble in the camera
mount can cause motion of a few pixels in magnitude. Therefore, the
search for correspondences can not be restricted to a horizontal line in
the image and is typically two dimensional. To reduce computational
expense, the images are typically much closer together than in stereo
and therefore the correspondence problem is easier, but the estimates are
less accurate.

The Integrated Systems Division at NIST has succeeded with runs of up
to 26 minutes without collision [Camus et al. 1999, Real-time Single-
workstation Obstacle Avoidance Using Only Wide-field Flow Diver-
gence]. Their system uses correlation based optical flow, specifically,
divergence of image flow in the direction of the camera’s heading,
which is inversely related to time-to-contact. Two onboard cameras are
mounted one above the other on a single pan motor, and processed sepa-
rately. The top camera has a 40° field of view, and the lower camera a
115° field of view. The divergence and time-to-contact are computed in
three overlapping windows of the central image. In the wide angle
image, the process estimates maximum flow in two peripheral visual
fields (left and right). Maximum flow and time-to-contact are tempo-
rally filtered to reduce errors. Recursive estimation is used to update
current flow and time-to-contact estimates and to predict flow and time-
to-contact at the next sample time.

Using active gaze control, the cameras are rotational stabilized so
that their motion is approximately a translation. If the flow is larger on
one peripheral side than the other, then objects in the scene are closer on

��

that side, and the robot steers away. When the camera points too far
away from the heading, a saccade is made toward the heading. From
[Coombs et al. 1997]:

Experiments with the obstacle avoidance system were
conducted in a laboratory containing office furniture
and robot and computing equipment. Furniture and
equipment lined the walls and there was free space
roughly 5 m by 3 m in the center of the lab. Office
chairs provided obstacles. ...

Variability in steering and stopping depends in
part on the textures visible from a particular approach.
Stopping distances may vary just because the angle of
approach varies. As time-to-contact and peripheral
flows are computed, the robot moves forward toward
open areas while centering itself in the open space.
Upon detection of an imminent collision, it turns to
avoid the obstacle and continues its wandering behav-
ior. The system has run successfully for up to 20 min-
utes.

There are three primary factors that lead to sys-
tem failure. First, there is a variable time delay
between detection of an event and the behavioral
response to this event. ... Second, the flow computa-
tion assumes that there will be sufficient texture in the
field of view from which to compute flow. If this is
not the case, no flow is detected and the robot collides
with the obstacle. The third cause of failure is the
rectangular geometry of the robot base and the pres-
ence of bumpers which trigger stopping upon contact.
There are instances where the robot is turning to avoid
an obstacle, and in so doing, brushes its bumper
against a nearby object.

The authors point out that the gaze stabilization, which removes camera
rotation with respect to the environment, is crucial for their technique.
Even small camera rotations can produce rotational flows that are much
larger than translational flows.

Ad Hoc Methods
There are also a number of “scruffy” methods that eschew the mathe-
matical rigor of the “neat” methods above, and instead rely on ad hoc
algorithms.

Ian Horswill’s Ph.D. thesis [Horswill 1994, Specialization of Perceptual
Processes, and Horswill 1993, Polly: A Vision-Based Artificial Agent]
was the programming of the robot Polly to give tours of the seventh
floor of the AI Lab at MIT. The obstacle avoidance software exploited
the texturlessness of the floors, and labeled every area whose texture
was less than a certain amount as floor. Starting at the bottom of the
image and moving up, the first textured pixel in each column was found,
and declared to be an object. The closer such pixels were to the bottom
of the image, the closer the object was to the robot. By telling what side

��

of the image the object was on (left or right), the robot could veer away
from it.

From Horswill 1995:

In general, all low-level navigation problems are
obstacle detection problems. Fortunately, most of
these are false positives rather than false negatives so
the system is very conservative. The system’s major
failure mode is braking for shafts of sunlight. If sun-
light coming through office doors in into [sic] the
hallway is sufficiently strong it causes the robot to
brake when there is in fact no obstacle. Shadows are
less of a problem because they are generally too dif-
fuse to trigger the edge detector.

False negatives can be caused by a number of less
common conditions. The present system also has no
memory and so cannot brake for an object unless it is
actually within the camera’s field of view. Some of
the objects in the lab have the same surface reflec-
tance as the carpet on which they rest, so they can
only be distinguished in color. Since the robot only
has a black and white camera, it cannot distinguish
these isoluminant edges. The edge detector can also
fail in low light levels. Of course, most vision sys-
tems are likely to miss an object if they cannot even
find its edges so this failure mode should not be sur-
prising.

... Given the current state of vision technology, it
is a bad idea to rely exclusively on vision for obstacle
avoidance...

A main contribution of the work is the idea of specialization. From
[Horswill 1994]:

We can analyze this relationship [between agents and
their environments] formally by deriving an agent that
is specialized to its environment from a hypothetical
general agent through a series of transformations that
are justified by particular properties of the agent’s
environment. In performing the derivation, the
designer divides the agent’s specialization into a dis-
crete set of reusable transformations, each of which is
paired with an environment property that makes it
valid. I call such properties “habitat constraints”
because the set of such constraints define the agent’s
habitat.

Note that these are hard constraints: they are built into the very design of
the robot. While these constraints are extremely helpful most of the
time, the robot’s most troublesome failure modes occur where these
constraints are violated. No attempt is made to detect possible excep-
tions, or anything else that might turn these into soft constraints.

��

Liana Lorigo’s Master’s and now Ph.D. work under Rodney Brooks and
W. E. L. Grimson follows on Ian Horwill’s work [Lorigo 1996, Visually-
guided obstacle avoidance in unstructured environments and Lorigo et
al. 1997, Visually-guided obstacle avoidance in unstructured environ-
ments]. The monocular camera returns 64x64 pixel colour images. The
analysis starts by computing a histogram over the 20 (wide) x 10 (high)
pixel window in the lower left. The statistic used in the histogram var-
ies; it is either the pair (red/intensity, green/intensity), the pair (hue/
intensity, saturation/intensity), or brightness gradient magnitude. This
histogram is the “reference histogram” for this column. It is assumed
that this area is free of obstacles (or, perhaps, that if an obstacle is that
close, nothing can prevent a collision). The window is moved up one
pixel and the histogram is recomputed. If it differs from the reference
by more than some fixed amount, the new window is said to contain an
obstacle and processing stops. Otherwise, the window is moved up one
more pixel and the computation repeated.

This gives the location of the obstacle closest to the bottom of the
image, for that 20 pixel wide column. The process is repeated for all the
columns in the image (that is, starting at horizontal pixels 2, 3, ... 45, not
pixels 21, 41, ...). For each column we then have a row number; a flat
ground plane assumption is made to translate these into distance to near-
est object in that column. Given this, the robot then turns away from the
side with the cumulative nearest object.

This system has been tested for more than 200 hours in diverse
environments, including test sites at the MIT AI Lab and two simulated
Mars sites at JPL. From Lorigo et al. 1997:

For testing in the sandbox, the obstacles were moved
into many configurations, additional obstacles were
added, and people interacted with Pebbles by stepping
in its way. Normally the space between obstacles was
only slightly larger than the robot’s width. In this sit-
uation, the robot navigated safely for large amounts of
time. ... The run-time of the robot was limited prima-
rily by hardware concerns and occasionally by the
failure modes mentioned below.

Further, the system avoided obstacles in the
lounge. Walls, sofas, boxes, chairs, and people were
consistently avoided. Corridor following, even at cor-
ners, was easily accomplished by the system. Again,
moderate lighting variations caused no difficulty.
These results were repeated in other rooms where dif-
ferences included the type and amount of clutter and
the pattern of the carpet.

Failure modes include objects outside the camera’s field of view, espe-
cially when turning. The authors suggest that a wider field of view
would solve this problem. Other failure modes:

[C]arpets with broad patterns or boundaries between
distinct patterns resulted in false alarms. Sharp shad-
ows also posed a problem in bright outdoor sunlight
when shadows were sometimes classified as obsta-
cles. Similarly, bright specularities on a shiny floor

��

occasionally caused the system to falsely report obsta-
cles. Prior knowledge of such patterns or an addi-
tional method for depth estimation would be required
to resolve these issues.

In this work, an object is anything different from the reference window.
This incorporates a kind of domain knowledge, namely that safe ground
has approximately the same histogram in all places. However, this is
implemented as a “hard constraint”: there is no room for exceptions.
While this works most of the time, the failure modes above occur when
this constraint is violated. One could imagine, for example, trying to
recognize exceptional circumstances and developing new rules for
them, or having a learning technique that does this automatically.

Illah Nourbakhsh has created a system that uses depth from focus to
provide a rough depth map of a scene, and created an obstacle avoid-
ance system based on this [Nourbakhsh 1996, A Sighted Robot]. Three
cameras are mounted vertically, as close together as possible, and
focused at three different distances, namely 0.4m, 1m and 2m. The
image is divided into 40 subwindows, 8 across and 5 down. In each
subwindow, the sharpness (i.e. how much the intensity changes from
pixel to pixel) is computed for the three cameras, with the sharpest giv-
ing its focal length to the depth map. The result, then, is an 8 by 5 depth
map, where each measurement is “near”, “medium” or “far”. On flat
ground the bottom two rows are medium while the others are far; detect-
ing more than one far in the bottom two rows signals an impending drop
off (such as stairs), and the robot turns 180 degrees. Otherwise, the
robot turns away from whichever side has the largest number of closes
or mediums.

From Nourbakhsh 1996:

Further indoor tests were conducted in the second and
third floor hallways and lounge areas of the Computer
Science Department. These tests were the most chal-
lenging: lighting conditions and wall texture vary
greatly throughout the area. Additional risks included
two open staircases and slow-moving students who
actively tried to confuse the robot into falling down
the stairs.

The robot performed extremely well in this com-
plex indoor domain, avoiding the staircase as well as
the students. The robot can reliably navigate from
inside a classroom, through the doorway, into the hall-
way, past the stairs, and into the lounge with perfect
collision avoidance in spite of moving students. ... In
all three runs [of 20 minutes each], the robot operated
fully autonomously and the only environmental modi-
fication involved the removal of one coffee table in
the lounge that violates our ‘beheading’ constraint.
Average speeds in this domain were approximately 8
inches per second [20 cm/s]. ...

Over several weeks of testing, accumulating
more than 15 hours of outdoor time, the robot
detected dropoffs and static obstacles with 100% reli-

��

ability. Furthermore, false positive detection of steps
proved to be essentially nonexistent.

Our final experiment involved an outdoor dem-
onstration of the robot... The robot approached the
dropoff and the staircase more than fifteen times,
detecting them with 100% accuracy. ... Over the
course of the demonstration, the robot came in contact
with no static obstacles and contacted a moving obsta-
cle (i.e. a human) only once.

Due to its low resolution depth map, the robot has trouble seeing tables
near camera height. As well, in areas of low texture, sharpness is low in
all three cameras. Such areas are classified as close for safety, but a
large patch of such area (such as a plain wall) could paralyze the robot.

Hajime Or at the University of Tokyo built what he calls a “biomecha-
tronic robot” [Yam 1998, Roaches at the Wheel] (see Figure 2) while
working on his master’s degree at the University of Tokyo. After taping
down an American cockroach (top right), he inserted fine silver wires
into the extensor muscles of the hind legs. The roach was then allowed
to run on what amounts to a trackball (bottom right). The wires picked
up the weak electrical signals generated by the muscles, and the signals
were amplified and fed to the motorized wheels. In this way, the
machine would mimic the speed and direction the cockroach ran. For
the relation of this to the present work, see the next subsection.

Analysis
As can be seen from the above examples, the problem of navigating
from vision alone has yet to be done well enough to leave a robot unsu-
pervised for hours in an unstructured indoor environment. Note that the
planetary analog environments tend to be easier than indoor environ-
ments, since obstacles tend to be large and have texture, as opposed to

Figure 2: A live cockroach is used to direct this robot base. The roach is allowed to run on the ball, and sensors in
its leg muscles are used to steer the base. The sensing, planning and navigation are all done by the roach.

��

objects like tables at eye level or plain walls. As well, planetary envi-
ronments are static whereas indoor environments are often filled with
people.

Looking back on the above examples, it is not clear that a single
depth cue is sufficient for the job. Area based stereo, for example, may
simply have too many errors to be reliable for obstacle avoidance. That
statement can never be proven, of course, since some day someone may
think of a unique twist which makes it work. But from the current state
of the art, the sufficiency of stereo is far from certain.

Since ranging devices like sonar (or cockroaches) make the obsta-
cle avoidance problem much easier, they may seem like an obvious way
to solve the problem. However, there are two reasons to shy away from
them. First, they have many problems of their own. For example, sonar
has as specular reflection (many surfaces act as mirrors to ultrasound),
poor angular resolution, and an inability to see drop offs. But more
importantly, the goal of this dissertation is not simply to engineer a pro-
totype obstacle avoidance system, but rather to figure out how to build a
better vision system. It is the new techniques that need to be discovered
that are of interest, rather than obstacle avoidance itself. While creating
robots as competent as the cockroach would be a breakthrough in
vision, using the cockroach without understanding would not.

While reliable obstacle avoidance from vision may be impossible today,
there is a simple proof that it is possible: people do it. With the motiva-
tion and background in hand, the next chapter describes the high level
design of the experiments.

�	

�����
����
�	�����	�

When people design algorithms, much time is spent in iterative design,
namely instantiating a design, applying it to a problem, and then revis-
ing the design based on what did and did not work. This dissertation
automates this processes, by using a machine learning framework that
manipulates traditional computer programs: Genetic Programming
(GP).

To test this idea, one particular embodiment of it was chosen and
applied it to visual obstacle avoidance for an indoor mobile robot.
Visual obstacle avoidance is the task of using a video camera on a robot
to detect and avoid objects.

This chapter introduces the technical framework of the actual
experiments. It presents the high level description of system and justi-
fies it. To put it differently, given the goal “use Genetic Programming to
create a visual obstacle avoidance system,” there are many different
ways to flesh it out, and ten different researchers would most likely do it
ten very different ways. This chapter describes the aspects of the
approach that a researcher in the field could not guess from the one sen-
tence description. These aspects should therefore be considered part of
the contribution. In contrast, the contents of the following chapters are
more or less typical ways of elaborating these ideas.

The plan is to harness Evolutionary Computation (EC) to construct
an embodied vision system. When applying EC to a specific problem,
the two main decisions to be made are the method of evaluating individ-
uals, and the method of representing them. These are examined in turn.

The Evaluation Method
It is common practice in Evolutionary Robotics is to evaluate potential
robot control programs by having them control a simulated robot in a
simulated environment. A virtual world is created, and whenever a
camera image is needed, computer graphics techniques could be used to
render it. When the robot is commanded to move, its position in the
simulated world is updated, modeling actuator error by moving it to a
slightly different position than was commanded.

This use of simulation is attractive for a number of reasons. First,
recent ray tracing and radiosity techniques can simulate many of the
problems of real images, such as specular reflection of fluorescent light
bulbs on glossy paint. This technique also allows a large number of
candidates to be evaluated quickly, and can make full use of a cluster of
workstations or a supercomputer. It doesn't require the constant super-
vision and resetting by hand that experiments with real robots do.

It also has the potential to discover active vision algorithms. If an
unfortunate alignment of objects at a particular location causes prob-
lems for a vision algorithm, the traditional computer vision response is
to improve the algorithm. An active vision approach would be to sim-
ply move to another location. In general, active vision introduces the

�

�

notion that the motion of the robot can affect what the robot sees, and
therefore should be considered part of the vision algorithm.

However, it was not at all clear how veridical each aspect of the
simulation would need to be. There are a number of peculiarities of real
world images and CCD cameras, and without some further research or
intuition, it seemed well within the realm of possibility that this simula-
tion could require ever more research, becoming worthy of a disserta-
tion by itself.

To ease the computer graphics burden, a simulation could be cre-
ated as above, with the computer graphics replaced by real images. We
could collect images from positions on a tightly spaced grid, under a
number of different conditions, and then “interpolate” between them. If
we want an image from a certain location, the interpolation can be done,
for example, by projecting the nearest image onto the scene, then pro-
jecting it back onto the simulated camera.

However, both these approaches have the problem that simulations
necessarily embody assumptions. For example, we might add random,
Gaussian noise to our dead reckoned position to account for error. In
practice, such noise is actually much better behaved than real noise. For
example, if each move has k percent error, then after n moves our error

is only percent, in marked contrast to a constant error which can
accumulate very quickly. In addition, the characteristics of positioning
error are different on carpet, linoleum and concrete. Studying these
characteristics and creating a model for each floor type may prove accu-
rate enough, but in general, it is not clear how accurate the model needs
to be and whether we could achieve that in practice.

To summarize, simulations are relatively cheap and easy to auto-
mate, but the performance of the robot will only resemble that of a
material robot in a real environment if one is very careful modeling the
appropriate aspects of the environment. Knowing which aspects are
appropriate can be difficult if not impossible. Even if the simulated
robots perform well in the real world, there is no guarantee that model-
ing some additional aspect of the environment would not lead to even
better performance. In fact, an adequate simulation may involve
detailed physical calculations that take longer than real time.

Therefore, it would be beneficial to evaluate the algorithms by run-
ning them on the real robot. The robot could use the algorithm in ques-
tion to navigate, stop when it hit something, and then travel back to
where it started. When heading back, it could “cheat” by using a map of
the space or additional sensors such as its sonar ring. Even so, this is
very slow and requires a person to supervise the robot. As discussed in
the Related Work chapter, other groups who have tried this use popula-
tions of less than 100 individuals and run for only a few dozen genera-
tions. At best it takes a good fraction of a minute for each evaluation, is
prone to getting stuck, cannot be done while its batteries are charging,
etc. As a rule of thumb, evaluations should take a second or less. This
may actually be practical using a number of small, fast, reliable robots,
but not with our beloved, lumbering Uranus.

This leaves us at a bit of a crossroads, since we have rejected both
simulation and running in the real world. The way out used here is to
not navigate during evaluation. Instead, before starting the evolution,
we run the robot and record visual, dead reckoning and perhaps other
data. During evaluation, we present this data to the algorithm and com-

k n⁄

��

pare its output to some externally given “correct” output, the ground
truth. Then the best evolved individuals are tested on the real robot.
This is not uncommon is supervised learning, and is the choice made for
ALVINN and Baluja’s work, as described in the Related Work chapter.

For a summary of these trade-offs, see Table 1.

What to Compute
This immediately presents a number of questions. What
exactly should the inputs and the outputs of the evolved
programs be? How should the ground truth be produced?
How should the robot be controlled during data collection?
And how do all these affect the evolution?

A brief description of the robot (at left) and its capabil-
ities is relevant here. A more detailed description can be
found at the beginning of the next chapter, “Data Collec-
tion.”

The rectangular base, which measures 60cm by 75cm
(2 feet by 2.5 feet), allows a full three degrees of motion.
That is, the robot need not move in the direction it is facing
(like a car), but can move sideways or any other direction,
and rotate arbitrarily at the same time. It can also estimate
the distance and direction it has moved and what angle it
has rotated through by measuring how much each wheel
has turned. In also sports 24 sonar sensors arranged in a
circle of diameter 70cm (2 feet 4 inches) and a single cam-
era mounted at about the height shown, roughly human eye
height.

The most basic choice for output would be the direc-
tion and speed of travel of the robot. The ground truth
could be collected while a user drives the robot, or while
driving under an existing, proven obstacle avoidance tech-
nique, most likely using sonar. A potential problem is
errors in the ground truth, since navigation using a joystick
or sonar can be awkward or occasionally make mistakes.

Another problem is unrepresentative input. If the robot performs per-
fectly during data collection, the program will never see a bad situation
such as a near collision, and very likely will not know how to handle it.
If the robot is intentionally steered into bad situations, then during evo-
lution it will learn to steer into bad situations.

Those problems are not insurmountable. ALVINN collected data
while a human operator drove it, and generated images of bad situations
by shifting existing images left and right. Something similar might
work for office environments. Alternatively, we could collect a repre-
sentative set of images, for some notion of “representative,” and hand
label the direction of travel and speed for each image.

A more troubling problem is that the output may be so distantly
related to the input, that the mapping is impossible to learn with current
techniques and resources. The input, after all, is simply an array of
numbers representing the amount of light in various directions. Starting
from a complete blank slate, by combining program elements in a ran-
domized directed search, how long will it take to find even the simplest
algorithm that does better than moving at random?

��

Therefore, in order to simplify the problem, the output of the
learned algorithm is the distance to objects in various areas of the
image. Originally I proposed to estimate the image depth at 1200 points
in the image, arranged in a 40 by 30 grid. At each point the individual
was to produce three estimates, each with a confidence. For ground
truth, rather than create a 3D model of the environment and reliably
locate the robot in it (a rather substantial task), I proposed to predict the
next image, given the current image, the depth map and dead reckoning.
As a second form of feedback, I planned to predict the sonar readings as
well.

To predict the depth at a given pixel, I was planning to look at a
24x24 neighbourhood only. In an area with little visual texture (e.g. a
blank wall) this is often insufficient. To counter this, the depth map at
the previous time step was to be fed back as input, allowing depth infor-
mation to spread over larger distances through local interactions over
time. However, as I implemented that, certain problems became appar-
ent.

When the next image is predicted from the current image and the
depth map, it must be compared to the image the camera currently sees.
A straightforward way would be to simply subtract intensity values
pixel per pixel, but that measures the wrong thing. What’s important for
depth perception is to compare the predicted and actual locations of
each object. This could be done in the image, with displacement mea-
sured in number of pixels, or converted to 3D estimates and measured in
meters. It’s not clear which is the better metric, however they both suffer
from the same problem. They’re both essentially the same as optical
flow, and optical flow is known to have problems with rotation. When
there is rotation between the two images, rotational errors completely

Table 1: Pros and Cons of Potential Evaluation Methods

Pros Cons

Total Simulation
(with later valida-
tion in a real envi-
ronment)

• Control of environment
• Can simulate dead reckoning error, specular

reflection of lights, sensor and actuator error
• Can speed it up by using more computers
• No human intervention needed during learn-

ing (can run overnight)
• Could learn active vision

• Necessarily embodies assumptions
• Hard or impossible to model all significant

problems of imaging. What works in sim-
ulation might not work in the real world
and vice versa.

• Time consuming to create many environ-
ments

• May be too time consuming

Simulation w/
Real Images (w/
later validation)

• All advantages of “Total Simulation”
• Most peculiarities of imaging are repre-

sented

• Necessarily embodies assumptions
• Collecting dense set of calibrated images

is difficult and time consuming

Evaluation on
Robot

• No need to model robot or environment
• Can take all nuances of robot and environ-

ment into account
• Could learn active vision

• Slow evaluations mean smaller population

Offline Evaluation
with Recorded
Images (w/ later
validation)

• Takes nuances of imaging into account
• Can speed it up using more computers
• No human intervention needed
• Multiple environments is easy

• Cannot learn active vision
• Ground truth might embody assumptions

��

swamp translational errors. This is true even with good dead reckoning,
better than what I have available. That’s why many optical flow systems
use a mechanical device to rotational stabilize the camera.

Without stabilization, a better approach is stereo vision. Stereo
vision can be used to create the ground truth in the form of a depth map.
This depth map could even be corrected by hand. However, even stereo
has a problem which ultimately affects optical flow as well: areas of low
visual texture. In these areas noise dominates and both stereo and opti-
cal flow give no feedback (at best) or incorrect feedback (at worst.) In
experiments with typical data, the vast majority of matches were of low
or very low confidence.

This is a general problem with using a dense depth map. No exist-
ing technique can provide accurate ground truth automatically. The
alternatives, such as hand correcting those depth maps, hand construct-
ing a model, and generating ground truth using a different sensor, are all
time consuming and perhaps miss the point. A dense 3D depth map is
most likely overkill for navigation. Robots navigate very well from
sonar, and some of the visual navigation systems described in the
Related Work chapter work quite well while producing only a very low
resolution depth map. If we force the learning to produce such a dense
map, it will never find these “low resolution” approaches.

Part of the original motivation for the dense depth map was the
desire for a lot of feedback from each image. The discussion in this sec-
tion suggests that too much feedback can be a bad thing, lowering the
quality of the ground truth as well as forcing the EC to learn the wrong
thing.

So what should the output be? The estimate that is most useful for
obstacle avoidance is the nearest object in any given direction. Sonar
gives six readings in the 90 degree field of view of our camera, so the
evolved programs were evaluated by having them predict six depth esti-
mates per image.

Early experiments attempted to predict the values returned by
sonar, but had very limited success. Sonar data is rather noisy, and the
outgoing cone covers 30 degrees, so the returned distance depends on a
large part of the image. Also, things that are easy for the camera to see
can be difficult for sonar and vice versa.

Instead, the representation chosen was that used by Ian Horswill’s
Polly the robot, as described in the Related Work chapter. Here, a direc-
tion corresponds to a vertically oriented plane. We represent distance,
not in meters, but by something more directly related to the input, the
location in the image of the lowest non-ground pixel. If the ground is
flat and objects are roughly vertical and touch the ground, as is the case
in this dissertation, there is a one to one monotonic mapping between
image height and distance of the object.

To keep things simple in this first step, the programs will not main-
tain state from one image to the next, that is, they will be completely
reactive. In fact, the program will be executed once for each of the six
columns in the image, and no state will be maintained between execu-
tions.

To summarize the evaluation method, the robot is first run in an office
environment while using sonar to avoid obstacles. During this data col-
lection run, it records camera images, sonar and dead reckoning data.
Offline learning is where the automated iterative design takes place,

��

with the computer learning to predict object distance from the camera
images. Finally, during online obstacle avoidance, the robot uses the
learned algorithm to predict the distance to objects and avoid them.

The input to the evolved programs is an image, and the column of
the desired estimate. The output of the program is a single real number,
interpreted as the vertical location of the lowest non-ground pixel.

With the evaluation method in hand, we now turn to the representa-
tion.

Representation
It is seductive to treat evolutionary computation as a black box that
automatically finds subtle and intricate uses of the building blocks pro-
vided. After all, that is how people look at natural evolution: starting
with DNA and amino acids (if not raw atoms), it produced life, includ-
ing human intelligence. But after working with EC for a while, one
realizes that it simply is not that powerful. If the representation has a
certain flavour, such as data driven or conceptually driven, it will be dif-
ficult if not impossible for EC to develop strategies in a different fla-
vour. As the machine learning community has discovered,
representation is king.

What the representation does is make certain algorithms easier to
find and others harder. A representation which provides only data-
driven atoms for analyzing an image makes data-driven algorithms easy
to express, which means they will have greater density in the search
space. This means they will be more frequent in the initial random pop-
ulation and more likely to be found later. In contrast, it may require
great tricks to implement a conceptually-driven algorithm. It may be
stuck with a weak contextual influence, such as choosing which atom to
use in a given situation, or may be able to extract some context by
applying the atoms at many different locations in the image. In practice,
such clever algorithms will be extremely difficult to find, if not impossi-
ble.

We also have limited computing power, both because the evolved
algorithm must run in real time on the robot, and to make individual
learning runs take days, not weeks (or months). Therefore, we cannot
just provide some atoms that return the intensity value at any location,
some looping atoms and some arithmetic atoms. Most algorithms it
would develop would take far too long to evaluate. Instead, the repre-
sentation must not allow programs that could take inordinately long.

The approach taken here is to borrow our representation and atoms
from the existing body of computer vision work, which has several
advantages. First, it allows a more direct comparison to traditional
methods. Second, it leverages the large amount of work that has already
been performed in the field. Any existing techniques which capture
some structure of the problem domain will likely be exploited by the
EC. And third, it is likely to succeed at least as well as the traditional
methods it generalizes from. So while it is a tenet of this work that com-
monalities in existing bodies of work can reflect the peculiarities of the
minds that produce them, the reality is that we must start somewhere.
As argued in the Philosophy & Manifesto chapter, the research program
proposed here has the right properties to some day generalize beyond
the limits imposed in this first step.

��

Genetic Programming
Traditional computer vision uses procedural programming languages
such as C, as does most robotics. In contrast, such representations are
rare in evolutionary computation and evolutionary robotics, but the rep-
resentation that comes closest is genetic programming or GP [Koza
1992, Genetic Programming]. Genetic programming is a type of
genetic algorithm [Holland 1975, Adaptation in Natural and Artificial
Systems] that individuals are programs, and are represented as a parse
tree (see Figure 1). The set of possible nodes is created by a program-
mer and depends on the problem domain. In GP parlance, nodes with
no children (leaf nodes) are dubbed terminals, those with children
(internal nodes) are called functions.

Trees are created at random by randomly choosing a node for the
root, then choosing random nodes for each of its arguments (children),
and similarly for their arguments, etc. A fixed number of trees (say
1000) are randomly created this way, and each one evaluated, that is,
assigned a real number that measures how well it solves a given prob-
lem. The assigned number is called the fitness. Next, individuals are
randomly selected, with fitter individuals more likely to be chosen. The

selected individuals are either copied
verbatim into the new population (repli-
cation), or undergo crossover. Crossover
works by selecting a random node in
each parent and swapping the subtrees
rooted at those nodes (see Figure 2).
Once 1000 individuals are created this
way, their fitness is measured and the
processes repeats for a fixed number of
generations. Typically, the individual
from the last generation with the best fit-
ness is designated as the result of the GP
run. Creation and crossover are con-
strained so that resulting trees are viable
programs.

Genetic programming (and evolu-
tionary computation in general) have
been shown to be efficient enough for
practical use [Kinnear 1994a, A Perspec-
tive on the Work in this Book]. One can

conceptualize the solution of a problem as a search through the space of
all potential solutions to that problem. Taking this view, genetic pro-
gramming is considerably more powerful than simple alternatives such
as exhaustive or random search. It implicitly utilizes a directed search,
allowing it to search the space of possible computer structures and find
solutions in hours on tasks that would take random search considerably
longer than the life of the universe. While computationally still chal-
lenging, genetic programming can produce useful and dramatic results
in hours and days instead of millennia.

There has been a lot of work in evolutionary computation, espe-
cially in the last decade, but rather than carefully choosing the best set-
tings, I have instead opted for a very simple form of GP, that from
Koza’s 1994 book Genetic Programming II. This is to make a point.
The fact that such a naïve form of GP succeeds means the result does

Figure 1: In genetic programming,
genes are programs, represented as parse
trees.

x

sin

×

yyx

×

×

Parents

Children

Figure 2: Crossover

*

+ *

x y siny

/

+

x y

y

x

*

+ *

y siny/

+

x y

y x

x

��

not depend on getting the parameters just right. In other words, the
result is robust to changes in detailed setup of the genetic programming.

Representation For Vision
What set of nodes should we use? To reiterate the point about represen-
tations, any representation makes certain programs easier to find and
others harder. Among traditional programming languages, functional,
procedural and object oriented styles lead to different solutions to a
given problem. What's more, learning methods must be “helped along”
by providing a representation close to the problem domain. How, then,
can we provide a representation without forcing an architecture? Once
again the crucial difference is between hard and soft. We choose build-
ing blocks which each do a significant amount of work, but can be put
together in a large number of ways, some quite novel. For a non-compu-
tational example, LEGO building blocks simplify the process of
mechanical design and construction, yet can be put together in many
interesting and creative ways. While some high level architectures are
easier to construct than others, the architectures that arise in practice
cover a limited but interesting space.

Here is a summary of existing, successful visual obstacle avoidance
systems from the Related Work chapter. They are summarized with an
emphasis on their architecture.

Larry Matthies and company at JPL
This group uses stereo vision, post processed using consistency checks
and filters. Stereo vision compares a window in one image against a
series of same-sized windows in the other image. The series of windows
are typically evenly spaced along a horizontal line.

Ian Horswill and Polly the Robot
Polly’s vision algorithm assumes the ground is untextured, and starting
at the bottom of an image, moves a rectangle vertically, stopping at the
first location that contains significant texture. This window is assumed
to contain an obstacle, and the further up the image this obstacle is
found, the further away it is assumed to be.

Liana Lorigo at MIT
Following on from Ian Horswill’s work, a histogram is computed over a
series of windows. The windows are evenly spaced along a vertical line.
The bottom most window is assumed to represent the ground, and the
first window above that with a significantly different histogram is said
to contain an obstacle.

Rattler at CMU
The Rattler trials used stereo vision, for our purposes here similar to the
JPL work.

David Coombs and company at NIST
This group uses optical flow. Each rectangle in one image is compared
with a collection of rectangles in previous images to find the most simi-
lar. The robot steers away from the side with the most optical flow.

Illah Nourbakhsh at CMU
Three relatively narrow depth of field cameras are mounted on a robot
and focused at three different distances. The three images are divided

��

into a number of rectangles, and in each rectangle the sharpness of the
image is computed.

The common element chosen from these algorithms is the “iterated win-
dow.” All the existing algorithms combine local analyses over a rectan-
gular window to produce a handful of numbers. The process is repeated
as the window is moved horizontally or vertically.

Therefore, one function node will be a loop, in the computer sci-
ence sense, that moves a rectangle over an image. This node will have
arguments that determine the size of the window, the x and y locations
in the image of its initial location, the direction of travel and how far it
will travel. The final argument will be a function (i.e. a subtree) that is
executed once per iteration, that is, once for every location of the win-
dow.

To keep the runtimes practical, there can only be a handful iteration
branches executed per frame. This structure drastically reduces com-
puter time compared to arbitrary computation over an image.

Thus, the novel aspects of this dissertation in robotics are the use of
a scripting language as a representation for learning, the abstraction of
the iterated window, the construction of a practical example, the explo-
ration of some practical issues. The contributions are expounded further
in the chapter “Discussion.”

With the major concepts behind the representation and evaluation
in hand, we now turn to the details of the experiments.

Part II

Experiments

��

������������
��

This dissertation uses genetic programming in a standard supervised
learning framework. That is, the robot is first run in an office environ-
ment while using sonar to avoid obstacles. During this data collection
run, it records camera images, sonar and dead reckoning data. Then,
during offline learning, genetic programming iteratively creates and
evaluates programs to predict object distance from the camera images.
Finally, during online obstacle avoidance, the robot uses the learned
algorithm to predict the distance to objects and avoid them. This chap-
ter describes the collection of the training data.

The learning framework in this thesis evolves algorithms that deter-
mine distances from camera images. To collect a video stream that is
representative of what the cameras might see during visual obstacle
avoidance, the robot collects data while avoiding obstacles under sonar.

While obstacle avoidance under sonar is easier than under vision, it
still took many attempts to get a working system. The method that
proved most successful determines speed based on proximity to
the nearest object, and determined direction of travel by fitting
lines to points on the left and right sides of the robot.

It should be kept in mind that throughout the thesis, all robot
motion had some forward component. This is not uncommon in
reactive systems, especially those based on vision, since they can
not see to either side or behind. The only exception was when the
robot was halted by an object directly in front of it, in which case
it would turn in place.

The Uranus Robot and Computing Hardware
All experiments were performed on the Uranus mobile robot, pic-
tured in Figure 1 [Blackwell 1991, The Uranus mobile robot].
Uranus sported a three degree of freedom base, a ring of twenty

four sonar sensors, and one to three black and white video cameras.
Controlled by an off-board desktop computer, it existed in more or less
its current form when this dissertation was started. It was not modified
mechanically except for a few repairs, and the only modification to the
electronics was to bypass the onboard 68000 computer, so that the desk-
top computer communicated directly with the motion control board.

The base uses an innovative wheel design that allowed a full three
degrees of freedom. That is, the robot could move forwards or back-
wards, move sideways, or turn in place. In fact, it could perform any
combination of these simultaneously, for example moving along a
straight line while rotating about its center.

The sonar ring, originally bought from Denning mobile robotics
and refurbished in early 1999, contained twenty four Polaroid sonar
transducers equally spaced along a circle of diameter 71cm. Each sen-
sor points directly away from the center of the ring. Custom electronics
allowed a range of 9 to 774cm (3.6 inches to 2.54 feet.) Sonar sensors
have known problems with smooth surfaces that reflect the sound like a
mirror, and with crosstalk between different transducers.

F
T

�

Record Video

Learn Offline

Build Navigation

Validate Online

Genetic Algorithm

Robot, Real Time

By Hand

Robot, Real Time

��

The camera setup consisted of one to three Sony XC-
75 black and white analog video cameras in a custom
mount. The mount can be tilted or panned by hand before
an experiment, but is fixed during a run. The cameras used
3.6 mm lenses that provided an almost 90 degree field of
view horizontally and 65 degrees vertically. A typical
image is shown in Figure 2. The video digitizer used here
is the Hauppauge WinTV 401, based on the BrookTree
Bt878 chipset, a later version of the Bt848 chipset. At
every pixel it returns a number between 0 (black) and 255
(white). The video settings used throughout the thesis are
shown in Table 1.

Luma coring takes all pixels below a threshold and
converts them to 16. This reduces the level of noise per-
ceived in dark areas of the image, where it is most notable.
For the Bt848 digitizers under BeOS, there are two set-
tings, either 32 and under or 16 and under. Chrominance
Comb refers to averaging colour information over two or
more lines and should make no difference here, color infor-
mation is ignored. The digitizer was run in black and white
mode, which skipped the Y/C separation with its low pass
filtering of the luminance signal. Gamma correction only
happened in RGB signals, not in the grayscale mode used
here, so the setting should not have had any effect. Simi-
larly, error diffusion only affects RGB15 and 16 modes,
and should not have affected this dissertation. The lumi-
nance coring had a visible effect on both the image and the
error rate of evolved individuals, whereas the chrominance
comb, gamma and diffusion controls had no visible effect.

Uranus was run from a desktop dual processor Intel
computer running the BeOS operating system. Analog
video from the cameras was connected to the off-board

computer using two RG-59/U cables. In the expanded representation
runs they were 19.5 and 5.5 feet in length for a total of 25 feet. For the
focused representation runs, so that the robot could travel farther, the
shorter cable was replaced with one 32 feet in length, for a total of 51.5
feet. The signal was properly terminated with a 75-ohm resister just
before the digitizers. The offboard computer communicated with the

Table 1: Video settings during data collection

Focused Representation Runs Expanded Representation Runs

Resolution: 320 × 240
Colour space: 8 bits/pixel grayscale
Y/C separation: skipped

Luminance Coring: 32 or less
Chrominance Comb: Enabled
Gamma: Enabled
Error Diffusion: Enabled
Video Format: NTSC-M

Hardware Type: Bt878
Camera gain: automatic

Coax Cable Length: 19.5+32 = 51.5 feet

Resolution: 320 × 240
Colour space: 8 bits/pixel grayscale
Y/C separation: skipped

Luminance Coring: 16 or less
Chrominance Comb: Enabled
Gamma: Disabled
Error Diffusion: Enabled
Video Format: NTSC-M

Hardware Type: Bt878
Camera gain: automatic

Coax Cable Length: 19.5+5.5 = 25 feet

Figure 1: The Uranus mobile robot.

��

sonar ring using a 43 foot RS232 cable at 19,200 baud. Finally, the
computer communicated with the four Precision MicroControl Corpora-
tion DCX-VM100 motion controllers using another 43 foot RS232
cable at 9600 baud.

There were two offboard computers used at different times in this
work. They were used for online activities such as navigating with
sonar, digitizing video, and online validation. They were also used for
all of the offline learning. The first image set was recorded on the first
machine, a dual 333 MHz Pentium II machine with 128 MB running
BeOS R4.x. This machine was also used for initial development of the
genetic programming system, video digitizing, and robot control. The
offline learning of the genetic programming system was run on both that
machine and the newer 700 MHz Pentium III machine with 256 MB.
The older machine was upgraded to 256 MB and both ran BeOS R5.0.2.

Initial development used the Metrowerks compiler for BeOS, but
with the release of R4 Be required the use of the gcc compiler. All code
used throughout the thesis was written in C++ under BeOS, except for
the simplification of individuals which was written in Lisp and ran
under Solaris. There was no source level debugger available until late
in the thesis, so most debugging was performed using print statements.
The use of assertions, and good software engineering principles, helped
significantly here. The code was written to use ISO standard C++ wher-
ever possible in order to be portable, which paid off when it was ported
to a Cray supercomputer. (Unfortunately, while the code worked on a
single CPU, the multi CPU version was not completed in time, so the
Cray port was never used.) The BeOS-specific aspects were mainly the
user interface, the digitizing and the serial port interface. The (primi-
tive) user interface used Marco Nelissen’s liblayout library [Nelissen
2000, liblayout], which allowed easy user interface construction in C++
with a minimum of work.

 BeOS was selected, despite its lack of existing applications,
because its clean, modern, object oriented API (Application Program-
mer Interface) promised to be easier to program, and because the needed
digitizing functionality already existed. In practice, the digitizing func-
tionality was non standard at the time of the thesis proposal, in BeOS
R3. It was completely rewritten in R4, but was so low level that it
required a lot of work to get even simple digitizing working. This and
other programming was exacerbated by the lack of a source level debug-
ger. By the time the high level API came out with R4.5, many months
had been spent getting the low level version working, so the new APIs
were not used.

In retrospect, as much time was wasted due to these problems as
was saved by using the modern API. This experience, together with the
problems the lab experienced with FireWire cameras on the Macintosh,
have demonstrated how hard it can be to evaluate a new technology
without working with it for months. Even after a month or two of work,
it is often unclear whether a working version is just around the corner, or
another few months off. At that point, it is often the case that learning
another system would take longer, or at least have more uncertainty as
to how long it would take and how well it could serve ones needs that
switching is most likely a worse move.

Therefore, a methodological lesson learned is that it is impossible
to predict the problems that will happen with unfamiliar setups. There-
fore, one should never be the first to adopt a new configuration of tech-

Figure 2: A typical camera image.
Before learning, the fisheye distortion
seen here was removed.

��

nologies. Instead, one should talk to people who have already used it
for very similar or exactly the same purposes. Because of this, it is best
to stick to common, well understood hardware. Even such simple
changes as using multiple cameras in place of a single one can cause
problems, if the cameras are new technology. Even if all the compo-
nents work in isolation, that is no guarantee they will work together.
Modern computers are complex enough that seemingly small changes to
a setup can cause problems that take months to track down and solve.

The Sonar Baseline
As described in the Related Work chapter, robot obstacle avoidance
using vision has traditionally performed worse than obstacle avoidance
from sonar. As such, it was important to implement obstacle avoidance
from sonar, to compare to the learned vision algorithms. But there was
another reason to implement it.

With any learning technique, it’s important for the training data to
be as representative as possible. For example, if the training data for this
dissertation had been collected while moving straight down the middle
of a corridor, then the center of the image would almost always be far
away. Simply assuming that the forward direction is always far away
will get you pretty far. However, when the robot is navigating on its
own, as soon as it turns away from straight forward, this assumption will
be wrong. It will be in a circumstance it has never encountered during
training, and will most likely falter.

Therefore, it would have been best to collect data while the robot
was moving and avoiding obstacles using vision. Of course, this is a
catch-22: it needed to collect data before it can learn to avoid obstacles,
but it needed to avoid obstacles in order to collect the data. Instead, the
next best thing was chosen: to save images to disk while avoiding obsta-
cles using sonar.

Images were stored along with the most recent readings from the
sonar sensors, and the current global position according to the dead
reckoning, although only the images were used. To effect this, the data
collection program used two main threads.

The navigation thread read sonar sensors and moved the robot,
independent of any data collection. The sonars each made a sound, then
listened for its reflection. Crosstalk between sonars, where the sound of
one sonar is heard by another, turned out to be a problem in the area just
outside the doorway to the lab, where the robot was close to good spec-
ular reflectors such as metal filing cabinets and painted drywall. So the
program only operated a single sonar sensor at a time, stepping through
each of them in turn. Because the robot never travelled backwards, it
only needed to see forward and sideways. Therefore, only fourteen of
the twenty four sonars were ever used, the sixteen that pointed most for-
ward.

Once all the data is in, the algorithm described below is run, and the
new desired speed and heading are turned into motor commands and
sent to the motor controller. When navigating this way the system is
completely reactive, ignoring all previous input as well as the vision and
dead reckoning data.

The recording thread wrote all recorded data to the disk at specified
intervals. It recorded the cached position (with timestamp), paused until
a sufficient number of video frames had passed, recorded the cached

��

sonar data, and then repeated. Therefore, there was one position esti-
mate, one image and one set of sonar readings per record. The position
and video each had their own timestamps, which in general were
slightly different. Because it took up to a second for a full reading from
the ring, a precise timestamp was meaningless. Therefore, each record

simply contained the last set of sonar
readings returned by the ring. As
mentioned above, the position and
sonar data were unused.

Other threads handled commu-
nication with the motion controller
and the video driver. In addition, a
simple GUI showed the current
image to the user and allowed him or
her to start and stop recording, to
stop the robot, and to move the robot
half a meter straight ahead for
debugging.

The Selected Sonar
Algorithm
The navigation algorithm went
through several modifications until
it worked well in the desired envi-
ronment. The most successful algo-
rithm was then used during data
collection and is described here.
Other attempts, their failure modes
and the lessons learned are discussed
below.

The method that proved most
successful looked only at objects in
front of or beside the robot, and
close to it (see Figure 3.) As
described above, to reduce cross talk
between transducers, the only sen-
sors fired were those whose output

were needed. The union of all the colored areas was termed the area of
attention. Any objects outside of it were completely ignored.

The selected algorithm starts by dividing the environment into six
regions, “front” and “sides” of “near,” “middle” and “far.” For this
“cased based” approach I am indebted to Illah Nourbakhsh [Nourbakhsh
2000, Property Mapping]. As an overview, the idea behind each region
is:

• Far: everything's ok, move at full speed, but move away from any-
thing here so it doesn't enter the “medium” region.

• Medium: move at 2/3 speed, carefully plod your way through the
obstacles.

• Near: panic halt.

A detailed description follows.

F
r
t

Figure 3: The area of attention for sonar navigation (draw to scale)

��

If the robot receives any readings in the “near” area, it immediately
halts. It then waits until there have been no near readings for half a sec-
ond before moving again. If the robot is panic halted for more than a
second, it picks a direction (left or right), then keeps turning in place
until the halt condition clears.

If the robot isn't panic halted, it
looks for readings in “middle sides.”
These are quite close to the robot and
appear when the robot goes through a
doorway or is in some danger of collid-
ing with an object. If it finds any, then
for each side, it chooses the two readings
closest to its center line and fits a line to
them (see Figure 4). These are the points
that, if the robot were to drive straight
ahead, it would come closest to. If both
lines are diverging from the robot, it
assumes the gap it is in is widening and
continues moving straight ahead, without
turning. If one line is diverging and the
other is converging, the robot faces par-
allel to the converging line. Finally, if
both lines are converging, the robot aims
for the intersection point. One or no read-
ings on a given side count as a diverging
line.

The Uranus robot has a three degree
of freedom base. It doesn't have to move
in the direction it's facing, but can move
sideways or at an angle. In fact, the
direction of motion can be chosen inde-
pendently of the direction the robot
faces. In every other case the robot
always moves in the direction it faces,
but when there are readings in “middle
sides” is uses a potential field [Craig
1989, Introduction to Robotics] to help
guide it. This is a great help when navi-

gating through doorways.
If the middle sides are clear but there's an object either far or middle

front, the robot classifies all readings within the area of attention as
“obstacles,” and those outside as “non-obstacles.” It faces the largest
gap, i.e. the largest number of contiguous non-obstacles. Finally, if the
only sonar returns are from the “far sides” area, it fits lines to both sides,
finds the closest line, and faces parallel to that.

The “straight line model” of the environment works well when navigat-
ing down hallways, quickly aligning itself with the walls, yet moving
away from them if it becomes too close (i.e. in the middle sides region.)
It also turns corners well, the biggest gap usually corresponding to the
direction that the hallway bends. Occasionally it turns the wrong way
for a second or so before “changing its mind,” but never gets stuck in a
corner.

F
t
s
i

Figure 4: For readings close to the robots sides, a line was fit to the two
readings closest to the robot’s center line, to determine the general trend
of objects on that side of the robot.

��

This straight line model also works well in our cluttered lab or
when navigating through doorways, even the doorway out of the lab
with a cluttered table on one side. Because the line is fit to only two
readings, it seems to work more like a derivative or a local tendency in
the area of most danger. The robot can usually navigate out of the lab
and into the hallway beyond. It should be kept in mind that this is partic-
ularly difficult for our robot, since it’s only a little narrower than the
door, and when turned at even a slight angle it’s rectangular base will
bump the door frame.

Other Algorithms
This section summarizes the earlier obstacle-avoidance-from-sonar
algorithms which lead to the above. Since obstacle avoidance from
sonar has been done before, I do not consider these experiments to be a
contribution. As such, I have only recorded the algorithm, observed
failure mode and lesson learned for each, and not the details of each
experiment.

All these experiments used the same fourteen sonars as the selected
algorithm. The humble beginnings of the sonar baseline were to face
toward the furthest reading. To add robustness to noise, each reading
was replaced by the minimum if it and its two neighbors. In other
words, it found the furthest “opening” of three adjacent readings and
faced toward it. It had the property that a close reading eliminated not
only its own direction, but the direction on either side.

However, a few adjacent specular readings would confuse it. For
example, in the hallway of Figure 2, sonars 21 and 22 would give spec-
ular readings, causing the robot to turn left when already too close to the
wall. This same problem occurred when averaging over four or two
readings.

The problem was twofold. First, the largest source of errors (specu-
lar reflections) overestimates readings, making long readings less reli-
able than close readings. Second, it is more useful to avoid close objects
than to seek far ones.

The next attempt takes the three smallest readings on each side and
adds their reciprocals. This gives a “closeness” number for each side.
The turning rate is then proportional to the relative difference:

This caused too much turning at small angles and too little at large
angles, so it was made proportional to the square of the relative differ-
ence, but with the same sign:

right
1

distancer1
------------------------ 1

distancer2
------------------------ 1

distancer3
------------------------+ +=

left
1

distancel1
------------------------ 1

distancel2
------------------------ 1

distancel3
------------------------+ +=

td
dθ right left–

right left+
----------------------------∝

td
dθ

right left–() right left–
right left+
----------------------------⎝ ⎠

⎛ ⎞ 2
sgn∝

��

For reasons discussed below, I next switched to the Property Map-
ping approach of [Nourbakhsh 2000, Property Mapping]. In this
approach an algorithm first classifies its sensor readings into a small
number of discrete cases, such as object-on-left or goal-far-right. It
then decides which action to take case by case. In the paper, Nourba-
khsh argues persuasively for property mapping to make debugging eas-
ier for human designers by making the robot’s inner state more
transparent. There are two other reasons it was helpful in the thesis
work.

First, changes are local. Potential fields are canonically described
of as a single expression. When implemented this way, after a little
tweaking and debugging, the robot succeeds in many situations but fails
in a few others. Most changes to the formula affect all cases, often
breaking ones that previously worked. This was particularly apparent in
my work on the video game Star Trek: Armada [Activision 2000],
which involved authoring coordinated obstacle avoidance for many sim-
ulated spaceships with different speeds and maneuverability.

Second, as a special case of the first, simple code can be created to
slow down then panic halt the robot when in immediate danger of colli-
sion. This allows other parts of the algorithm to be less conservative,
knowing that if they occasionally fail the robot will still probably be
safe.

The slowing down and halting does not work perfectly, because
sometimes a nearby object is specular or not at sonar height. In the tar-
get environment, however, it works rather well. When an object is off to
the side, the robot can not panic halt until it is near the minimum detect-
able distance, or else it will freeze when going through doorways.

As was discovered, there is a common problem in robotic control.
If the obvious approach is taken, namely turning away from the nearest
object, our action depending only on our distance to it, the robot will
tend to weave back and forth as it travels down a hallway. That’s
because when the robot becomes close enough to one wall it will start
turning, but won’t diverge from it immediately. Instead, it will get
closer to the wall until it’s facing parallel to it. However, it’s still closer
to the wall than its threshold, so it will keep turning. By symmetry, it
will usually turn until its facing away from the wall at the same angle it
was facing toward it originally. However, it’s now facing the opposite
wall at that same angle. When it approaches the opposite wall it’ll turn
until it’s diverging from it, and so on, back and forth.

Turning away from the wall only when facing it, and heading
straight otherwise, helped somewhat. However, given sensor noise and
system latency, the robot would sometimes turn away from it when in
fact it should not. It would therefore end up facing significantly away
from the wall and again ping pong between the walls, albeit much more
slowly.

To avoid the ping-ponging, when the only objects are in “far-sides,”
the robot was servoed parallel to the wall. By defining “wall” as in the
selected algorithm, the obstacle avoidance is fairly conservative and
works in other environments as well.

With corridor navigation working well, the next step was readings
in “middle sides.” The most difficult example is going through a door-
way, especially since our robot is only a little narrower than the door. A
number of attempts worked at centering the robot between the closest
reading on each side, but these were foiled by the particular geometry

�	

around the lab door. The closest reading on the right is a table, not the
doorway, so the robot would align itself between the table and the open
door—and hit the right edge of the doorway.

The next attempts focused on the two readings, one from the left
and one from the right, that define the opening the robot must pass
through. To select these points, two different criteria were tried, first the
readings closest to the center line, then the pair with the smallest separa-
tion. The robot then aimed for the middle of this opening by facing the
half way point between the two, using various control laws. When the
opening was far ahead this worked well, but when it was in the opening
the approach leads to oscillation of various sorts.

Knowing only those two points isn’t enough information to know
how to proceed because the line joining them may not be parallel to the
doorway. Our goal is to head through the doorway, yet the robot doesn’t
know which way the doorway is aligned. These considerations lead to
the final algorithm, which fits lines to both sides to decide which way to
face, and uses a potential field to determine the direction of movement.

Discussion
During the development of this algorithm, several unsuccessful algo-
rithms were created before the final, successful one. The advice I would
give others attempting to write obstacle avoidance algorithms by hand
is:

• Classify your situation into a small number of discrete cases, then
handle those independently. This allows the designer to tweak and
debug one situation without affecting other, already working situa-
tions.

• Decouple translation and rotation. Set translation speed inversely
as distance to object.

• When considering nearby readings, avoid those closest to the
planned path, not the current position.

• As in traditional linear control, algorithms based only on the dis-
tance to an object tend to oscillate.

• Distant sonar readings are less reliable than nearby ones.
• Base an obstacle avoidance algorithm on nearby readings, rather

than distant ones. Avoid nearby objects rather than seek far ones.
• The orientation of an opening is important, as well as its center.

The succession of designs presented here is also an example of iterative
design, and it should be recalled from the Philosophy & Manifesto
chapter that the framework proposed here can be viewed as automating
this process. Such an application is a great topic for future work.

Notes on Collected Data
Below are the details of each data set. MPEG movies of each are avail-
able from the author. The reduced representation runs used the first two,
the expanded runs used the last one.

�

NSH Hallway
Camera Angle: 51 degrees from horizontal

Total Number of Frames: 328
Frames In Training Set: 65 (every fifth)

Number of Fitness Cases: 65 × 6 = 390
Elapsed Time: 75 seconds

Frame Rate Of Training Set: 65 ÷ 75 = 0.87 fps
While the robot had to travel mostly straight down a hallway, it

started out a little askew, so it approached one side. At one point, a per-
son walks past the robot and is clearly visible for many frames. At the
end of the hallway it turns right. The carpet is grey with a large black
stripe.at one point. The shadow of the robot is visible at the bottom of
most frames.

FRC Hallway
Camera Angle: 51 degrees from horizontal

Total Number of Frames: 356
Frames In Training Set: 71 (every fifth)

Number of Fitness Cases: 71 × 6 = 426
Elapsed Time: 82 seconds

Frame Rate Of Training Set: 71 ÷ 82 = 0.87 fps
Starts with robot in lab doorway. Moves straight until its in the

hallway, then turns right, travels down hallway, at end turns right, then
travels straight to dead end. All doors were closed. The fluorescent
light bulbs at the start are burned out, so the intensity of the carpet varies
widely. The shadow of the robot is visible at the bottom of most frames.

Combined
Camera Angle: 51 degrees from horizontal

Total Number of Frames: 328 + 356 = 684
Frames In Training Set: 68 (every tenth)

Number of Fitness Cases: 68 × 6 = 408
Elapsed Time: 75 + 82 = 157 seconds

Frame Rate Of Training Set: 68 ÷ 157 = 0.43 fps
This data set was simply the combination of the above two data

sets, using every tenth frame instead of every fifth in order to keep the
training set size approximately equal.

FRC Hallway - For Expanded Representation Runs
Camera Angle: 31 degrees from horizontal

Total Number of Frames: 226
Frames In Training Set: 75 (every third)

Number of Fitness Cases: 75 × 6 = 450
Elapsed Time: 52 seconds

Frame Rate Of Training Set: 75 ÷ 52 = 1.44 fps
Starts with robot in lab doorway. Moves straight until its in the

hallway, then turns right, travels down hallway, at end turns right, then
travels straight. All doors closed, except near the end. A person is visi-
ble near the end, standing in a doorway, but not enough to affect the
results greatly.

Once the data was collected, the next step was to run the genetic algo-
rithm on it. This is the “meat” of the experiments, and is described in
the next chapter.

��

����
������	�
�� �
!��
��

With the data collected, the next step was to pick out by hand the lowest
non-ground pixel in various columns of each image. This ground truth
was then used to judge the genetically evolved programs, which
attempted to estimate that same information in each image. The details
of the ground truth extraction, along with the representation, the perfor-
mance of the runs and the details of the evolved individuals are
explained here.

The phrase “ground truth” can have many senses, but here it simply
means an externally given answer that is considered correct. Below is
discussed how accurate the ground truth really is, but outside that dis-
cussion it is assumed that any differences between it and the objective
truth are not significant. In particular, if the value returned by any given

individual differs from the ground truth, the error is assumed to be
with the individual and it will be less likely to be selected as a par-
ent of the next generation.

Ground Truth Determination
For the purpose of ground truth, a column is a single pixel wide.
For example, when determining the lowest non-ground pixel in
column 105, objects at horizontal locations 104 or 106 would be
ignored (unless they were also present in column 105 of course).
Thus obstacles in much of the image are not captured by this rep-
resentation. In practice this was not a significant problem.

While sonar and dead reckoning data were recorded during
data collection, only the images were used. Since the representa-
tion used during learning only admitted reactive algorithms, the

time between images was irrelevant. To keep run times and memory
reasonable, only every nth image was used, where n was chosen so that
the total number of images was approximately seventy. At this size the
genetic programming runs took approximately 24 hours each on a dual
700MHz Pentium III. In runs from a single data set, every third to
every fifth image was used. This n was compiled into the two ground
truth programs mentioned below, as well as the actual genetic program-
ming code. Therefore, whenever the data set changed, these programs
would need to be recompiled.

Ground truth was stored in a separate file. The file format allowed
a separate result to be stored for each of the 320 columns in the image,
although in practice exactly six were used for each image. This file was
created by a non-interactive program that filled it with a “first guess,”
based on the Liana Lorigo algorithm described in the Related Work
chapter. This program was written and run under BeOS, although it was
written entirely in generic C++.

A simple interactive program could then be used to modify the val-
ues by hand. A screen shot is shown in Figure 1. This program was
written and run under BeOS and for the user interface used Marco Nel-

ground truth program

Figure 1: This program allowed the user
to specify the lowest non-ground column
in each image. The crosshairs could be
moved vertically but not horizontally.

"

Record Video

Learn Offline

Build Navigation

Validate Online

Genetic Algorithm

Robot, Real Time

By Hand

Robot, Real Time

��

issen’s liblayout [Nelissen 2000]. It displayed whichever columns
already had values in the ground truth file and did not allow the user to
add, delete or move columns, since this capability was never needed.
Instead, when the user clicked on the image, the value in the closest col-
umn was set to the vertical location of the pointer, and would track the
pointer as long as the mouse button was down. Whenever the user
chose, the entire ground truth file could be written out by clicking on the
“save” button. The user could go to the previous or next frames, or type
in the number of a desired frame.

Typical images are shown in Figure 2. Using this method, ground
truth could be determined to within plus or minus two pixels. There
were a few questionable cases. When objects came within a few pixels
of the desired column, but did not enter it, they were considered to be
ignored and did not count. However, since the evolved algorithms only
got summary statistics over a window, it might be more reasonable to
count objects in nearby columns as “close enough,” especially since
they may be significant for obstacle avoidance. But the problem of
deciding how close was close enough when window sizes were under
evolutionary control was considered thorny enough to avoid. Another
possibility was for each column to have a number of “correct” answers,
and reward potential algorithms for getting close to any of them. In
practice, most columns would have a single answer, and two columns
would take care of most of the rest. However, this would have increased
the scope of the thesis for questionable benefit.

Another area of concern was nearly vertical objects, such as walls
parallel to the direction the camera was facing. Again because of the
larger-than-a-pixel window size, the program could easily decide that
the obstacle was higher or lower than it actually was in the desired col-
umn, and yet be discerning the right thing, the visual cues of a wall
boundary. Again, it was decided not to worry about this for the same
reasons as in the last paragraph.

A final judgement call in assigning ground truth was in cases where
shadows caused the image to be visually different near an object. For
example, there is often a gap between doors and the floor underneath,
and the door casts a shadow that shows up a few pixels below the door.
While technically not a non-ground pixel, the beginning of the shadow
was marked as the ground truth for a number of reasons. First, the
shadow is a natural sign for the door, i.e. the presence of a shadow is a
good indicator that the door is nearby. In probabilistic terms, the condi-
tional probability of an obstacle given the shadow is very high. Of
course, the shadow was marked as the beginning of the obstacle only
when there really was an obstacle. Second, the lowest-non-ground-
pixel representation is generally only useful when all obstacles have
support, that is, when they touch the ground. For example, a table could
be very high in the image, so the obstacle avoidance algorithm assumes
it is far away, and yet be very close. These shadows typically happened
in the space between an object and the ground, and so the beginning of
the shadow is actually the most useful indication of the distance of the
obstacle, and therefore the most useful result the evolved program could
return.

And finally, the beginning of the shadow was selected because the
evolved algorithms tended to look for large visual differences as the
indicator of transition to non-ground. In other words, the algorithm was
most likely to find the shadow boundary anyway, and since it was a nat-

Figure 2: Typical Ground Truth Images

��

ural sign for the presence of an obstacle, and in the right place, it seemed
best not to punish the algorithm for finding it.

Two passes were made using the interactive program, the second to
double check and make minor adjustments. Both passes were done on a
19” screen of resolution 640 x 480, and since all images were in 320 x
240 in resolution, that meant each pixel was approximately 0.6mm on a
side, and were quite easy to distinguish.

In the ground truth for the seeded expanded representation runs
described below, three errors were found out of 450 total fitness cases
(75 images). The errors were in the first three images, all in the same
column, where the wall goes to the bottom of the image. The correct
answer would therefore put the ground truth at the very bottom of the
image, yet the indicated position was the next visual feature above that.
Since the best individual achieved a 10% error rate, and that three misla-
belled points out of 450 is less than one percent, it is unlikely that these
mislabellings caused any significant change in the results. In other
words, the errors in all evolved individuals swamped the few errors
caused by this mislabelling.

The Genetic Programming Engine Creator
Following good software engineering practice, the general genetic pro-
gramming code was kept separate from the application specific code.
The general genetic programming engine was initially developed in the
six months before the author started at Carnegie Mellon and was his first
significant project in C++, and his first significant object oriented
design. However, it was very basic at that time, only able to run very
simple problems such as symbolic regression or the artificial ant. In
particular, checkpointing, constrained syntax and automatically defined
functions, described below, were absent.

It was revamped after the thesis proposal, although the high level
design has stood up well over time and is largely unchanged. The
engine was kept to a higher standard of readability and organizational
cleanliness than the dissertation specific code, and will be released open
source after the dissertation under the name Creator.

Features of Creator
Creator supported many “advanced” features of GP that were needed for
this thesis, including automatically defined functions and constrained
syntax.

An automatically defined function (ADF) [Koza, 1994, Genetic
Programming II] is a function, or subroutine, or procedure, or module,
or program, that is evolved during a run of genetic programming and
which may be called by the main program that is being simultaneously
evolved during the same run. Each individual consists of one main pro-
gram and one or more other programs (the ADFs). In the main function,
a call to an ADF appears just like any other function (if it takes argu-
ments) or terminal (if it does not).

In vanilla GP, any node can appear as a root, or as the argument to
any function. That would not have worked for the dissertation because,
for example, the nodes that return image values could not be used to
determine where the window starts. Therefore, Koza’s constrained syn-
tax method was used. In this method, the programmer assigns a type to
the return value of every function, and specifies the list of acceptable

��

types for each argument. In this document these are called GP types, to
distinguish them from data types in C++. Creation and crossover of
individuals take these restrictions into account.

After the new population was created, but just before it was evalu-
ated, the entire population was written to a file, known as the checkpoint
file. Whenever the run was interrupted, which happened four or five
times for some runs, it could be resumed from the checkpoint file.

With the exception of population size, initial tree size and maxi-
mum size after crossover, the parameters for all runs were taken from
Koza’s 1994 book Genetic Programming II, which were themselves
largely taken from Genetic Programming I. These are summarized in
Table 1, with changes from Koza’s values rendered in bold.

Code Design and Implementation of Creator

Specifying the Data Type Returned by Nodes
Existing publicly available C and C++ implementations of genetic pro-
gramming used a preprocessor macro to define the return type of nodes.
For symbolic regression this is typically a floating point type, although
in general it could be any type, including structures and unions. The use
of a preprocessor macros is discouraged in general, for a number of rea-
sons. In this case, only one type can be used throughout the entire appli-
cation which can make co-evolution awkward to implement, the
debugger knows nothing of the original form, and it requires the library
to #include a user header file, or the user to modify an engine header
file.

Algorithms which work on data of many types are sometimes
called parameterized types or generic algorithms, and the C++ feature
to support that is templates. Hence, any class which depends on the
return type is implemented as a template. This was true for all classes
except the node, although revisions after the dissertation will change
that, as discussed below. Poor support for templates in existing compil-
ers (mostly gcc) was the largest source of headaches before the pro-
posal.

Random Number Generation
In any probabilistic scientific computing, it is important to have an
effective randomizer that is capable of producing a stream of indepen-
dent random integers. Non uniformities, correlations between consecu-
tive numbers and other biases can cause dramatic shifts in program
performance, yet can be nearly impossible to detect and are often mad-
deningly difficult to track down. Implementations of the standard C

Table 1: GP Parameters for All Runs

Population Size 2000, 4000 or 10,000
Number of Generations 51 or 101

Probability pc of crossover 90%
Probability pr of reproduction 10%

Probability pfn of choosing function nodes for crossover 90%
Maximum number of nodes in each branch after crossover 1000

Maximum depth of each branch in the initial population 6 to 9
Generation method for initial random population ramped half-and-half

Selection method tournament selec-
tion, group size of 7

��

random number generator rand() vary in quality and generally can not
be trusted. A particularly abysmal example was found on SunOS and
Solaris, perhaps the most popular operating systems for scientists in the
1990s. As the manual page for random() under SunOs and Solaris
pointed out, “rand(3C) produces a much less random sequence-in
fact, the low dozen bits generated by rand go through a cyclic pattern.”
It turns out that the least significant bit alternated 0, 1, 0, 1, ... on succes-
sive calls. Adding to the problems, these facts are not documented any-
where on the manual page for rand() itself. For these reasons, it was
considered important to implement a generator with known good prop-
erties.

According to the survey article [Anderson 1990, Random Number
Generators on Vector Supercomputers and Other Advanced Architec-
tures], multiplicative congruential randomizers can be very fast yet pro-
duce a sufficiently random stream of numbers. In particular the Park-
Miller randomizer [Park et al. 1988, Random Number Generators] is
well documented and has come into widespread use due to its especially
good randomness by many tests for the low-order bits, its ease of imple-
mentation and speed of execution. It generates a new random number
from the previous number using the formula:

where x is the previous integer. It should be noted that 231-1 is
prime.

To start the process, the x used to compute the first integer was the
result of calling the standard C library function time(), i.e. the number
of wall clock seconds elapsed since Jan. 1, 1970. Note that the first x

must not be either zero or 231 - 1; these were explicitly checked for and
never happened.

A Tour of Creator’s Major Components
Since genetic programming is still an area of active research, Creator is
written with extensibility in mind. Therefore, each component such as
individual or selection method has its own abstract base class that
defines an API. The APIs are carefully chosen to place as few restric-
tions on the other components as possible. The components are listed
and briefly described in Table 2. Detailed descriptions follow.

Representation of Nodes and Individuals
The node component defines the data that is stored in every node,
namely the name of the node, a pointer to the C++ function that imple-
ments it, the number of arguments, the GP types of the return value and
arguments, the floating point value of a constant, and the relative fre-
quency for this node in the initial, randomly created individuals. The
per-node memory cost dominates the memory usage of Creator, so stor-
ing all of these values in every individual would prove wasteful.
Instead, the individual stores a byte (unsigned char in C++), the
index into an array of the actual data. Therefore, the per-node memory
cost of individuals is a single byte. This allows 256 unique nodes. In
practice, the set of possible nodes was approximately 90, leaving about
165 values to represent distinct random floating point constants.

During evaluation, a different representation is used. The execution
time of nodes such as addition and division is dominated by the time to
look up the index of each argument in the array and extract the function
pointer, and this cost significantly impacts the run time as well. There-

7
5
x mod 2

31
1–()

��

fore, before evaluating a particular individual, a different representation
was constructed, which is deleted once that evaluation is completed. In
this representation, the function pointer was stored along with the index.
Since a structure that is at least one machine word in size must be a mul-
tiple of that word size, three more bytes could be stored “free of
charge.” It was decided to also store the number of arguments, since
this is the only other data of the appropriate size that is generally used
during evaluation.

The Individual is responsible for storing the relationship between
nodes, that is, which nodes are in which ADFs and which nodes are the
arguments to which other nodes. The issues for vanilla GP were
explored in Genetic Programming in C++: Implementation Issues
[Keith et al. 1994], which I coauthored. In that paper, the best trade off
between size, complexity and speed was found to be a linear array, stor-
ing the tree in prefix order, and that is the representation used here.

During evaluation a second representation becomes feasible, where
along with each node is stored a pointer to each of its arguments. This is
the more traditional representation for tress in computer science. In
cases where we need to skip the execution of a subtree the pure prefix
approach requires run time proportional to the size of the subtree,
whereas this new approach requires no time. However, profiling
showed that the time spent skipping subtrees was relatively small, so
this optimization was not implemented. It could easily be implemented,
and I intend to do so before releasing Creator.

Conceptually, what is in a node is distinct from the relationships
between nodes. Therefore, the individual class can work with different
nodes. From a software engineering standpoint, the cleanest way to
implement this would have each node call virtual functions to get the
value of its children. However, this would be far too time consuming.
Therefore, the individual takes the node as a template argument. Also,
preprocessor macros are used to isolate the programmer from many
implementation details without sacrificing efficiency.

Creating the initial, random population
All ADFs of every individual were required to have at least two nodes,
that is, the root was required to be a function node, a node that had argu-

Table 2: The Major Components of Creator

Node Records data about a single function or node, such as the
name, the pointer to the C++ function that implements it,
and the number of arguments.

Individual Stores a collection of nodes and the relationship between
them.

Population A container for individuals, this is simply an array.

Selection
Method

Given a population with fitness assigned to each, selects
individuals to be used with the genetic operators.

Genetic
Operators

Given members of the old population, creates members of
the new population.

Top Level The main loop, this decides between, for example, gener-
ational and steady state dynamics.

��

ments. This ensured that every individual had at least one function node
and one terminal node. When individuals were created for the initial
population, a maximum depth was specified; any node at the maximum
depth was a terminal. For a quarter of the population this depth was six,
for another quarter seven, another quarter eight, and the last quarter
nine. What’s more, in each quarter, half of the individuals were full
trees; all nodes a depth less than the maximum were function nodes.
This distribution for the initial random population is known as ramped
half-and-half.

On top of these restrictions were restrictions on GP types. The pro-
grammer provided the set of allowable types for the root of every ADF,
and when the programmer specified the list of problem specific nodes,
the programmer was also required to specify each node’s return type, as
well as the types of all arguments.

To achieve these restrictions efficiently, the creation of random
individuals for the initial population proceeded as follows. The root
was chosen from the set of all function nodes that return an appropriate
type. Then, each argument was recursively chosen from among those
that return the needed type, and that also satisfy the function vs. terminal
constraint for the appropriate depth. If a function node was specified for
a particular location in the creation of a full tree, but only terminals fit
the type requirements, then a terminal was used instead.

The selection from the set of eligible nodes was not uniform.
Instead, the programmer specified a relative frequency for each node.
Once the set of eligible nodes for a given argument was determined, the
relative frequencies were totaled for all nodes in the set, and each node’s
probability of being chosen was (that node’s relative frequency) / (total
of all relative frequencies for nodes in the set).

The method of storing nodes allowed a maximum of 256 unique
nodes. There were approximately 90 non-random-constant nodes,
which allowed the rest to be used as random constants. During creation,
whenever a random constant was needed, if there was an empty slot a
new value was chosen randomly and assigned to that slot. If no slot was
available, an existing random constant was reused.

Finally, as was standard practice in genetic programming, all the
individuals in the initial, random population were unique. This was
implemented by checking, after each individual was created, whether an
identical individual already existed in the population. If so, the new
individual was discarded.

Genetic Operators
The only two genetic operators were reproduction and crossover.
Reproduction simply copies its single parent into the new generation.
and was used 10% of the time. Crossover, used in the remaining 90% of
cases, takes two parents, and selects a random node in the first.

The method of selecting parents used throughout this dissertation
was tournament selection with a group size of seven. Whenever an indi-
vidual was needed for reproduction, seven individuals are chosen uni-
formly with replacement and the fittest one is selected. When two
individuals were needed, for crossover, each was selected indepen-
dently, that is, two groups of seven were chosen, and the fittest individ-
ual in each were used.

Crossover starts by choosing a random node from the first parent.
In practice, the number of terminals is comparable to the number of

��

functions. In fact, in a binary tree, the number of terminals will always
be exactly one more than the number of functions. To avoid a prepon-
derance of terminal-only crossovers, 90% of the crossover points are
drawn from the function nodes, and only 10% from terminals.

Therefore, crossover started by deciding whether the node in the
first parent would be a function or a terminal. It then selected the node
uniformly from all such nodes in the individual. For example, if a func-
tion was desired and a given individual had 100 function nodes in the
result producing branch, and 200 in the only ADF, then the crossover
point would be in the ADF 2/3 of the time.

The type of the selected node is determined. The subtree in the sec-
ond parent was always from the same branch as the first parent, i.e. the
the subtree in the first parent was from the result producing branch, the
subtree from the second node was required to be from its result produc-
ing branch. If there were no nodes of the proper type in the desired
branch of the other parent, the entire process was started again. If this
failed 100 times an error message would be printed; in practice this
never happened. Then, function vs. terminal was decided for the second
parent; this choice was independent of the choice for first parent. Thirty
attempts were made to find an appropriate node, including both function
v.s terminal considerations and GP type. If all thirty failed, the function
vs. terminal constraint was abandoned, since a node of the given GP
type is known to exist.

At this point, both subtrees had been determined. The total number
of nodes in each child were calculated, and if a given child would have
been over 1,000 nodes, the child was replaced with one of the parents,
not the parent that would have donated the subtree, but the other parent.
This was standard GP practice, without it programs grow ever larger as
the generations wear on.

 Following the common practice in genetic programming, no muta-
tion was used. Because the crossover copies an arbitrary subtree from
the second parent, much of the time this subtree will be used out of con-
text. It is therefore similar to inserting a random subtree, although the
distribution is certainly not uniform. This is thought to obviate the need
for mutation [Koza 1992, Genetic Programming].

The Remaining Classes
The population is simply an array of pointers to individuals, imple-
mented as a Standard Template Library vector.

Finally the Top Level class ran the main GP loop. At the beginning
of every generation, just before the evaluations started, the checkpoint
file was written. This was simply the current seed of the random num-
ber generator, the current generation number, then all of the individuals
one after another, written out as text in LISP format. To guard against
program interruptions during the checkpoint writing, it is first written to
a new file with a different name, and only once that is finished is the old
checkpoint file deleted and the new file renamed to the old name.

Optimization for Speed
Other than the use of macros explained above in the context of nodes
and individuals, two optimizations were affected. First, since the exper-
iments were run on dual processor machines, the evaluations were done
in two separate threads. A client server architecture was affected, where
whenever an evaluation was completed, the associated thread would
claim the next unevaluated individual. In this way, both threads (and

�	

therefore both CPUs) worked 100% of the time, except possibly during
the last evaluation. The vast majority of the time was spent evaluating
individuals, generally more than a CPU-hour per generation, and as
much as six CPU-hours for the largest populations, compared to ten to
thirty seconds for everything else. Therefore there was no practical
advantage to parallelizing anything else. So, the only BeOS specific
code in all of Creator is this multithreading.

The second optimization was in the evaluation of automatically
defined functions (ADFs). ADFs can be called multiple times, and
because of the dynamics of crossover often have identical arguments. If
the ADF is a “pure function,” that is its result depends only on its argu-
ments and it is deterministic, then after it is evaluated once with a given
set of arguments, both the values of the arguments and the result can be
stored. In future, the arguments are always evaluated, but if they evalu-
ate to a previously-seen value, the ADF is not run again; the stored
result is simply returned. There are a fixed number of slots for argu-
ments-value pairs; once they are filled, no new values are stored.

Only the Expanded Representation runs used these sorts of ADFs,
so only they benefitted from this optimization. What’s more, these sorts
of ADFs were not used in the body of the iterated rectangle branches
where most of the time was spent.

Verification of Creator
There were three primary methods used to verify that the implementa-
tion worked properly: liberal use of assertions and invariants, compar-
ing test cases to hand computed results, and replicating published
results.

Asserts and Invariants
First and foremost, the best way to produce bug free code is to be very
careful to avoid bugs in the first place. A number of features of object
oriented programming are aimed at this, such as strong typing and data
hiding.

Techniques from “programming by contract” also offer a lot of
help. In particular, asserts and class invariants were used extensively.
As mentioned above, the vast majority of run time was spent in evalua-
tions; therefore, asserts were used liberally throughout the code, during
debugging but also left in the production versions of the code. The
guiding principle was that, if I could not prove a condition by looking at
a small window into the current code, I would add an assert. These
assertions helped greatly, often triggered months or years later when
some half-remembered condition was violated, substantially cutting
debugging time.

An invariant function was created for both the Individual and Node
classes, and sprinkled liberally during creation and crossover. For every
ADF, the version for individuals would check that the type specified for
the root was a subset of all possible types, that the allocated space for
nodes was not less than the number of nodes, that each ADF had two or
more nodes, and that the type returned by an argument matched the type
needed by the calling function. Various checks were also made for the
Node class, including that the function pointer was non-null for all non-
random constants, that no random constants were NaN, that the number
of arguments was non-negative, etc.

�

Examining program output critically also proved useful. It was
noted at the end of the Expanded Representation experiments that the
evolution would take a slightly different path if stopped and restarted
than if left untouched. This was due to the limited precision used when
writing out floating point numbers in the checkpoint file. For the

Focused Representation runs, the precision was changed to be
enough to represent a double without any loss of precision, plus
an extra digit just to be safe.

Test Cases
Each module was tested as it was completed. The Park Miller
random number generator was tested by seeding it with the
number 1, running it 10,000 times, and verifying that the result
was 1,043,618,065, as published in [Koza 1992]. There were
some problems in the unused Cray port, which uses 64 bit ints,
but other than that no problems have ever been found in the ran-
dom number generator.

The Node specific code is very simple, its essentially a
wrapper for an array. To test it, ten nodes were created at ran-
dom, and their name, number of arguments and function point-
ers printed out. It should be mentioned here that Creator’s
origins date back almost a decade, and that the core tests were
written very early on. Whenever a change was made, the tests
were rerun to verify that the output had not changed. Therefore,
the core functionality of the recent, large version of Creator has
been tested against the results of a much simpler and smaller
version, and found to give the same output.

The Individuals were tested by creating eight random indi-
viduals (expressions) using only addition, multiplication, and
two variables, and evaluating them. The values were then cal-
culated by hand, and verified to be correct. The expressions
and their values are shown at left. Similar tests were performed

for individuals with ADFs and individuals using GP types.
The population and ramped half-and-half creation methods were

tested by creating a population of ten individuals limited to a maximum
depth. This meant that many randomly created individuals would hap-
pen to be identical, thus testing the process of ensuring uniqueness of
the initial, random population. Tests were also done using individuals
with ADFs and random constants, which did not stress the uniqueness.

Replicating Published Results
Three problems from [Koza 1992] and one problem from [Koza 1994]
were implemented, and the results compared to the published results.
The main variable for comparison was the published success rate. If
any individual in a given run met or exceeded a designated level of per-
formance, the run was considered a success. The percentage of success-
ful runs is a very sensitive measure of performance, since even subtle
changes to the dynamics of the evolution can affect it. It therefore is
both a very powerful test, yet when results differ often gives no clue as
to why.

In general, because genetic programming is a randomized algo-
rithm, even in two identical setups the percentage of successful runs will
vary. Therefore, the statistical technique of hypothesis testing was used
to determine whether two setups were “close enough.” In particular,
since each run is classified as “success” or “failure,” it can be consid-

Randomly produced individuals and their values.
x = 1.234 and y = 2.

(× X (+ Y (× X X))) 4.34708

(× Y (× (+ X Y) X)) 7.98151

(× Y Y) 4

(× (× X (+ X (+ X (× Y Y))))
(× X Y))

19.6984

(× (× (+ Y (× X X)) Y) Y) 14.091

(× (+ (× (+ X Y) Y) X) X) 9.50427

(× (+ Y X) (× (× Y (+ (+ Y
Y) (× Y X))) Y))

83.67

(× (× (+ (+ (+ Y Y) (+ Y X))
(+ (+ Y X) (× Y Y))) X) (+
(+ Y (+ (× X X) (+ X Y)))

Y))

156.339

��

ered a sample from a binomial distribution. Different runs of the same
setup are truly “independent and identically distributed,” in our case this
is not an approximation. There is only one parameter that affects the
distribution, the probability of success. Thus, for the purposes of com-
paring success rates, the only data needed from each setup was the num-

ber of times GP was run, and the number
of those that were successes. The null
hypothesis was that the two sets of runs
came from the same distribution. To test
this, the chi-square test of homogeneity
was used [Rice 1988, p. 436]. The Math-
ematica script that did the comparison is
shown on the next page.

The first test was the symbolic

regression of x2/2, described on page 706
of [Koza 1992]. This particular setup
came with a complete LISP implementa-
tion, facilitating the tracking down of dif-
ferences. Page 718 reports the results of
190 runs which lead to a success rate of
67%, meaning 127 or 128 successes.

The Creator implementation
achieved 3434 successes in 5100 runs;
the probability of getting this at random,
if the two implementations had exactly
the same success rate, is 88.7%. If the
runs from the unused Cray port are
included, the numbers are 9520 suc-
cesses out of 14,100 runs, for a probabil-
ity of 84%. The estimated success rate is
67.5% + 0.77% (95% confidence inter-
val).

This comparison caught an earlier,
very subtle bug. At one point, the suc-
cess rate was 56.6% out of 1240 runs,
which if the implementation was correct,
would happen only 0.78% of the time.
The problem turned out to be what hap-
pened when crossover produced an indi-
vidual that was too large. In the early
Creator, both children were replaced
with their parents, whereas in Koza’s
code, only the “too big” child was
replaced. This demonstrates the power
of comparing probabilities of success, it
would most likely have been impossible
to discover this without such a compari-

son.
The second test compared the implementation of ADFs, using

Koza’s example of determining the 5 input boolean even parity func-
tion. This is a symbolic regression problem where the variables are
boolean, i.e. have one of two values, “true” or “false.” The designated
problem was to compute the even parity of five such values, that is, the

(* This script is for Mathematica 3.0 and 4.0

When comparing two different setups A and B, set
"as" to the number of successes with setup a, "na"
to the number of runs with setup a, and similarly
with "bs" and "nb" for setup b. *)

af = na - as; (* Number of failures in setup a *)
bf = nb - bs; (* Number of failures in setup b *)

ns = as + bs; (* Total number of successes *)
nf = af + bf; (* Total number of failures *)

n = na + nb; (* Total number of runs in both setups.*)

(* ns / n is the maximum likelihood estimate of prob-
ability of success under the null hypothesis. *)

eas = na ns / n;(* expected no. of succ. under null*)
eaf = na nf / n;(* expected no. of fail. under null*)
ebs = nb ns / n;(* expected no. of succ. under null*)
ebf = nb nf / n;(* expected no. of fail. under null*)

chiSqrAs = (as - eas)^2 / eas;
chiSqrAf = (af - eaf)^2 / eaf;
chiSqrBs = (bs - ebs)^2 / ebs;
chiSqrBf = (bf - ebf)^2 / ebf;

chiSqr =
Simplify[chiSqrAs + chiSqrAf + chiSqrBs+chiSqrBf];

<<Statistics‘ContinuousDistributions‘

p = 1 - CDF[ChiSquareDistribution[1], chiSqr];

(* "p" is the probability that you would get differ-
ences this big or bigger, assuming that the proba-
bility of success is the same for both methods. If
it’s < 0.05, then the difference is significant at
the 5% level, similarly for 0.01 and 1% *)

N[p/.{as->"a successes", na->"Number of a", bs->"b
successes", nb->"Number of b"}]

��

negation of the exclusive-or of all of them. Again, this problem came
with the Lisp code in the 1994 book, so a reference implementation was
available.

Koza achieved 25 successes in 32 runs for a success rate of 78%.
The Creator implementation succeeded in 59 out of 79 runs, for a suc-
cess rate of 75%. If the two distributions were in fact identical, a differ-
ence this large or larger would happen by chance 70% of the time.

It should be noted that attempts to replicate performance on another

problem, symbolic regression of the sextic polynomial x6 - 2x4 + x2 met
with failure. In 13 runs using a different implementation, Koza found 7
successes or 54%. The Creator implementation succeeded in 63 out of
200 runs, for a success rate of 31.5%. If these were from the same dis-
tribution, a difference that great or greater would only happen 9.6% of
the time.

There are many possible reasons why. In the book, 50 test cases
were randomly selected and used for all runs, although they were not
reported; perhaps they were a “lucky set.” Or perhaps slight differences
in the implementation lead to it. Also, Koza does not mention some of
the details of his experimental design, in particular how the total of 13
runs was decided. And finally, bugs in either implementation cannot be
ruled out.

The last test was of the constrained syntax code. While Koza
describes a number of constrained syntax examples in chapter 19 of the
1992 book, he only gives performance numbers for one, the symbolic
regression of the cross product, phrased as a vector valued function of
four scalars: f(x1, x2, x3, x4) = (x1x3 - x2x4, x2x3 + x1x4). His success rate
from 300 runs was 13%, while Creator achieved only 3.5%. It was
reimplemented twice, the last time as a completely separate program;
that program achieved 370 successes out of 10,478 runs, or 3.53%.
Finally, a public domain GP implementation that supports constrained
syntax was run; it came with the desired problem already implemented
as an example. In one thousand runs it achieved 38 successes or 3.8%.
If this and separate program came from the same distribution, a differ-
ence this large or larger would happen 66% of the time.

To track down the error, the descriptions in Koza’s book were
examined in detail, and different possible interpretations were tried. In
desperation, the fitness function was changed and tournament selection
were used, but the highest observed success rate was 8.67% (26 suc-
cesses / 300 runs). Given that 3 different implementations by two dif-
ferent people agreed with each other but disagreed with Koza’s, it was
concluded that any error was most likely not in Creator. It would be
interesting to implement this problem in Koza’s own GP implementa-
tion and see how the success rate compares.

It should be noted that the statistical test described here can be
applied to Koza’s claims in [1994] that ADFs help the success rates of
certain problems. It turns out, many of the differences are not statisti-
cally significant, although some still are and his main point is still valid.
I was a reviewer for the book and pointed this out to him before it was
published, but no changes along these lines were made to the book.

It should also be noted that these tests are much weaker than the norms
in the software industry. Activision, for example, devoted an entire
floor of its four story office building to quality assurance, filled with

��

rows upon rows of people amazed that they could actually get paid to
play games all day. It is considered essential for the testing to be done
by people outside the development group. However, the efforts reported
here are believed to be above the norm for academic programming.

With the basics of data collection and the genetic programming
engine explained, the details of the experiments can now be described.

��

#$%������
�%	�������
��

As mentioned previously there were to sets of experiments, one for each
pass through the outer loop described in the Overview chapter. This
first set of experiments is described in this chapter; the second in the
next. The representation used here, while more general, proved chal-
lenging for the genetic algorithm. This chapter describes that challenge
and the methods used to rise to it.

The Representation of Learned Programs
It will be recalled from the Technical Framework chapter that each exe-
cution of an evolved program will be given an image and the x location
of a column, and its single real-valued output will be interpreted as the y

location of the lowest non-traversable pixel in that column. In
particular, there is no state maintained from one execution to the
next, and therefore all programs are purely reactive. To measure
fitness, the individual is executed six times on each image, in six
different columns, on sixty to seventy five images.

The list of all possible nodes is summarized in Tables 1 and 2,
and an example individual is shown in Figure 1. For the most part
they are elements from traditional programming languages, such
as arithmetic operators, if statements, and reading and writing of
registers. Those elements have been used in many GP applica-
tions and everything but the image iteration nodes and reading and
writing of registers could be considered standard in the GP com-
munity. The only obviously application specific nodes are the
iterated rectangle and image reading nodes, which are described

in the next section.

A Tour of the Representation
This section presents a high level overview of the representation and
explains the working of an example in detail. The next section
describes the implementation of each node in detail.

The chapter “Technical Framework” describes the iterated rectan-
gle as a building block of existing algorithms. The expanded represen-
tation experiments permitted these rectangles to move either
horizontally or vertically. These were represented by a pair of nodes,
Iterate-Horiz and Iterate-Vert, which took five arguments.

The first argument was one of 17 tokens representing various rect-
angle sizes from 2×2 to 8×8, as well as 20×20. Thus, the subtree for this
argument always consisted of a single terminal, and these rectangle size
tokens were never used in any other part of the individual. The second
and third arguments were an expression for the x and y locations of the
initial location of the center of the window, in pixels. The fourth argu-
ment was the x location (for horizontal movement) or the y location (for
vertical movement) of the final location of the center of the window.
The final argument was a block of code to be executed for every loca-

&

Record Video

Learn Offline

Build Navigation

Validate Online

Genetic Algorithm

Robot, Real Time

By Hand

Robot, Real Time

��

tion of the window. Thus, for each execution of this branch, all argu-
ments except the last would be evaluated once, and the last argument
would, in general, be evaluated many times.

This last argument could access the image reading terminals.
There were 16 of these. Half of them were the average value over the
window of one of eight common image statistics, as illustrated in Figure
2. The other half were the average of the squared value of the same sta-
tistics. This allowed the computation of second order statistics, includ-
ing variance and standard deviation.

From the work of Teller and Veloso [1997] on PADO, the idea of
memory locations which can be read from and written to were bor-
rowed. Each iteration branch had five floating point registers, which
were accessed through five write nodes and five read nodes. The write
nodes each took a single real valued argument, while the read nodes
took no arguments.

As mentioned before, a break node would halt the current loop,
freezing the values of the five registers. The remaining nodes were the
usual suspects in genetic programming: standard mathematics func-
tions, control flow provided by if-le (if less than or equal to), prog2

Table 1: The Node List for the Iteration Branches

Image Iteration Iterate-Vertically, Iterate-Horizontally

Window Size 2x2, 2x3, 3x2, 3x3, 2x4, 4x2, 4x4, 5x5, 2x6, 6x2,
3x6, 6x3, 6x6, 7x7, 2x8, 3x8, 8x8 and 20x20.

Mathematical +, -, ×, % (protected division), square

Flow Control if-le (if-less-than-or-equal-to), prog2, prog3, break

Miscellaneous
Terminals

desired-x, random constant, window-area, image-
width, image-max-y, first-rect, x, y

Registers set-a, set-b, set-c, set-d, set-e, read-a, read-b, read-
c, read-d, read-e

Image Operators raw, raw-squared, median, median-squared,
median-corner, median-corner-squared, gradient,
gradient-squared, moravec-horiz, moravec-horiz-
squared, moravec-vert, moravec-vert-squared,
moravec-slash, moravec-slash-squared, moravec-
backslash, moravec-backslash-squared

Table 2: The Node List for the Result Producing Branch

Mathematical +, -, ×, % (protected division), square

Flow Control if-le (if-less-than-or-equal-to)

Miscellaneous
Terminals

desired-x, random constant, image-width, image-
max-y

Final Register
Values

mem0a … mem0e, mem1a … mem1e, mem2a …
mem2e

ADFs ADF0, ADF1

��

and prog3, random constants, and terminals to provide the image size,
the area of the rectangle, the x location of the desired column, and the
current location of the window. If-le took four arguments; if the first
was less than or equal to the second, then the third was evaluated and
returned and the fourth was not evaluated, otherwise the fourth was

evaluated and returned, the third going unevaluated.
prog2 and prog3 took two and three arguments
respectively. Each argument was evaluated in turn,
and the value of the last one returned.

In a modification of Koza’s “automatically
defined functions” [Koza 1994, Genetic Programming
II], each individual consisted of three Iterate
branches, one result producing branch, and two auto-
matically defined functions that were usable only by
the result producing branch. The return values from
the three Iterate nodes were discarded; instead, the
the final values of the five registers were used as the
result of each branch. Thus, the job of the result pro-
ducing branch was to combine the fifteen such values
into a final value, representing the vertical location of
the first non-ground pixel.

The result producing branch took as input (i.e.
leaves of its tree) only the final register values and
fixed numerical constants, and could not access the
image directly. Its functions were standard mathemati-
cal functions and Automatically Defined Functions
taking one argument each, as described in [Koza
1994]. They were callable only by the result produc-
ing branch.

The result producing branch used the subset of
nodes that had meaning outside of window iteration.
Since this eliminated the set and break nodes, which

were the only nodes with side effects, there was no longer a need for the
prog nodes. The only nodes added were the final values of the registers
in the three iteration branches, and the ability to call the two ADFs.

The node list for the ADFs was similar to that for the result produc-
ing branch, except they could not access the final register values, could
access their arguments, neither could call ADF1, and ADF1 could only
call ADF0.

As an example, a simple version of Liana Lorigo's algorithm is
shown in Figure 1. This example was created by hand to demonstrate
the possibilities of the representation and was not produced by any GP
run. The root of the tree (iterate-vert) says the window will be
moving vertically. The first four arguments mean it will be 20×20 pix-
els, whose center starts at the coordinate (desired-x, image-max-y)
and whose end is at (desired-x, 1). Therefore, this window will move
from the bottom up, and at every location it will execute its fifth argu-
ment, the rest of the tree. The value returned by this argument is dis-
carded.

The “prog2” executes each of its arguments in order. In this case, it
first sets register “d” to the y position, then checks to see if 0.5 ≤
first-rect. Since first-rect equals 100,000 the first time through
(i.e. at the bottom of the image) and -100,000 thereafter, the left branch
is executed the first time, and the right branch all subsequent times.

F

Figure 1: An example individual in the expanded repre-
sentation.

������������

��	�	
��������

�����

��������
�� �

���� �����

	�� ����������

�����

����

�������� �

������������� �������������

����

��

�

������ ��������

�����

��

�

������ �

������������� �������������

�		 �����	

�����

�			 �����

��

The left branch simply sets registers “a” and “b” to values repre-
senting summaries of the image over the 20×20 rectangle. For example,
register “a” is set to the average of the Sobel gradient magnitude over
those 400 pixels.

Finally, on subsequent iterations, the remaining branch compares
the stored values to freshly computed
ones at the new location of the rectangle.
If the difference is small, i.e. if (a -
sobel-mag)² ≤ 5000 and (b - (median-
corner + moravec-horiz))² ≤ 300 we
keep iterating, otherwise we execute a
break which stops the iteration. Note
that the value in register “d” will be the y
coordinate of the window where it
stopped, or the y coordinate of the high-
est rectangle if no break statement was
executed.

Details of Nodes
The list of all nodes was the same for all
expanded representation experiments and
is shown in Table 1 and Table 2. Pro-
tected division, a standard GP function,
returns one if the denominator is zero,
thus avoiding divide by zero. This exten-
sion also means a÷a equals one even
when a is zero. The other functions are
already defined for all real valued inputs.
As described above, if-le took four
arguments; if the first was less than or
equal to the second, then the third was

evaluated and returned and the fourth was not evaluated, otherwise the
fourth was evaluated and returned, the third going unevaluated. Prog2
and prog3 took two and three arguments respectively. Each argument
was evaluated in turn, and the value of the last one returned.

Desired-x was the x coordinate, in pixels, of the column that the
program would be judged on. That is, desired-x was the column
where the lowest non-ground pixel was desired. If the random con-
stant node was selected during the creation of individuals, a random
real number was selected uniformly between -5 and +5 and used in its
place. Window-area was the area, in pixels, of the window size, that
is, the product of the two digits in the first argument to iterate-up or
iterate-down. Image-max-x was the maximum x coordinate of any
pixel; in this thesis that was always 319. Similarly, image-max-y was
the maximum y coordinate, 239. First-rect only appeared in the
third argument to the iterates, and was one when the window was at its
startling location and minus one after that. X and y were the coordinates
of the center of the rectangle, in pixels, rounded up.

Set-a through set-e took a single argument and set the given reg-
ister to that value. Read-a through read-e had no arguments and
returned the value of the given register. The “set” nodes returned the
previous value of the memory location. This is the convention used by
Teller and Veloso [1997] and is also the convention used in “atomic”

Figure 2: A dewarped image and the image operators applied to it: trun-
cated median, median corner, Sobel magnitude, and four directional
Moravec interest operators.

�	

operations common in parallel computing. Returning the argument is
the convention in the C programming language.

The image operators came in two flavors, straight up and squared.
The straight up versions would return the average value of the operator
over the window, and the squared version would return the average of
the squared value over the window. Raw was simply the raw image pix-
els, median was the truncated median filter of [Davies 1997, Machine
Vision, pp. 48-55] in a 5×5 window (a kind of low pass filter), median-
corner was the raw minus the median (and therefore a kind of high
pass filter), gradient was the magnitude of the 3×3 Sobel gradient
operator, and the Moravec interest operators were simply the squared
difference between adjacent pixels, either horizontally, vertically, or
diagonally.

The random constant node actually represents a family of nodes
each with a different value. In Creator, the total number of unique nodes
is always 255. Each individual had six branches, each branch was lim-
ited to 1000 nodes. This gives an upper bound to the search space of

2556000 ≈ 1014,439. While there are some restrictions, this nevertheless
gives an indication of the order of the search space.

Other Details
Fitness measures in evolutionary computing have two goals. First, they
should select individuals whose children, grandchildren, etc. are likely
to do well. Second, because the best solution found is generally not an
optimal solution to the problem, it must say how desirable each individ-
ual is as a final result.

These are commonly considered to be the same, by assuming that
individuals who solve the problem well are more likely than others to
have some component that would be useful in a full solution. However,
as described in the “Early Experiments” section below, that proved
problematic and Illah Nourbakhsh suggested the solution.

The fitness measure used was rather simple. Each column of each
image was a separate fitness case. The evolved program was run, and
the value stored in the “a” register compared to the hand created ground
truth. The fitness was the absolute value of the difference in number of
pixels. For each fitness case, this number was capped at 20. The fitness
of an entire individual was simply the some of the capped differences
over all fitness cases. Lower is better. The sum of absolute differences
is the standard error measure in symbolic regression using GP, although
it is not usually capped.

The camera was placed near the center of the robot and pitched
down 31°, the same setup used by deliberative stereo research that took
place previously on the robot. It turned out that the best algorithm
developed in these experiments worked for a wide range of camera
pitch, including the steepest possible before viewing part of the robot.

After an image was taken it was dewarped using the image dewarp-
ing software described in [Moravec 1996, Robot Spatial Perception by
Stereoscopic Vision and 3D Evidence Grids]. This version replicates
pixels, that is, every pixel in the resulting image is the same value as
some pixel in the original image, and that adjacent pixels are sometimes
equal, even in areas of the image that otherwise have high spatial gradi-
ent.

Examples of all image operators are shown in Figure 2. The exper-
iments in this chapter used a truncated 5×5 median filter as described in

F
I
O
t

�

[Davies 1997, Machine Vision, pp. 48-55], and the median corner opera-
tor was the original image minus the median filtered image. The
median filter in these experiments was implemented using the C func-
tion qsort(). The C++ Standard Template Library function
nth_element(), which is designed for exactly this purpose and should
be O(n), was tried, but the implementation used in BeOS, which comes
from SGI, performs poorly when called from multiple threads, even on
data that is many pages apart in RAM. In fact, it takes longer when
called from two CPUs than a single CPU version using qsort()! This
is mostly likely due to caching issues, where one CPU writes to a mem-
ory location needed by the other CPU, so the first CPU’s cache must
first be written to main RAM before the other CPU can continue. This
bug was reported to Be, but never seems to have been fixed. It never-
theless produces the correct answer, although it was only ever used dur-
ing testing.

Simplifying Evolved Programs
While it is unnecessary to know how a particular program works in
order to use it, such knowledge can shed light on several questions.
This includes practical questions: Are these solutions that could be
implemented by hand, or are they far too subtle and complex? How will
they generalize to other environments? Are there any obvious failure
modes that we have not seen? Other questions arise when trying to
improve the evolutionary algorithm. What features did it make use of?
How did it use them? How do those differ from ways humans use
them?

Unfortunately, programs created by simulated evolution are often
large and convoluted. Thankfully, they also often have branches that are
never executed, calculations whose results are never used, etc. There-
fore, the first step to understanding evolved programs was to simplify
them.

Two main methods present themselves: simplifying by hand and
automatic simplification by computer. Simplifying by hand can be time
consuming and error prone, although a person can often notice simplifi-
cations that would be difficult to teach a computer. However, writing a
program to simplify them can also be time consuming, and may contain
undiscovered bugs. The choice was even less clear because computers
are better at different kinds of simplification than people are.

The path used in this work was to start simplifying by hand, and
whenever a pattern was noticed that was straightforward to automate, do
so. Since the programs are represented as expressions in tree form, Lisp
is the natural language in which to write the simplifier. The simplifica-
tion code was that in an appendix of [Koza 1992]. This code is an
“engine” written in Lisp that requires rules to be added specific to a par-
ticular application.

To validate the system, each new simplification rule was tried on a
canonical case, and every hint of a bug tracked down. As well, a third
of the interesting branch of one individual—approximately 300 nodes—
was simplified by hand, and compared to the automated system.
Finally, the simplified individual was re-run on the training data to ver-
ify that its score had not changed. It should be pointed out that all of
these verifications were repeated many times as the simplification rules
were added one by one.

��

The first step was to keep track of which nodes were never actually
evaluated. Branches can go unevaluated when the condition of an if-
le statement always evaluates to the same value, or as the result of a
break statement. For example, (if-le 0 300 x y) will always take
the x branch. In this case, the entire expression can simply be replaced
with x. In general, since the first two branches may have side effects,
we must keep them along with the always-evaluated branch, turning the
if-le into a prog3.

In the example above, this happens because both branches of the
conditional are constant, and will therefore evaluate the same way on
any data set. However, we could go further and also eliminate branches
that are never executed on the training data set. In this case, on the
training data the prog3 and if-le forms will be exactly the same, exe-
cuting the same operations in the same order and achieving the same
results. However, they may perform differently on new data. Which
generalizes better? The question could also be asked of existing prog3s
where the first branch always evaluates less than or equal to the second.
In that case it seems arbitrary to convert it into an if-le and add a
clause that does not affect the learning.

Table 3: Simplification Rules

Rule Example

Rules that Eliminate Computation

Remove branches that were never exe-
cuted on training data

(if-le a b x y) → (prog3 a b y) if a is always less
than or equal to b when run on the training data.

Remove initial branches of progn that
do not have side effects.

(prog3 x y z) → (prog2 x z) if y does not have any
side effects.

If the value of an arithmetic expression is
not used, convert it to a progn

(prog2 (+ x y) z) →
 (prog2 (prog2 x y) z)

Eliminate calls to “set” if the value will
be overwritten before it is used.

(set-b (+ x (set-b y))) →
(set-b (+ x (prog2 y read-b)))
 if y does not contain set-b.

Rules for Human Readability

Convert two successive instances of
prog2 into prog3

(prog2 (prog2 x y) z) → (prog3 x y z)

Raise prog2 if it is the second branch to
an arithmetic operator, if the reordered
branches do not contain break and do
not read anything the other one sets.

(+ x (prog2 y z)) → (prog2 y (+ x z)) if x does
not read any register that y sets and vice versa, and if break
does not appear in either x or y.

Change a double subtraction into a sub-
traction and an addition.

(- x (- y z)) →
 (+ (- x y) z)

Raise prog2 or prog3 as the first argu-
ment to any operator

(op (prog3 x y z) a) →
 (prog3 x y (op z a))
 if op is not prog2, prog3 or set-a … set-e

	�

In other words, the genetic programming does not know the differ-
ence between prog3 and if-le, except in how they influence evalua-
tion. An if-le with a branch that is never executed, and whose three
remaining branches are always executed in order, is equivalent to a
prog3 as far as the GP is concerned. The never-executed branch does
not affect fitness in any way, so we have no inductive reason to suspect
it would do anything worthwhile on new data. Treating it as a prog3 is
more natural.

Therefore, the first step in editing the evolved programs was to run
the program on training data, keeping track of which subtrees were
never executed on the training set, then eliminate those subtrees. That
was done in C, and the rest of the simplifications were done in LISP.
The set of simplifying rules is described in Table 3.

The rules were carefully chosen not to produce any loops, where
the effects of one rule could be undone by some combination of other
rules. Therefore, the rules could be continuously applied until no more
could be applied anywhere in the tree. The order of application of the
rules could affect the outcome, since the application of some rules ren-
der others inapplicable. This could be remedied by suitably generaliz-
ing some of the above rules, but in practice was not a problem.

As a side note, it is possible to apply these simplifications during
evolution itself. The value of this is a topic of debate in the genetic pro-
gramming community, and was not tried here.

Finally, the individual was rewritten into a syntax similar to a tradi-
tional procedural language and simplified further, for example noting
that a variable does not affect the results so that all references to it can
be removed, or that the code might usefully be reorganized in some way.
Any further simplifications were converted back into Lisp form and ver-
ified on the training set. Often, a hand simplification would allow more
automated rules to apply, so hand simplifying and automated simplify-
ing were alternated.

Early Experiments
A number of informal experiments were performed before deciding on
the details of the actual experiments. These informal experiments are
detailed here. They all produced results that were no better than the best
constant approximation, i.e. the best evolved programs did not even
examine the image, at least in a useful way. These experiments were
various combinations of the modifications described in the next para-
graph.

All of these experiments ran to 100 generations, and used a popula-
tion size of either 2000 or 10,000. In some of them, the fitness measure
was not capped at 20 for each fitness case. That is, the total fitness was
computed using the traditional method for symbolic regression, namely
as the sum of the absolute value of the difference between what the indi-
vidual returned and the ground truth. The worst of the initial population
was therefore routinely “Infinity” (in the IEEE floating point sense), and
even in final population the worst fitness would exceed 1e+77 in some
cases.

The individuals in the initial, random population were examined
and found to be very shallow. Any program that examined the image in
non-trivial ways would need to combine a number of affordances of the
language, and it was hypothesized that the initial programs were simply

	�

too small. Originally, the initial tree size followed that of [Koza 1992],
namely a minimum depth of four and a maximum of nine, so the mini-
mum was eventually changed from four to six. Also, the frequency of
function nodes was quintupled, making the total probability of choosing
a function node 59:25, which exceeds 2:1.

The example shown in Figure 1, the simple Lorigo algorithm, was
at one point used as a seed. That is, it was used as one individual in the
initial population, and all of the remaining individuals were chosen ran-
domly as before. Since this individual did better than constant, these
runs broke the “constant barrier.” They improved on the seed a little,
but not significantly.

The final change, the one that resulted in greatly improved perfor-
mance, was to the allowable size of an individual after crossover. For
all these informal experiments it was 200 nodes per branch. However,
after some investigation, it was determined that the randomly created
individuals often had branches with over 800 nodes, occasionally over
2000. This would cause crossover to almost always fail, degenerating
into reproduction. When the maximum size after crossover was
changed to 1000, the runs all of a sudden started performing better than
the best constant approximation. After that, there was no turning back.
The various experiments are summarized in Table 4.

Results
The summary of the training data that appeared at the end of the Data
Collection chapter is repeated here:

Field Robotics Center Hallway
Camera Angle: 31 degrees from horizontal

Total Number of Frames: 226
Frames In Training Set: 75 (every third)

Number of Fitness Cases: 75 × 6 = 450
Elapsed Time: 52 seconds

Frame Rate Of Training Set: 75 ÷ 52 = 1.44 fps
Starts with robot in lab doorway. Moves straight until its in the

hallway, then turns right, travels down hallway, at end turns right, then
travels straight. All doors closed, except near the end. A person is visi-

Table 4: Summary of Informal Experiments

Large
Initial Size

Fitness
Capped

Seed
Population

Size
Number
of Runs

N N N 2000 6

N N N 10,000 3

Y N N 2000 5

Y Y N 10,000 2

Y Y Y 2000 1

	�

ble near the end, standing in a doorway, but not enough to affect the
results greatly.

The two experiments in this chapter used the same training data, but dif-
fered in population size, number of generations and the use of a seed.
The first experiment used a population size of 10,000, 51 generations
and no seed individual, while the second experiment used a population
size of 2,000, 100 generations and the seed. A scatter plot of the best
fitness from every run is shown in Figure 3.

All performance measurements in this chapter are on the training
data itself. Performance on other images, as well as performance when
used to control the robot, is discussed in the chapter “Online Valida-
tion.” The best constant approximation returned image-max-y, i.e. the
very bottom pixel, for an average error per pixel, i.e. fitness, of 14.65,
and achieving 113 out of 450 fitness cases within two pixels. Since the
fitness measure in this chapter penalizes for the amount of error, an indi-
vidual that returns a slightly higher value does worse. The seed did only
slightly better at 14.12.

No Seed
On the dual 700MHz Pentium III, the time to evaluate a generation
ranged from 5 seconds (1.2 CPU milliseconds/eval) to 4 hours (2.8 CPU
seconds/eval), averaging 31 minutes (0.37 CPU seconds/eval), or 26
hours per run of 51 generations.

In all runs but one, the best individual in the initial, random popula-
tion did no better than that. The better run did only slightly better, 14.54.
This amounts to a random search for a solution through 200,000 indi-
viduals. Clearly, a random search here is harder than in the previous
chapters, as expected.

These runs did universally poorly, despite the larger population
size. Only one run achieved an error below 12 pixels/fitness case,
achieving 7.59, close to the median score for the other experiment. This
run was extended for another 50 generations and the average error of the
best-of-run dropped by one pixel to 6.58. This setup is clearly too diffi-
cult for the evolutionary computation to have much success, at least
with the number of runs used here.

With Seed
There are many ways in which a researcher can provide information to
an evolutionary computation system, such as the elements of the repre-
sentation, rules on how they must be combined, etc. A novel method is
to provide an example of how the elements fit together in the form of a
“seed” individual.

The seed used in these runs is the example individual in Figure 1. It
was created initially simply to assure myself that nothing crucial had
been left out of the representation, i.e. that it really could represent
existing algorithms naturally. It was later used as an example in an ear-
lier version of this chapter, and then implemented in order to validate
the system. At this time, the two threshold values were determined
using a crude GUI.

This individual was never intended to be a good solution to the
problem. In fact, one of its basic assumptions, that the bottom of each
column represents ground, is violated in almost a quarter of the fitness
cases. As well, the image statistics were chosen for their explanatory
power with no concern given to their appropriateness.

0

2

4

6

8

10

12

14

16

18

20

Seed,
Generation
50
Seed,
Generation
100
No Seed

Figure 3: A scatter plot of the best-of-
run individual by generation 50 and 100
from the experiment with the seed, and
generation 50, the final generation, from
the experiment without.

	�

Images of the performance of the seed on the training set are shown
in Figure 4. It only achieved all six answers correct on the few frames
where the bottom of all columns was ground, as in the upper left and
upper middle. The upper right shows the most common form of error,
missing a wall or door that goes to the bottom of the image. As the bot-
tom left demonstrates, strong edges, such as those produced by the spec-
ular reflection at the bottom of the baseboards, stop the window early,
whereas more gentle edges, such as those at the bottom of the filing cab-
inets, allow it to continue further. The last two images demonstrate
greatly varying performance on consecutive frames. The middle two
columns are roughly correct on the first frame, but wildly wrong on the
second. Despite these flaws, overall it performed marginally better than
the best constant approximation. In every run it outperformed all other
individuals in the initial population.

Figure 5 graphs the best, median, average and worst fitness vs. gen-
eration for the run that attained the median best-of-run fitness. As in the
last chapter, there was always one individual in every generation that
achieved the worst possible score. Also, when the median fitness
became roughly equal to the best for a few generations, only incremen-
tal improvements took place.

Figure 6 graphs the fitness of the best-of-generation vs. generation
for the four best runs. As can be seen, the change after generation 50
was usually minor and did not affect the relative standing of the four
runs. In particular, of these four runs, the best could be identified by
generation 50.

The best individual from all runs achieved an average error per
pixel of 2.42, getting 272 of 450 fitness cases within two pixels of the
correct answer. Some example images are shown in Figure 7. It got the
vast majority of the fitness cases more than close enough for obstacle
avoidance, including obstacles at the bottom of the image. The upper
left and upper middle images demonstrate examples. The errors were

Figure 4: Performance of the seed on the training data.

	�

more or less evenly distributed among remaining cases such as missing
walls at the bottom of the image, missing the boundary between floor
and door or filing cabinet, and thinking the floor was an obstacle. It
would also occasionally miss small objects at the bottom of the image,
such as the corner of a filing cabinet or a wall. However, errors were
definitely the exception, and the vast majority of fitness cases were han-
dled accurately, more than good enough for navigation, despite the large
change in intensity in the carpet and other effects.

For this data set, ground truth was prepared for the non-training
data using the same process, and with the same care, as for the training
data. Therefore, direct comparisons of error measures are possible. The
non-training data used the same images as the training set, but different
column locations. On this data the simplified version of the individual
achieved an average error of 2.77 pixels. Example images are shown in
Figure 8.

Examining the images by hand, of the 375 fitness cases, 352 of
them were close enough for navigation. Of the 23 remaining, 13 were
missing a wall at the bottom of the image, five were missing a door,

0

5

10

15

20

0 25 50 75 100

Best
Median
Average
Worst

Generation

A
ve

ra
ge

 E
rr

or
 P

er
 C

ol
um

n

Figure 5: Average Error per Column (i.e. Fitness) vs. Generation for the run that produced the median best-of-run
individual.

0

5

10

15

20

0 25 50 75 100

Generation

A
ve

ra
ge

 E
rr

or
 P

er
 C

ol
um

n

Figure 6: Average Error Per Column (i.e. Fitness) v.s Generation for the best-of-generation individual in the four runs
that produced the fittest best-of-run individuals

	�

three were counting the ground as an obstacle, and two were missing the
file cabinets.

Simplified Best Individual from all Expanded Representation
Experiments
The original and machine only simplifications of the best individual are
virtually unreadable. The final version, using both hand and automated
techniques, is displayed in Figure 9. For verification this version was

Figure 7: Performance on training data of the best individual from all seeded runs.

Figure 8: Performance of the best individual from all expanded representation runs on test (non-training) data.

F
S
f
d

	�

implemented in the genetic programming representation and re-run on
the training data to verify that the result had not changed.

The best evolved individual shows some distinct similarities to the
original. It did not modify the result producing branch, which still sim-
ply returns the “d” register or the first iteration branch unmodified.

Therefore, the ADFs and the other iter-
ation branches went unused. Also, the
iteration branch had the same structure
as the seed, namely iterating vertically
from the bottom of the image to the
top, centered on the desired column.
The body of the loop started the same,
by first assigning y to register d, then
branching based on the value of
first-rect. It also stored the gradi-
ent magnitude in register a, at least
some of the time, and used median-
corner + moravec-horizontal,
although often in a “mangled” form.
However, the similarities ended there.

As with the individuals in the
focused representation experiments,
this individual handles the problem of
recognizing objects at the bottom of
the image differently than that of rec-
ognizing the transition between floor
and object. To find objects such as
walls and doors at the bottom of the
image, it checked for a small gradient
or a high frequency component that
rises across the image. It then checked
another high frequency measure, and if
found, returned the y location of the
center of the rectangle, four pixels
above the bottom of the image. It is
likely that this detects objects very
near the bottom of the image, as
opposed to objects that extend below
the image. If the above tests fail, it
uses a more complicated test, then
finally sets registers a and b in prepara-
tion for the next iteration.

Subsequent iterations make heavy
use of the registers to remember infor-
mation between iterations. To under-
stand how it worked, it helps to keep in
mind that if the break statement is
never called, the program will return
image-max-y, indicating that the
object is at the bottom of the column.
There is only one break statement,

and it can only be reached if the value of b from the previous iteration
was greater than image-max-y. Note that this can not happen if the
previous iteration took the else clause, since then b is set to y, which will

Iterate-Vertically
An 8 by 8 window from bottom to top in the desired column. At

each window location execute:

if first-rect then
 d := image-max-y;

 if gradient ≤ 70.71 or (desired-x - median-corner)² ≤ 239 then
 break;

 if median-corner + moravec-horizontal > 300 then
 d := y;
 break;

 if (2×median-corner + moravec-horizontal - desired-x)² ≤ 239 or
 (median-corner + 239 - desired-x + gradient)² >239 then
 c := median-corner + moravec-horizontal;
 else
 c := median-corner + 239;

 if (c - desired-x + median-corner)² > 239 and c² > 300 then
 break;

 a := gradient;
 b := - median-corner;

else // first-rect

 if (a - gradient)² ≤ a then
 b := a;
 a := y²;
 else
 if b > 300 or
 (b > image-max-y and (gradient - b)² ≤ 5000) then
 d := y;
 break;

 b := y;
 a := gradient;

Figure 9: Simplified version of the best individual from all Expanded
Representation runs.

		

always be less than image-max-y. Therefore, the iteration will only
stop on the iteration after the if clause is taken. It should also be noted
that when “a” or “b” equal a gradient value from a previous iteration,
the difference effectively takes the average for the top line of the win-
dow and subtracts it from the average from the line just below the win-
dow. In other words, it acts as a second order derivative. It should also
be noted that after the bottom of the image, the decision about the loca-
tion of object boundaries is based purely on gradient information.

Observations
The presence of the seed helped enormously, and extending runs for an
extra fifty generations provided only incremental improvement. In
future, if done at all should only be done for the most successful runs. It
should also be noted that many of the individuals in the initial, random
population were too big to have been created by crossover, although
these always were eliminated in the first two generations.

Finally, the best individual in this chapter made some use of state.
This may have been due to the presence of the seed, which already had
the machinery in place, or the fitness measure, which encouraged delay-
ing the call to break by an iteration or two, until the window was actu-
ally over the desired location.

With these results and observations in hand, the next chapter examines
the other experiments, that simplified the representation used here to the
point where a seed was not needed. In the chapter after that, the best
individuals from all experiments are applied to a live video stream and
used to guide the actual robot in real time.

	�

���'����
�%	�������
��

After reflecting on the experiments of the previous chapter, many
aspects of the experimental setup were modified. The most significant
were to hard code the beginning and ending locations of the window,
and to dispense with the result producing branch. The representation in
this chapter only allows windows that move vertically and that start and
stop at the edges of the picture, unless a break statement is encoun-
tered. As well, the result is the value of the first memory register, elimi-
nating the need for the result producing branch and its automatically
defined functions.

The Representation of Learned Programs
It will be recalled from the Technical Framework chapter that
each execution of an evolved program will be given an image and
the x location of a column, and its single real-valued output will
be interpreted as the y location of the lowest non-traversable pixel
in that column. In particular, there is no state maintained from
one execution to the next, and therefore all programs are purely
reactive. To measure fitness, the individual is executed six times
on each image, in six different columns, on sixty to seventy five
images.

In evolutionary computation, the greatest influence on the
results comes from the representation of the individuals. Previous
chapters argued for genetic programming, and to flush in the rep-
resentation, the list of all possible nodes is described and
explained. The list is summarized in Table 1, and an example

individual is shown in Figure 1.
For the most part they are elements from traditional programming

languages, such as arithmetic operators, if statements, and reading and
writing of registers. Those elements have been used in many GP appli-
cations and everything but the reading and writing of registers could be
considered standard in the GP community. The only obviously applica-
tion specific nodes are the iterated rectangle and image reading nodes,
which are described in the next section.

A Tour of the Representation
This section presents a high level overview of the representation and
explains the working of an example in detail. The next section
describes the implementation of each node in detail.

The chapter “Technical Framework” describes the iterated rectan-
gle as a building block of existing algorithms. The expanded represen-
tation experiments permitted these rectangles to move either
horizontally or vertically, but it was noted that the best-of-run individu-
als from the successful runs only used vertical iteration, never horizon-
tal. Therefore, in the focused representation, only vertical iteration was

(

Record Video

Learn Offline

Build Navigation

Validate Online

Genetic Algorithm

Robot, Real Time

By Hand

Robot, Real Time

�

supported, although the iteration could be either “going up” or “going
down.”

These were represented by a pair of nodes, Iterate-Up and
Iterate-Down, which took three arguments. The first argument was
one of 17 tokens representing various rectangle sizes from 2 by 2 to 8 by
8. Thus, the subtree for this branch always consisted of a single termi-
nal, and these rectangle size tokens were never used in any other part of
the individual. The second argument was an expression for the x loca-
tion of the center of the window, in pixels. The final argument was a
block of code to be executed for every location of the window. Thus, if
the iteration was not terminated early by hitting a break node, the first
argument would be examined once, the second argument evaluated
once, and the last argument evaluated 240 minus window height times.

This last argument could access the image reading terminals.
There were 16 of these. Half of them were the average value over the
window of one of eight common image statistics. The other half were
the average of the squared value of the same statistics. This allowed the
computation of second order statistics, in particular variance and stan-
dard deviation.

From the work of Teller and Veloso [1997] on PADO, the idea of
memory locations which can be read from and written to were bor-
rowed. Each iteration branch had five floating point registers, which
were accessed through five write nodes and five read nodes. The write
nodes each took a single real valued argument and returned the value of
that argument, i.e. the value written to memory, as is the convention of
assignment operators in C. The read nodes did not take any arguments.

As mentioned before, a break node would halt the current loop,
freezing the values of the five registers. The remaining nodes were the
usual suspects in genetic programming work: standard mathematics
functions, control flow provided by if-le (if less than or equal to),
prog2 and prog3, random constants, and terminals to provide the
image size, the area of the rectangle, the x location of the desired col-
umn, and the current location of the window. If-le took four argu-
ments; if the first was less than or equal to the second, then the third was
evaluated and returned and the fourth was not evaluated, otherwise the
fourth was evaluated and returned, the third going unevaluated. prog2
and prog3 took two and three arguments respectively. Each argument
was evaluated in turn, and the value of the last one returned.

In a modification of Koza’s “automatically defined functions”
[Koza 1994], each individual consisted of two Iterate branches. One
branch was designated the result producing branch; the value of its first
register at the end of execution was used as the return value of the indi-
vidual, i.e. the estimate of the location of the lowest non-ground pixel.
This individual could access the final values of all memory locations of
the other branch. Thus, each loop would be performed once at most.

An example individual is shown in Figure 1. This example was cre-
ated by hand to demonstrate the possibilities of the representation and
was not produced by any GP run. Rather than finding the lowest non-
ground pixel, it find the highest patch that looks like the bottom middle
of the image. While this violates the spirit of what we intend it to find,
it may be better than the literal interpretation of finding lowest part of
the image that doesn’t look like ground. This will be true if most
objects are large enough to occlude the ground from their bottom to the
horizon (in which case the two definitions are roughly equivalent) and if

F

�

the ground contains patches which look significantly different that the
majority of the ground. This is the case in the Newell Simon Hall data
set, where most of the carpet is flat grey, but contains a few stripes of
red. In this situation, the literal interpretation may mistakenly mark the
carpet as obstacle, whereas the “backwards” interpretation will get the

correct answer most of the time. This would be
an example of using domain constraints to help
disambiguate the visual input.

The second branch starts at the bottom of
the image and iterates up, using a 6 by 3 win-
dow. No matter which column the individual
would be judged on, it only looks at the center
of the image; the result producing branch will
look at the intended column. At each location,
if the average gradient magnitude over the win-
dow is more than 250, the execution of this sec-
ond branch stops. Otherwise the execution will
continue, since there are no other break state-
ments. If the bottom middle of the image
always sees ground, and the ground has low
gradient, this would cover a portion of the
image that is most likely ground.

At each location in this swath, the follow-
ing statements are computed:

Because the window has a height of three, y
starts out as one less than image-max-y and
decreases by one each iteration. Therefore, c is
the iteration number, i.e. it starts as one on the
first iteration and on each iteration becomes one
larger.

Locations d and e accumulate an average of
two image statistics. The average of n numbers
is sum of the numbers divided by n. Given the
average, we can calculate the exact sum by sim-
ply multiplying by n. Therefore, to include one
more element in the average, we simply multi-
ply the old average by the number of items in
that average, add the new value, and divide by
the new number of items. Whenever the branch
breaks, the two locations will contain the most
up-to-date averages.

The result producing branch uses a rectan-
gle of the same size, 6 by 3, but starts from the top of the image and
moves down. On every iteration, it starts by writing the current y posi-
tion to the a register; therefore, the final value of the a register, which is

c image-max-y y–=

di 1+

di c 1–() grad+

c
--------------------------------------=

ei 1+

ei c 1–() morslash median+ +

c
---=

Iterate-Down

r63 desired-x prog2

set-a

y

if-le

grad iter2-d

-

sqr 5000 if-le

+ iter2-e

-

sqr

morslash median

300 break 0

0

Iterate-Up

r63
if-le

grad 250 breakprog3

set-d

/

y+

-

y 1

read-d

× grad

/

y

-

y 1

read-e

× +

morslash median

+

set-e

igure 1a: The result producing branch works down from the
op, quitting when a window is found that is significantly similar
o the average computed in the other branch.

Figure 1b: Computes the average gradient and average of
another statistic over a portion of the image that is very likely
ground.

set-c

-

image-max-y y

/

image-max-x 2

�

the value for the function as a whole, will be the y location of the center
of the rectangle on its last iteration. It then compares the average gradi-
ent over the window with the average computed by the second branch,
and if they are not close, returns zero. The return value is discarded, the
window is moved and the next iteration is started. However, if the cur-
rent gradient is similar to the stored average, the second statistic is com-
pared. If it is close as well, then the window we are looking at matches
a particular description of the “average ground” and we stop.

Details of Nodes
The list of all nodes was the same for all three experiments and is shown
in Table 1. Protected division, a standard GP function, returns one if the
denominator is zero, thus avoiding divide by zero. This extension also
means a/a equals one even when a is zero. The other functions are
already defined for all real valued inputs. As described above, if-le
took four arguments; if the first was less than or equal to the second,
then the third was evaluated and returned and the fourth was not evalu-
ated, otherwise the fourth was evaluated and returned, the third going
unevaluated. Prog2 and prog3 took two and three arguments respec-
tively. Each argument was evaluated in turn, and the value of the last
one returned.

Desired-x was the x coordinate, in pixels, of the column that the
program would be judged on, that is, the column where the lowest non-
ground pixel was desired. If the random constant node was selected
during the creation of individuals, a random real number was selected
uniformly between -10,000 and +10,000 and used in its place. window-
area was the area, in pixels, of the window size, that is, the product of
the two digits in the first argument to iterate-up or iterate-down.
Image-max-x was the maximum x coordinate of any pixel; in this the-

Table 1: The Node List

Image Iteration Iterate-Up, Iterate-Down

Window Size 2x2, 2x3, 3x2, 3x3, 2x4, 4x2, 4x4, 5x5, 2x6, 6x2,
3x6, 6x3, 6x6, 7x7, 2x8, 3x8, 8x8

Mathematical +, -, ×, % (protected division), square, sin, cos, tan,
atan, atan2, min, max

Flow Control if-le (if-less-than-or-equal-to), prog2, prog3, break

Miscellaneous
Terminals

desired-x, random constant, window-area, image-
max-x, image-max-y, first-rect, x, y

Registers set-a, set-b, set-c, set-d, set-e, read-a, read-b, read-
c, read-d, read-e

Other Iterator iter2-a, iter2-b, iter2-c, iter2-d, iter2-e

Image Operators raw, raw-squared, median, median-squared,
median-corner, median-corner-squared, gradient,
gradient-squared, moravec-horiz, moravec-horiz-
squared, moravec-vert, moravec-vert-squared,
moravec-slash, moravec-slash-squared, moravec-
backslash, moravec-backslash-squared

�

sis that was always 319. Similarly, image-max-y was the maximum y
coordinate, 239. First-rect only appeared in the third argument to
the iterates, and was one when the window was at its startling location
and minus one after that. x and y were the coordinates of the center of
the rectangle, in pixels, rounded up.

Set-a through set-e took a single argument and set the given reg-
ister to that value. Read-a through read-e had no arguments and
returned the value of the given register. Iter2-a through iter2-e
were only available in the result producing branch; they returned the
value of the final value of the given register for the other branch.

The image operators came in two flavors, straight up and squared.
The straight up versions would return the average value of the operator
over the window, and the squared version would return the average of
the squared value over the window. Raw was simply the raw image pix-
els, median was the result of replacing every pixel with the median of
all pixels in a 5 by 5 window centered on it (a kind of low pass filter),
median-corner was the raw minus the median (and therefore a kind
of high pass filter), gradient was the magnitude of the 3 by 3 Sobel
gradient operator, and the Moravec interest operators were simply the
squared difference between adjacent pixels, either horizontally, verti-
cally, or diagonally.

The random constant node actually represents a family of nodes
each with a different value. In Creator, the total number of unique nodes
is always 255. Each individual had two branches, each branch was lim-
ited to 1000 nodes. This gives an upper bound to the search space of

2552000 ≈ 104,813. While there are some restrictions, this nevertheless
gives an indication of the order of the search space.

Other Details
Fitness measures in evolutionary computing have two goals. First, they
should select individuals whose children, grandchildren, etc. are likely
to do well. Second, because the best solution found is generally not an
optimal solution to the problem, it must say how desirable each individ-
ual is as a final result.

The common approach is to consider these to be the same, by
assuming that individuals who solve the problem well are more likely
than others to have some component that would be useful in a full solu-
tion. However, as described in the “Early Experiments” section of the
next chapter, that proved problematic and Illah Nourbakhsh suggested
the solution.

The fitness measure used was rather simple. Each column of each
image was a separate fitness case. The evolved program was run, and
the value stored in the “a” register compared to the hand created ground
truth. If the register value was within 10 pixels of the ground truth, it
declared “correct.” The fitness of an individual was the number of cor-
rect answers.

This measure penalizes all answers that are more than one win-
dow’s height away from the correct answer, penalizing them equally no
matter how far away, under the assumption that whatever caused them
to give the wrong answer was completely off. Rewarding individuals
for achieving a better answer within the 10 pixel boundary could result
in selecting individuals which get one pixel closer on a number of fit-
ness cases at the expense of getting a few more fitness cases wrong. An
example of a somewhat convoluted routine which resulted in such incre-

�

mental improvement is discussed in the next chapter. Getting the
answer correct to within ten pixels is generally more than good enough
for obstacle avoidance.

During online validation for the previous experiments, it was found
that the robot could not see obstacles near it, because these were below
the field of view of the camera. Because the vision and obstacle avoid-
ance algorithms are reactive, they cannot avoid obstacles outside of the
field of view. Therefore, the camera was moved to the front of the robot
and pitched 51° from horizontal, such that the wheels were just beyond
the field of view of the camera.

Images were first dewarped using the dewarper in [Moravec 2000],
an updated version of the dewarper used in the previous chapter. The
median image operator was a simple median of all image values in a
5×5 window. The implementation of the median filter in these experi-
ments was optimized to take much less time than a simple quicksort, but
computed exactly the same result. It was validated by median filtering
all images in a given data set using both methods and comparing the
result.

Simplifying Evolved Programs
While it is unnecessary to know how a particular program works in
order to use it, such knowledge can shed light on several questions.
This includes practical questions: Are these solutions that could be
implemented by hand, or are they far too subtle and complex? How will
they generalize to other environments? Are there any obvious failure
modes that we have not seen? Other questions arise when trying to
improve the evolutionary algorithm. What features did it make use of?
How did it use them? How do those differ from ways humans use
them?

Unfortunately, programs created by simulated evolution are often
large and convoluted. Thankfully, they also often have branches that are
never executed, calculations whose results are never used, etc. There-
fore, the first step to understanding evolved programs was to simplify
them.

Two main methods present themselves: simplifying by hand and
automatic simplification by computer. Simplifying by hand can be time
consuming and error prone, although a person can often notice simplifi-
cations that would be difficult to teach a computer. However, writing a
program to simplify them can also be time consuming, and may contain
undiscovered bugs. The choice was even less clear because computers
are better at different kinds of simplification than people are.

The path used in this work was to start simplifying by hand, and
whenever a pattern was noticed that was straightforward to automate, do
so. Since the programs are represented as expressions in tree form, Lisp
is the natural language in which to write the simplifier. The simplifica-
tion code was that in an appendix of [Koza 1992]. This code is an
“engine” written in Lisp that requires rules were added specific to a par-
ticular list of nodes.

To validate the system, each new simplification rule was tried on a
canonical case, and every hint of a bug tracked down. As well, a third
of the interesting branch of an individual in the next chapter—approxi-
mately 300 nodes—was simplified by hand, and compared it to the
automated system. Finally, the simplified individual was re-run on the

�

training data to verify that its score had not changed. It should be
pointed out that all of these verifications were repeated many times as
the simplification rules were added one by one.

The first step was to keep track of which nodes were never actually
evaluated. Branches can go unevaluated when the condition of an if-
le statement always evaluates to the same value, or as the result of a
break statement. For example, (if-le 0 300 x y) will always take
the x branch. In this case, the entire expression can simply be replaced
with x. In general, since the first two branches may have side effects,
we must keep them along with the always-evaluated branch, turning the
if-le into a prog3.

In the example above, this happens because both branches of the
conditional are constant, and will therefore evaluate the same way on
any data set. However, we could go further and also eliminate branches
that are never executed when run on the training data set. For the pur-
poses of the training data the prog3 and if-le forms are the same.
Which generalizes better? The question could also be asked of existing
prog3s where the first branch always evaluates less than or equal to the
second. In that case it seems arbitrary to convert it into an if-le and
add a clause that does not affect the learning.

Table 2: Simplification Rules

Rule Example

Rules that Eliminate Computation

Remove branches that were never exe-
cuted on training data

(if-le a b x y) -> (prog3 a b y) if a is always less
than or equal to b when run on the training data.

Remove initial branches of progn that
do not have side effects.

(prog3 x y z) -> (prog2 x z) if y does not have any
side effects.

Eliminate nested calls to set (set-a (set-a y)) -> (set-a y)

Eliminate a call to set if the value will
be overwritten before it is ever read

(set-e (+ (set-e x) y)) -> (set-e (+ x y)) if
neither x nor y calls break, and if y does not contain a
read-e.

Eliminate a call to set in the result pro-
ducing branch if that register is never
read.

(set-e x) -> x if no read-e ever appears. Only applies
to the result producing branch.

Rules for Human Readability

Convert two successive instances of
prog2 into prog3

(prog2 (prog2 x y) z) -> (prog3 x y z)

Raise prog2 if it is the second branch to
an arithmetic operator, if the reordered
branches do not contain break and do
not read anything the other one sets.

(+ x (prog2 y z)) -> (prog2 y (+ x z)) if x does
not read any register that y sets and vice versa, and if break
does not appear in either x or y.

If the argument to a set is an if-le,
push the set into the last two arguments
of if-le.

(set-b (if-le a b x y)) ->
 (if-le a b (set-b x) (set-b y))

�

In other words, the genetic programming does not know the differ-
ence between prog3 and if-le, except in how they influence evalua-
tion. An if-le with a branch that is never executed, and whose three
remaining branches are always executed in order, is equivalent to a
prog3 as far as the GP is concerned. The never-executed branch does
not affect fitness in any way, so we have no inductive reason to suspect
it would do anything worthwhile on new data. Treating it as a prog3 is
more natural.

Therefore, the first step in editing the evolved programs was to run
the program on training data, keeping track of which subtrees were
never executed in practice, then eliminate those subtrees. That was
done in C, but the rest of the simplifications were done in LISP. The set
of simplifying rules is described in Table 2.

The rules were carefully chosen not to produce any loops, where
the effects of one rule could be undone by some combination of other
rules. Therefore, the rules could be continuously applied until no more
could be applied anywhere in the tree. The order of application of the
rules could affect the outcome, since the application of some rules ren-
der others inapplicable. This could be remedied by suitably generaliz-
ing some of the above rules, but in practice was not a problem.

As a side note, it is possible to apply these simplifications during
evolution itself. The value of this is a topic of debate in the genetic pro-
gramming community, and was not tried here.

Finally, the individual was rewritten into a syntax similar to a tradi-
tional procedural language and simplified further, for example noting
that a variable does not affect the results so that all references to it can
be removed, or that the code might usefully be reorganized in some way.
Any further simplifications were converted back into Lisp form and ver-
ified on the training set. Often, a hand simplification would allow more
automated rules to apply, so hand simplifying and automated simplify-
ing were alternated.

Results
The three experiments in this chapter differed only in the training data
used. The first used the data from the Field Robotics Center (FRC), the
second from nearby Newell Simon Hall (NSH), and the last used every
other frame from both of the first two. A scatter plot of the best fitness
achieved from every run is shown in Figure 2. The most notable feature
is the bimodal distribution of the first two runs.

All performance measurements in this chapter are on the training
data itself. Performance on other images, as well as performance when
used to control the robot, is discussed in the chapter “Online Valida-
tion.”

Field Robotics Center
The FRC runs are examined first. The summary of the training data at
the end of the Data Collection chapter is repeated here:

Camera Angle: 51 degrees from horizontal
Total Number of Frames: 356

Frames In Training Set: 71 (every fifth)
Number of Fitness Cases: 71 × 6 = 426

Elapsed Time: 82 seconds
Frame Rate Of Training Set: 71 ÷ 82 = 0.87 fps

F
it

ne
ss

 (%
 C

or
re

ct
)

Figure 2: A scatter plot showing the
fitness, i.e. the percentage of fitness
cases estimated correctly, of the best-
of-run individual in all three experi-
ments.

0

10

20

30

40

50

60

70

80

90

100

FRC
NSH
Both

	

Starts with robot in lab doorway. Moves straight until its in the
hallway, then turns right, travels down hallway, at end turns right, then
travels straight to dead end. All doors were closed. The fluorescent
light bulbs at the start are burned out, so the intensity of the carpet varies
widely. The shadow of the robot is visible at the bottom of most frames.

A random search was implemented by simply generating random indi-
viduals using the same distribution as the initial generation. Of the
2,042,079 individuals created this way, only 56 (0.0027%) did better
than the best constant approximation. The best individual achieved 246
out of 426 fitness cases, or 57.7%, within 10 pixels of correct.

A graph of the fitness of the best-of-generation vs. generation for
all FRC runs is shown in Figure 3. On the dual 700MHz Pentium III,
the time to evaluate a generation varied from 5 minutes (0.15 CPU sec-
onds/eval) to 77 minutes (2.3 CPU seconds/eval), averaging 35 minutes
(1.04 CPU seconds/eval), or 30 hours per run of 51 generations.

The best constant approximation, ignoring both the image and the
desired column, was to return image-max-y - 10, i.e. 228, to get 101
answers correct, for a fitness of 23.7%. Because of the camera’s wide
field of view, it often imaged walls on the left or right, which made for a
preponderance of answers at the very bottom of the image. Since there
was no penalty for returning an answer up to 10 pixels off, the constant
approximation got all columns that were within 20 pixels of the bottom.

In all but two of the runs, the best individual in the initial popula-
tion did worse than that, returning image-max-y - 3 and achieving 92
correct answers for a fitness of 21.6%. The other two runs achieved
29.3% and 36.4% in the initial population.

Interestingly, the graph shows that if an individual was going to end
up in the higher scoring mode, the fitness of the best-of-generation
would already be there by generation 11.

The best individual from all runs succeeded in 391 out of 426 fit-
ness cases, for a fitness of 91.78%. Some example images are shown in
Figure 4. In the upper left and upper middle images, all six fitness
cases were determined correctly. In the upper right, one of the two on
the filing cabinets was higher than desired, however, a difference this
small would not affect obstacle avoidance. The other three each contain
one more significant error. MPEGs of the best individual from all three
experiments, run on both the training data and other data as described
below, can be found at http://www.metahuman.org/Martin/Dissertation/.

0

20

40

60

80

100

0 10 20 30 40 50

Best
Second Best
Third Best
Fourth Best
Fifth Best
Sixth Best
Seventh Best
Eighth Best
Nineth Best

Generation

F
it

ne
ss

 (
%

 C
or

re
ct

)
Figure 3: Fitness of Best vs. Generation for FRC Runs

This individual can distinguish carpet from wall or door at the bot-
tom of the image, and find the boundary between ground and non-
ground, despite a burned out fluorescent light at the beginning of the
run, carpet intensities that vary from black to at least the 140s out of
255, the shadow of the robot and large gradient intensities on the carpet
due to luma coring.

Figure 5 graphs the fitness of the best, median, average and worst
of each generation in the run that produced the best individual. A few
trends are apparent. First, significant innovation happened only while
the median was significantly different than the best. Once half the pop-
ulation had substantially similar performance, significant change
stopped, suggesting that the population had largely converged and
diversity was lost. The average kept improving however, suggesting
that the median is a better measure of convergence than the average.

Only a subset of collected images were used in the training data,
which left others to be used as test data, to asses over fitting; see Figure

Figure 4: Performance on the training data of the best individual from the FRC hallway runs.

Figure 5: Best, Worst, Median and Average Fitness vs. Generation for the Best FRC Run

0

20

40

60

80

100

0 10 20 30 40 50

Best
Median
Average
Worst

�

6. As well, the locations of the columns were changed to in between the
ones used in training. The program used during this validation was a
simplified version, using the simplification techniques described above.
The simplified program returns exactly the same answers on the training
data, but may perform slightly differently on non-training data. Valida-
tion on an entirely new, live video stream is discussed in the chapter
“Online Validation.”

The performance on the test (non-training) data was judged using a
weaker criterion than that used during the genetic programming, namely
the author’s opinion of what error was significant for obstacle avoid-
ance. To give a conservative estimate, any questionable result was con-
sidered an error. Thus, an value was considered correct whenever it
would very clearly not affect obstacle avoidance, in the author’s opin-
ion. On fifty images of non-training data, five columns per image, the
best individual achieved 239 out of 250 columns correct, or 96.8%. The
eight errors were: missing the coat stand, missing a wall, thinking the
ground was an obstacle (x2), and missing a door (x4).

Simplified Best Individual from FRC Experiment
The final hand and machine simplified version of the best FRC individ-
ual is displayed in Figure 7.

In the first nine iterations, when y is less than or equal to nine, the
return value is set to nine. This ensures that if no other edge is found,
nine will be returned, which works for all values at the top of the image.

If the final value of b in the second branch is greater than nine, then
“a” will be set on every iteration. Therefore, the final value of “a” will
represent the bottom of the image. Since the other conditions require a
large gradient, this case must catch walls, doors, and other objects that
extend to the bottom of the image. In the training set, these were all a
solid colour, and therefore had a low gradient.

Figure 6: Performance on non-training data of the best individual from the FRC hallway runs.

��

If neither of the other conditions are met, the median image value is
checked. If it is too low, the other conditions are ignored. It will be
recalled that luma coring was on during the data collection run, and that
luma coring converts any intensity value less than 32 to 16. This causes
large gradients at the boundaries of such regions, which are almost
always on the carpet. Thus, it is reasonable to assume this check avoids
those problems.

Finally, the gradient is checked. If it is greater than 413.96 a non-
floor pixel is noted; in other words, this code embodies the assumption
that, in areas of the image with a median pixel value of 36 or higher, the
carpet does not have a strong gradient. Similarly, if the gradient is too
low, the evidence for non-carpet is considered inconclusive at best. If
the gradient is between these two bounds, the non-linear condition is
checked.

Based on the role that the second branch plays in the result produc-
ing branch, we can conjecture that it detects walls and doors. Given that
it only looks at horizontal differences in the image, we can conjecture
that it detects areas with little texture. If moravec-horizontal is ever
zero, a divide by zero is called for, and by the rules of protected divi-
sion, the result will be 1. Since b’s initial value is so high, we might also
conjecture that this formula simply detects whether the operator ever
becomes zero. Whether or not these are true are best answered, not by
simplification, but using other techniques suggested in the Discussion
chapter.

A few other features deserve comment. The two branches represent
two very different styles of algorithm. The result producing branch is
essentially a decision tree, although one of the decisions is a non-linear
boundary in the space spanned by two image operators. The other
branch, that plays the role of detecting a certain kind of feature, is a
recurrent mathematical function involving both a single image operator
and the location of the column.

This division into two cases—gradient based boundaries and
objects that touch the floor—was discovered automatically. Nothing in
the representation suggested the two different cases, nor that the two
branches should each tackle a separate case. This is an example of the
genetic algorithm simultaneously exploiting regularities in both the
problem domain and the representation.

It should also be noted that in the automatically simplified version,
no random constants appeared. Instead, when numerical constants were
needed, the area of the window (9) and the image dimensions (319, 239)
were used, often in combination with mathematical functions. This sug-
gests that the range of random constants was too large (-10,000 to
10,000); numbers in the hundreds might work better. Also, the trigono-
metric functions went unused, suggesting that they are simply distrac-
tions. The column of iteration was always desired-x, suggesting that
this is best hard coded. If borne out by examining other runs, these con-
jectures could be tested in a controlled experiment.

Result Producing Branch:

Iterate-Down, 3x3 window, centred on
 the desired column:

if y ≤ 9 then
 a := y;

if iter2-b > 9 then
 a := y;

if median > 35.4444 then
{
 if gradient > 413.96 then
 a := y;

 if gradient > 239 and

 (gradient / 239)4 > moravec-slash then
 a := y;
}

Second Branch:

b (initial value) := 3.40282e+38

Iterate-Up, 3x3 window, in column
 desired-x:

Where h is moravec-horizontal

Figure 7: A simplified equivalent of the
best individual from all FRC runs.

b
b 1 h+() 1 h h

2
h

4
+ + +()desired-x–

h
5

--=

��

Newell Simon Hall
The summary of the training data at the end of the Data Collection chap-
ter is repeated here:

Camera Angle: 51 degrees from horizontal
Total Number of Frames: 328

Frames In Training Set: 65 (every fifth)
Number of Fitness Cases: 65 × 6 = 390

Elapsed Time: 75 seconds
Frame Rate Of Training Set: 65 ÷ 75 = 0.87 fps

While the robot had to travel mostly straight down a hallway, it
started out a little askew, so it approached one side. At one point, a per-
son walks past the robot and is clearly visible for many frames. At the
end of the hallway it turns right. The carpet is grey with a large black
stripe.at one point. The shadow of the robot is visible at the bottom of
most frames.

A random search was implemented by simply generating random indi-
viduals using the same distribution as the initial generation. Of the
2,000,964 individuals created this way, only 68 (0.0034%) did better
than the best constant approximation. The best individual achieved 225
out of 390 fitness cases, or 57.7%, within 10 pixels of correct.

A graph of the fitness of the best-of-generation vs. generation for
all NSH runs is shown in Figure 8. On the dual 700MHz Pentium III,
the time to evaluate a generation varied from 3.5 minutes (0.11 CPU
seconds/eval) to over 10 hours (19 CPU seconds/eval), averaging 43
minutes (1.28 CPU seconds/eval), or 36 hours per run of 51 generations.

The best constant approximation, ignoring both the image and the
desired column, is to return 10, which achieves 109 correct answers, for
a fitness of 27.95%. This hallway was wider than the FRC hallway, so
the best bottom-of-image score was 28 hits or 7.18%. Since there is no
penalty for returning an answer up to 10 pixels off, the constant approx-
imation gets all columns that are within 20 pixels of the top.

In all runs, the best individual in the initial population did as bad or
worse than that. Because the computer kept performing runs until
halted by human intervention, an eleventh run was started, which hap-
pened to achieve a fitness of 32.56% in the first generation.

One run broke the pattern of achieving over 50% early on if it was
ever going to achieve it. The individuals in this run took an inordinate

0

20

40

60

80

100

0 10 20 30 40 50

Best

Second Best

Third Best

Fourth Best

Fifth Best

Sixth Best

Seventh Best

Eighth Best

Nineth Best

Tenth Best

Generation

F
it

ne
ss

 (%
 C

or
re

ct
)

Figure 8: Fitness of Best vs. Generation for NSH Runs

��

amount of time to evaluate, 19 seconds each or over 10 hours per gener-
ation, 15 times the average. For this reason, the run was halted with 11
generations left, which at that rate would have taken almost five more
days to finish. Nevertheless, this run will be completed by the defense.
As can be seen from the graph, it was performing more poorly than the
other three runs in the higher scoring group.

The best individual from all runs succeeded in 353 fitness cases, for
a score of 90.51%. Some example images are shown in Figure 9. In
the images in the top row, all six fitness cases were determined cor-
rectly. In the lower left, a wall is mistakenly identified as ground
although the black carpet is correctly labeled as ground. The majority of
errors were incorrectly classifying the black carpet as non-ground.
When the black patch was far away (and brighter) it was generally clas-
sified correctly, although the second column from the left classified it
correctly only at extreme distances. At closer distances, where the
intensity fell to less than 32 and was therefore changed to 16 by the
luma coring, it was reliably and rather uniformly misclassified. This is
more than enough to foul obstacle avoidance code.

Again, the best evolved individual succeeded in over 90% of cases,
correctly classifying people, doors and baseboards with enough fidelity
for obstacle avoidance, despite the shadow of the robot and moiré pat-
terns in the images. Misclassifying the black patch was the only prob-
lem that would significantly impact obstacle avoidance.

It was hoped that the best-of-run individuals from other high scor-
ing runs might have got the black carpet right while encountering less
significant problems in other areas. However, that was not the case;
whereas the individual described above worked when the black patch
was far away, the other individuals consistently misclassified it at all
distances.

Figure 9: Performance on the training data of the best individual from the NSH hallway runs.

��

Figure 10 graphs the fitness of the best, median, average and worst
of each generation in the run that produced the best individual. A few
trends are apparent. First, the median equaling the best again appears to
be a good indicator of convergence. Again, the average kept improving,
suggesting that the median is a better measure of convergence than the
average.

The performance on test (unused training) data, using different col-
umns, is shown in Figure 11. The program used during this validation
was again simplified in a way that may perform slightly differently on
non-training data. On forty five images of non-training data, five col-
umns per image, the best individual achieved 215 out of 230 columns
correct, or 93.5%. The criterion here was more forgiving than that used
during evolution, counting only errors relevant for obstacle avoidance.

Of the fifteen errors, twelve were classifying the black carpet as
non-ground, two were classifying the carpet at the bottom of the image
as non-ground, and one was classifying a door as ground. There were
also a number of examples of classifying the baseboards as ground but

0

20

40

60

80

100

0 10 20 30 40 50

Best
Median
Average
Worst

Figure 10: Best, Median, Average and Worst of Generation vs. Generation for the Best NSH Run

Generation

F
it

ne
ss

 (
%

 C
or

re
ct

)

Figure 11: Performance on the test (non-training) data of the best individual from the NSH hallway runs.

��

finding the wall above them, and these were considered not significant
for obstacle avoidance.

Simplified Best Individual from NSH Experiments
The final simplified version of the best NSH individual is shown in Fig-

ure 12.
The individual uses the

approach of starting at the bottom of
the image, setting the “a” register to
the current y position, then breaking
wherever it detects the ground/non-
ground boundary.

At the first location of the win-
dow, i.e. the bottom of the image, y
will always equal four. The return
value is tentatively set to four, and
the given condition is evaluated to
determine whether the bottom of the
image represents ground or non-
ground. Since walls and baseboards
were generally caught at the very
bottom of the image, this test must
be the one that decides.

In subsequent iterations, if the
geometric mean of the average of
the gradient magnitude squared and
the average median pixel value
squared is greater than 100,000, the
y location from the previous location
is returned. Otherwise, the return
value is updated to the current y
location, and series of tests are per-
formed to decide whether or not the
window is over a ground/non-
ground boundary.

In common with the best indi-
vidual from the FRC hallway runs,
this individual effectively performed
different computations at the bot-
tom of the image than on the rest of
it. However, the test at the bottom is
very similar to another test in the
main branch. Before simplification
the original individual did not have
“if first-rect” as the first statement,
but instead used the same code for
both cases, with only a few values
changed by “if first-rect” conditions.
In contrast, the FRC individual used
a completely different branch for the
bottom test.

This individual does not main-
tain any state from one window
location to the next, except for the

F
S
f
N

NSH Best, Result Producing Branch:
Iterate-Up, 2 by 8 window, centered on the desired column:

if first-rect then
{
 a := y;

 if tan(moravec-horizontal) ≤ 1 + y / desired-x and
 (median-squared - y) × median-corner-squared ≤
 moravec-horizontal-squared then
 break;
}
else
{
 if gradient-squared × median-squared > 10,000,000,000 then
 break;

 a := y;

 if (median-squared - y) × median-corner-squared ≤ y then
 break;

 if gradient-squared > 4656.07 then
 temp := 2;
 else
 temp := 1 + y / morslash × gradient-squared² /
 (gradient-squared/median-squared - desired-x + image-max-y - y);

 if tan(moravec-horizontal) ≤ temp then
 {
 if (median-squared - y) × median-corner-squared ≤
 moravec-horizontal-squared then
 break;

 if (median-squared - desired-x + image-max-y - y)
 × median-corner-squared ≤ moravec-horizontal-squared then
 break;

 if (median-squared-y) × median-corner-squared ≤ 239 then
 break;
 }
}

Second Branch:
Not used.

 Figure 12: Simplified version of the best individual from the NSH runs.

��

previous location of the window which could easily be computed.
Looking at only the pixel values without maintaining such state, it is
most likely impossible to distinguish baseboards from black carpet.
Even people, if only shown a 2 by 8 pixel window, would find it impos-
sible to distinguish between them. What’s more, the poor black-carpet-
finding performance of the column second from the left may be related
to one or the other of the desired-x tokens.

Given this lack of state, the approach of working up from the bot-
tom and breaking at the first potential ground/non-ground transition is
equivalent to the best individual from the FRC runs, which would work
down from the top, setting the “a” register at every potential ground/
non-ground transition.

This individual is still similar to a decision tree, but uses many
more image statistics in many more non-linear combinations. It also
uses the x and y locations of the window in these decisions.

Combined
The last experiment used every other training image from both of the
previous data sets. The summary of the training data that appears at the
end of the Data Collection chapter is repeated here:

Camera Angle: 51 degrees from horizontal
Total Number of Frames: 328 + 356 = 684

Frames In Training Set: 68 (every tenth)
Number of Fitness Cases: 68 × 6 = 408

Elapsed Time: 75 + 82 = 157 seconds
Frame Rate Of Training Set: 68 ÷ 157 = 0.43 fps

This data set was simply the combination of the above two data
sets, using every tenth frame instead of every fifth in order to keep the
training set size approximately equal.

A random search was implemented by simply generating random indi-
viduals using the same distribution as the initial generation. Of the
2,009,923 individuals created this way, only 345 (0.0172%) did better
than the best constant approximation. The best individual achieved 236
out of 408 fitness cases, or 57.8%, within 10 pixels of correct.

A graph of the fitness of the best-of-generation vs. generation for
all runs in this experiment is shown in Figure 13. On the dual 700MHz

0

20

40

60

80

100

0 10 20 30 40 50

Best

Second Best

Third Best

Fourth Best

Fifth Best

Sixth Best

Seventh Best

Eighth Best

Nineth Best

Tenth Best

Figure 13: Fitness of Best vs. Generation for Combined Runs
F

it
ne

ss
 (%

 C
or

re
ct

)

Generation

��

Pentium III, the time to evaluate a generation varied from 50 seconds
(0.025 CPU seconds/eval) to over 2 hours (4.3 CPU seconds/eval), aver-
aging 30 minutes (0.928 CPU seconds/eval), or 26 hours per run of 51
generations.

The best constant approximation, ignoring both the image and the
desired column, is to return 10, to get 79 out of 408 fitness cases correct,
for a fitness of 19.36%. Of the ten initial populations, for of them
achieved this fitness; the others achieved higher. The run that eventu-
ally produced the best-of-experiment individual was one of the four, that
is, at the initial, random population it was tied for last place. The run
that eventually came in second was the lowest scoring of the other six,
with a score of 20.83%. The best individual from all initial populations
25.74%. Once again there was a bimodal distribution, and once again
the fate of a run was sealed early on, this time by generation 9.

Figure 14: Performance on training data of the best individual from the combined data set runs.

Figure 15: Best, Median, Average and Worst Fitness vs. Generation for the Best Combined Run

Generation

F
it

ne
ss

 (
%

 C
or

re
ct

)

0

20

40

60

80

100

0 10 20 30 40 50

Best
Median
Average
Worst

�	

The best individual from all runs
succeeded in 346 out of 408 fitness
cases, for a fitness of 84.8%. Some
example images are shown in Figure 14.
In the upper left and upper middle
images, all six fitness cases were deter-
mined correctly. Errors were concen-
trated almost entirely on the first few
images and the on misclassifying the
black carpet. In the upper right, the sec-
ond image of the training set shows
errors on very dark carpet, as well as
misclassifying walls that go to the bot-
tom of the image. The lower right image
shows a misclassification of dark carpet,
in this case the robot’s own shadow, as
obstacle. Other errors that would be sig-
nificant for obstacle avoidance are rare.
The filing cabinets, for example, were
always classified more than well enough
for obstacle avoidance. The lower left
shows a misclassified carpet, and the
lower middle a missed door.

Outside of the two significant types
of error, the individual performs very
well. The small errors appear transient
and would not affect navigation in either
environment. In the vast majority of
cases it correctly classifies people, doors
and walls despite the combination of hur-
dles in the previous two data sets: a
burned out fluorescent light on part of
the run, carpet intensities that vary from
black to at least the 140s out of 255, the
shadow of the robot and moiré patterns
of noise in the images.

Figure 15 graphs the best, median,
average and worst of each generation of
the run that produced the best-of-experi-
ment individual. The theory that there is
no improvement after the median equals
the best is supported, if only because the
condition never happens and there is
continuous improvement. Again, there
seemed to be no clear relationship
between the average individual and
future performance.

The simplified version of this indi-
vidual was also run on non-training data,
i.e. the frames in between those that were
collected, and on columns between those
used during evolution. This was again
judged using the author’s opinion of

Best Combined, Second Branch:
Iterate-Up, 5 by 5 window in the desired column:

let hybrid1 = ;

let hybrid2 = ;

if moravec-slash ≤ y then
{
 if moravec-slash > b then
 e := image-max-y;
 break;

 e := y;

 if moravec-slash ≤ median-corner then
 break;

 b :=

 ;

 if moravec-slash > b
 break;

 if y ≤ 319 moravec-backslash then
{

 b := ;

 if moravec-slash ≤ moravec-backslash ⁄ b then
 break;

 b := ;

 if moravec-slash ≤ moravec-backslash ⁄ b then
 break;

temp := ;

 } else {
 temp := median-corner-squared;

}

(continued on next page)

median-corner-squared
319gradient-squared

1
moravec-backslash

median-corner-squared
---+

y

med-cor-s
319

------------------------ mor-bkslh
raw

------------------------+⎝ ⎠
⎛ ⎞ 1

mor-bkslh med-cor-s
mor-bkslh

raw
------------------------+⎝ ⎠

⎛ ⎞ hybrid2

319gradient-squared
---+

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

--

y

hybrid1
moravec-backslash

raw
--+⎝ ⎠

⎛ ⎞ hybrid2

y

hybrid1
y

raw
---------+⎝ ⎠

⎛ ⎞ hybrid2

--

y

hybrid1 1
mor-bkslsh

y
--------------------------- med-cor-s

mor-bkslsh
--------------------------- mor-bkslsh

raw
---------------------------+⎝ ⎠

⎛ ⎞ hybrid2+⎝ ⎠
⎛ ⎞

--

�

what error was significant for obstacle
avoidance.

On forty eight images of non-train-
ing data, five columns per image, the
best individual achieved 208 out of 240
columns correct, or 86.7%. The success
rate on the FRC subset was 92%, and on
the NSH subset 81%. On the FRC subset
there were 7 conservative errors, i.e.
labeling the ground as non-ground, two
where it missed a wall, and one where it
missed a filing cabinet. On the NSH sub-
set there were 22 conservative errors, and
all but 2 of them were mistaking the
black carpet for an obstacle. The black
carpet was labeled as ground every time.

Simplified Best Individual from
Combined Experiment
The result producing branch simply
returns the e register of the second
branch and isn’t shown here. The final
hand and machine simplified version of
the second branch is displayed in Figure
16.

Two expressions occurred multiple
times, denoted as hybrid1 and hybrid2 in
the figure. They were image statistics
combined with constants, and did not
otherwise depend on the location or size
of the window, etc. Therefore, they can
be viewed as genetically discovered
image statistics. They were never used
on their own, always as a part of a larger
mathematical expression.

This individual used the technique
of writing the y location of the center of
the current window in the result register
during every image, then breaking when
it determined that there was a transition
between ground and obstacle. The only
exception is writing image-max-y, i.e. the
bottom of the image, at one point, and
writing median-corner-squared.
Because there is no break statement after
median-corner-squared is written, the
value would be overwritten by the y reg-
ister on the next iteration. The only way
the final result of the branch could be
affected would be if this statement were
executed on the final iteration. It is not
known whether that happened on the
training data.

(continued from previous page)

if y > 319 × temp then {
 b := median-corner-squared;
 } else {

 b := ;

 if moravec-slash ≤ moravec-backslash then {
 temp-b := b;

 b := ;

 if moravec-slash ≤ moravec-backslash / b then
 break;

 b := ;

 } else {

 b := ;

}
}

} else {
 e := y;

b := ;

 if moravec-slash > b then
 break;

 if moravec-slash ≤ moravec-backslash / median-corner-squared then
 break;

 if moravec-slash ≤ moravec-backslash then
 e := median-corner-squared;

 b := ;

 else

 b := ;

}

y

hybrid1
moravec-backslash

raw
--+⎝ ⎠

⎛ ⎞ hybrid2

y

hybrid1
hybrid2

raw
------------------+⎝ ⎠

⎛ ⎞ hybrid2

--

y

hybrid1 1
mor-bkslsh

temp-b
--------------------------- med-cor-s

mor-bkslsh
--------------------------- mor-bkslsh

raw
---------------------------+⎝ ⎠

⎛ ⎞ hybrid2+⎝ ⎠
⎛ ⎞

--

y
hybrid1 hybrid2×

y

median-corner-squared
319

--- hybrid2
raw

------------------+⎝ ⎠
⎛ ⎞ hybrid2

y

hybrid1 1
mor-bkslsh
med-cor-s
--------------------------- med-cor-s

mor-bkslsh
--------------------------- mor-bkslsh

raw
---------------------------+⎝ ⎠

⎛ ⎞ hybrid2+⎝ ⎠
⎛ ⎞

--

y
hybrid1 hybrid2×

Figure 16: Simplified version of the best individual from the com-
bined data set experiment.

��

This individual uses the b register to maintain state from one win-
dow location to the next. The value from a previous iteration is only
ever compared to the moravec-slash image statistic.

In this simplified form it is again organized as a decision tree, how-
ever the decisions are highly non-linear, in some cases involving as
many as five image statistics along with the current y location of the
window.

Unlike the best-of-experiment individuals in the two previous
experiments, here it is not clear which branches detect objects at the bot-
tom of the image, and which detect the transition between ground and
non-ground.

As was the case with the-best-of-experiment individual from the
FRC runs, in this simplified version no random constants appeared.
Instead, when numerical constants were needed, the image height (319)
and expressions that evaluate to constants, such as a number minus
itself, were used. This again suggests that the range of random con-
stants was too large (-10,000 to 10,000); numbers in the hundreds might
work better. Also, the trigonometric functions again went unused, sug-
gesting that they are simply distractions. The column of iteration was
always desired-x, suggesting that this is best hard coded. If borne out by
examining other runs, these conjectures could be tested in a controlled
experiment.

Combined with Depth Limited Crossover
A final experiment used the combined data set but a different method of
limiting the size of individuals produced by crossover. Instead of the
total size of each branch being the criterion, the maximum depth was
limited to 17. That is, if the depth of an offspring was greater than 17, it
was discarded and replaced with a copy of a parent. The maximum size
of trees (both iteration branches combined) seen in each generation was
smaller, 623 vs. 984 for the NSH runs and 912 for the FRC runs. That is
the average of each generation’s maximum, over all generations of all
runs. Because this experiment was not part of the original experimental
design (it was run by accident), it is not referred to in the rest of the dis-
sertation.

A graph of the fitness of the best-of-generation vs. generation for
all runs in this experiment is shown in Figure 17. On the dual 700MHz
Pentium III, the time to evaluate a generation varied from 3 minutes
(0.083 CPU seconds/eval) to 103 minutes (3.1 CPU seconds/eval), aver-

0

10

20

30

40

50

0 10 20 30 40 50

Best

Second Best

Third Best

Fourth Best

Fifth Best

Sixth Best

Seventh Best

Eight Best

Nineth Best

Tenth Best

Generation

F
it

ne
ss

 (%
 C

or
re

ct
)

Figure 17: Fitness vs. Generation for All Combined Runs With Depth Limiting

���

aging 28 minutes (0.84 CPU seconds/eval), or 24 hours per run of 51
generations.

The best constant approximation, ignoring both the image and the
desired column, is to return 10, to get 79 out of 408 fitness cases correct,
for a fitness of 19.36%. In four of the ten runs, the best individual in the
initial population got exactly that fitness. In three other runs, the best
initial individual achieved 19.85% or 81 fitness cases correct. The
remaining three runs achieved 21.08%, 24.02% and 24.26% in their ini-
tial random populations. Thus, in a random search of 40,000 individu-
als, the best score achieved was 24.26%. This was worse than the best-
of-run individual from every single run.

The evidence for a bimodal distribution is less strong, since the gap
between the potential groups is much smaller, there were only two runs
in one group, and there were a number of best-of-generation individuals
scoring in the gap. What’s more, one run left the lower group around
generation 40, eventually becoming the second best run, and the best
run saw significant improvement after generation 40. This suggests that
the population still contained significant diversity, and had the runs been
continued past generation 50, further improvements were possible. This
is in marked contrast to the size limited experiments.

The best individual from all runs succeeded in 192 fitness cases, for
a disappointing score of 47.06%. Some example images are shown in
Figure 18. The individual generally performed better on the FRC
images than the NSH images. Images where all six fitness cases suc-
ceeded were rare, and only happened on the FRC subset. One such
image is shown in the upper left. From a casual inspection, the best per-
formance on a single NSH image was three out of six cases correct, as in
the upper middle image. With the exception of missing a few walls at
the bottom of the image, the errors were all mislabelling ground as non-
ground, i.e. thinking the boundary between ground and non-ground was

Figure 18: Performance on training data of the best individual from the combined data set runs with depth limiting.

���

below the real boundary, somewhere on the carpet. The remaining four
images show examples of that. This is far too poor to be used for obsta-
cle avoidance.

Figure 19 graphs the fitness of the best, median, average and worst
of each generation in the run that produced the best individual. These
results challenge the idea of the median as an indicator of convergence.
Substantial improvement happened twice while the median was sub-
stantially equal to the best.

The performance on test (unused training) data, using different col-
umns, is shown in Figure 20. The program used during this validation
was again simplified in a way that may perform slightly differently on
non-training data. On forty eight images of non-training data, five col-
umns per image, the best individual achieved 111 out of 240 columns
correct, or 46%. The criterion here was more forgiving than that used
during evolution, counting only errors the author deemed relevant for
obstacle avoidance.

0

10

20

30

40

50

0 10 20 30 40 50

Best

Median

Average

Worst

Figure 19: Best, Median, Average and Worst Fitness vs. Generation for the Best Combined Run

Generation

F
it

ne
ss

 (
%

 C
or

re
ct

)

Figure 20: Performance on test (non-training) data of the best individual from the combined data set runs.

���

Again the performance was better on the FRC data than the NSH
data, scoring 67% correct on the former but only 23% on the latter. The
errors were again almost entirely classifying ground as non-ground.

Observations
This section records trends and observations, most of which are unsub-
stantiated yet suggestive. They are discussed further in the Discussion
chapter.

In almost every run of all three experiments, the best individual in
the final generation outperformed the best individual from the initial
generation, and in the more successful runs by a wide margin. Profiling
data shows that later individuals spent more time examining the image.
In evaluating the initial, random population, about 15% of CPU time
was spent calculating the averages of image operators, whereas overall
for a run, about 40 to 50% of CPU time was recorded there. This was
true across all three experiments. As well, the more successful runs
generally took more CPU time to complete, suggesting that creating
programs at random emphasizes the wrong part of the space, and that
the evolutionary computation is not finding the best trivial solution, but
rather a substantial solution. This is further suggested by the workings
of the simplified individuals, which perform non-trivial computations
over the image.

The choice of image operators should be noted. In particular, the
average of the raw image values is never used in the three individuals
described here, although the average median value is used several times.
The other operators were all used, except the vertical component of the
Moravec interest operator.

Interestingly, all distributions were bimodal, and with one excep-
tion, runs that finished in the second group were already there by gener-
ation 11. The one exception was a strange run that took large amounts
of computing power, and did worse than the other three runs in its cate-
gory. While more runs would need to be performed to verify this trend,
it suggests a strategy of rejecting runs that have not scored over, say,
50% by, say, generation 20.

As noted, in the best runs, no more improvement seemed to take
place after the median fitness became substantially similar to the best
fitness for a few generations. The data from the other runs could be
explored to determine the value of this condition.

The successful individuals analyzed here all performed very differ-
ent computations to decide between non-ground at the bottom of the
image, and a ground/non-ground transition in the middle of the image.
These tasks are very different, since the first looks at the type of image,
whereas the second looks for a change in the image.

Finally, the best individuals here made less use of state than those in
the expanded representation. This may have been due to the lack of a
seed. The seed provided a framework that already used state for the
evolution to modify. It may also have been due to the change in fitness
measure, since the state was used to delay calling break by an iteration
or two in order to get a few pixels closer to the ground truth.

The experiments of the last two chapters have applied genetic program-
ming to robot visual obstacle avoidance in various ways, in a number of
environments, and shown that the solutions achieved generalize well to

���

non-training data taken from the same run as the test data. However,
algorithms that work well on canned data are one thing, but the ultimate
goal of this work is algorithms that work well on a real robot, in the real
world. That is the subject of the next chapter.

���

���
���)��
���
��

Previous chapters evolved vision algorithms that succeeded both on
training data and on other test data taken at the same time. However, the
real test—and the point of this dissertation—is how well they work
when controlling a mobile robot.

There are many reasons to be pessimistic. The evolved algorithms
might be sensitive to the tilt of the camera, the iris setting, and the exact
location the images were taken from. It might be confused by objects it
had never seen during training. Months or years of wear and tear on the
carpet might subtly change the observed gradient, causing problems.
This chapter reports on the exploration of these issues. First, the experi-
mental setup is described, then the results are reported, and finally the
main observations are recorded.

Experimental Setup
For reasons described in the previous two chapters, a priori argu-
ments suggest that if there are any differences in performance, the
simplified individuals should generalize better to new data than
the individual as evolved. In addition, these simplifications can
speed up the computation by an order of magnitude, especially
when it eliminates an image operator which is time consuming to
compute, such as the median based filters. For these reasons, the
simplified individuals were used for these tests.

The individual is executed using the same implementation of
functions and terminals as during learning, with the exception of
the image operators. During learning the texture values are pre-
computed for areas of all images, but during a run they are com-
puted only when and where needed.

The next step was to run the algorithm on a live video stream
and display the results in a window. Not only did this facilitate debug-
ging, but it allowed the properties of the evolved algorithm to be
explored in a qualitative way and to estimate what would be needed in a
navigation algorithm. To the great delight and relief of the author, all
algorithms generalized well to the new data.

A validation run was a single run of the robot, i.e. lasting from the
moment the navigation algorithm was given control until either it col-
lided with some object, or was shut off by hand. A validation set was
the set of all validation runs for a single individual in a given environ-
ment. In this dissertation, all validation sets contained five validation
runs.

With the exception of adding a chair and replacing the burned out
lights in the FRC hallway, and creating barriers as discussed below, the
hallways were not modified for the validation. Office doors were not
opened or closed, nor were the environments cleaned up in any way.
The tether can be seen in approximately one half of the images, and was
kept to the side and out of the robot’s way as much as possible. People
were not excluded, and the author occasionally walked through the
scene. The robot moved slower than people walked, so in practice peo-
ple were not a significant concern. In the FRC runs, only one person

*

Record Video

Learn Offline

Build Navigation

Validate Online

Genetic Algorithm

Robot, Real Time

By Hand

Robot, Real Time

���

other than the author appeared. The NSH hallway was more active,
with people visible in most runs. People were not given any instruction,
and naturally avoided walking in front of the robot. Those who asked
were told it was quite ok to walk around it. The people and the tether
were the only dynamic elements in the scene.

All validation runs used the same camera as was used during data
collection, at the same location and orientation on the robot. The iris
was adjusted before each validation set by running the individual on the
live video stream, and choosing the setting that seemed to give the best
results. A rough setting was all that was needed. The camera’s auto-
matic gain was on, but this only partially compensates for changing iris
settings.

Because the evolved programs take in a column number and return
the closest non-ground object in that column, they can be run on any
number of columns at any horizontal locations. While six columns were
used in offline training, that seemed inadequate to localize doorways
during navigation, so twelve columns were used instead.

The returned values are very similar in spirit to sonar readings, in
that they represent the estimated distance to the nearest obstacles in a
fixed set of directions. As such, the navigation algorithm used here is
virtually identical to that used in the chapter “Data Collection,” and is
not considered a contribution.

The ground in front of the robot was occasionally misclassified as
an object, in a way that would signal a panic halt. However, it was
observed that most errors were momentary, lasting only one or two
frames, even when the camera and environment were static. Therefore,
the readings were replaced with the furthest of the current and previous
readings in the same column. Such temporal filtering was the only
major modification needed to adapt the sonar navigation algorithm to
the data returned by the evolved individuals.

The main loop proceeded as follows. The program asked the video
digitizer for the most recent frame. If no such frame was in memory, the
program waited for the one currently being digitized. The image was
then dewarped into a separate array, and the original frame returned to
the digitizer. The dewarped image was then padded by copying it into
an array with two extra pixels on every side; the border pixels were set
to the value of the closest image pixel. Because the image operators use
at most a five by five window at every pixel, this allows them to be run
even at the boundaries of the image, although in practice this was not
needed. The individual is then executed on twelve different columns of
the image and the results stored in an array. The array is then handed to
the navigation algorithm, which sets the speed, heading and curvature of
the three degree of freedom robot. Finally, the image and its columns
are displayed and the motion commands sent to the robot. Then the
main loop repeats.

The images can be stored to disk, with the twelve estimated loca-
tions marked with boxes. This mechanism was used to produce the
images in this chapter as well as the MPEG videos.

The Navigation Algorithm
The navigation algorithm used estimates of the various robot parame-
ters, such as the height of the camera and the width of the robot, to
roughly translate locations in the image to locations on the ground, and
vice versa. It started by comparing, in each column, the current reading

��	

to the previous, and used the highest of the two, i.e. the furthest away.
This filtering removes transient errors that would otherwise cause the
robot to halt or take evasive action.

Following the Property Mapping approach of [Nourbakhsh 2000],
the filtered object locations were first classified as near, medium or far,
and different code executed in each case.

The Uranus mobile robot consisted of a rectangular base 76cm by
61cm, with a circular sonar ring of diameter 71cm centered on the base.
Thus, the front of the robot extended 2.5cm beyond the sonar ring. All
three areas, i.e. near, medium and far, were rectangular. An obstacle
was classified as “near” if it was within one foot in front of the sonar
ring and 0.2 feet on either side. Medium was defined as 2 feet in front
of the ring and 0.6 feet on either side. Finally, far was defined as 4 feet
in front of the ring and 1.2 feet to either side.

The speed was determined first, independently of the direction. If
any filtered reading was near or if the robot was boxed in, the robot
immediately halted. “Boxed in” was defined as at least 11 out of twelve
readings closer than a horizontal line 4 feet from the robot, and without
a gap. Intuitively, the gap is an opening on the sides of the image large
enough for the robot to turn through; it is defined precisely below. This
sort of halt is termed a panic halt. Once panic halted, the robot waited
until there were no near readings for one half second, in case the miss-
ing readings were transient. If it was halted for more than two seconds,
it started turning in place. It picked a direction when it first started to
turn, and kept turning in that direction until there had been no panic halt
condition for one half second.

When it was not panic halted, it then checked to see if there were
any medium readings; if so, it slowed down to 2/3 of its maximum
speed. Otherwise, it traveled at full speed.

Next, the direction to travel was determined. If there were any
medium obstacles in front of the robot, it would curve away from them.
The rate of curvature was proportional to the horizontal location of the
most central medium reading. That is, if there was an reading directly in
front of the robot it would turn sharply, if not then more slowly depend-
ing on how far to the side a reading was found. The direction was cho-
sen by starting from the outside and moving in, looking for the first
medium reading; the robot would turn away from such a reading, turn-
ing left in case of a tie.

If the robot was not panic halted and there were no medium read-
ings in front of the robot, the rest of the medium area was examined. If
there were any such readings, the two readings on each side of the robot
that were within 6 feet of the sonar ring and closest to the center line of
the robot were used; a line was fit separately on the left and right. As
long as there were at least two such readings, the line was considered
valid if the line sloped toward the robot, if the slope was less than 2.5 (in
world coordinates, not image coordinates), and if there were any
medium readings on that side. If neither line was valid the robot went
straight; if only one side was valid the robot turned to be parallel to it;
and if both were valid, it turned toward the intersection of the two.

If none of the above conditions applied but there were far readings
in front of the robot, it would turn to avoid them. The magnitude was
determined using the same criterion as the medium front case. To find
the direction, the robot first searched for a gap.

��

To find a gap, the readings median filtered horizontally. That is, the
median filtered estimate at a given column was the middle distance of it
and its two neighbors. At the ends, the maximum reading, i.e. closest to
the robot, of it and its single neighbor was used. At each end of the
array, an extra “virtual” reading was added that was 15 pixels below the
bottom of the image. Then, the differences between adjacent readings
were computed, and if any difference was greater than 90 pixels, it was
considered a gap. In this case, the robot would turn to the side with the
largest gap. This gap determination algorithm was also used when
determining whether to panic halt, as described above. If there was no
gap, the robot headed for the median filtered reading that was furthest
up the image.

Finally, if none of the above cases applies but there were far read-
ings that were not in front of the robot, it again fit a line to each side and
used the same algorithm as in the medium sides case, with the exception
that if both lines were valid, it turned to become parallel to the closer
line. If there were no readings in any of the three areas, the robot
headed straight.

The same algorithm was used with all best-of-experiment individuals.
The performance of each one, both from looking at raw video and dur-
ing subsequent navigation, is discussed below.

Results
Movies of all validation runs can be found on the web site for this dis-
sertation, www.metahuman.org/Martin/Dissertation. These movies
show the images used during navigation, with the output of the evolved
individual drawn on them. The output was temporally filtered as dis-
cussed at the beginning of the navigation algorithm above.

The best-of-experiment individuals generally performed very well.
An inspection of their performance on live video suggests that the per-
formance is more than good enough for navigation.

As with data collection, two environments were used. The two
best-of-experiment individuals from the FRC and NSH experiments
were validated in their own environments, whereas the individual from
the combined experiment was validated in both. The discussion below
is organized by environment.

Field Robotics Center
Due to the limited reach of the tether, if a robot went too far down the
hallway it would have to be stopped. Therefore, a waste paper basket
and an empty water jug were placed in the environment to create a
closed area in which the robot could run continuously until it collided
with an object in the environment. A chair was added to see how well it
avoided obstacles that were not present in the training data.

The robot started in the same location as the data collection run and
retraced the same route, through a turn to the end of the hallway. Upon
reaching the end, the robot would halt, turn in place, then retrace the
entire route. Thus, the first half of the lap repeats the trip made during
data collection, while the second half views the same area from the
other direction. The ends of the hallway, where the robot turns around,
were not seen up close in the training images.

���

The individual trained only on the FRC data is discussed first. During
the adjustment of the iris setting, it was noted that the individual worked
well on a large range of settings; the best iris setting was approximately
the same as that used for the training data, about a quarter of the way
from fully open. Objects that had not been seen during training, such as
chairs and people, were handled well as were ten degree differences in
camera tilts. It did not do well with the floor of the lab, which is much
brighter with a higher gradient. It nearly universally marked it as an
obstacle.

Transient ground errors were more common (and less transient,
lasting two or three frames) on small strips of white paper and shiny
pieces of metal on the carpet a couple pixels wide. This was enough to
cause a momentary panic halt but not otherwise affect navigation.

On the 700MHz Pentium III, when only the image processing and
display are running, the FRC individual ran at 7 to 10 frames per sec-
ond. This used an iterpreted form of the individual, the same process
used during evolution; rewriting it in C would most likely speed it up.

During the actual validation runs, the majority of time was taken up
communicating with the robot and saving images to disk, so that the
frame rate was between 1.7 and 2.0 frames per second, averaging
approximately 1.87 fps. Of course, this could have been sped up
greatly.

In operation most of the individual’s failure modes were transient,
even when the robot was stationary, and did not cause the navigation to
fail. The persistent errors were at the end of the hallway near a closed
door, where the limited light and the robot’s shadow made the ground
much darker, and near the side of the filing cabinets. Most errors classi-
fied obstacle as ground, i.e. they were not conservative.

The five runs of the validation set are summarized in Table 1. A
lap took the robot from its starting position through a turn to the end of
the hallway, then retraced the entire route, leaving it where it started.
Two runs ended because of the aformentioned problem that the evolved
individual has at the end of the hallway. The other three ended when the
robot collided with the chair. The evolved individual had clearly identi-
fied the chair as an obstacle in several columns of several frames.

The output of the evolved individual on the chair danced around the
legs. This was more than sufficient to cause a panic halt. Once the
robot had panic halted and started turning, eventually only one column
that imaged the chair would be in the panic halt region, and if this did

Table 1: Validation Runs of the Best FRC Individual

Number of
Laps

Length of Run
Min:Sec / Meters

Failure Mode

5.5 20:46 / 150 m Did not see door at the darkened end of the hallway.

0.75 2:56 / 21m Collided with chair.

1.75 8:33 / 48m Collided with chair.

6.75 27:59 / 185m Collided with chair.

9.5 39:32 / 260m Did not see door at the darkened end of the hallway.

���

not see the bottom of the chair on two consecutive frames, the robot
would start moving again. This is what caused the robot to hit the chair
in three of the five runs.

The combined individual generally performed worse than the FRC only
individual. Again during the adjustment of the iris, only a rough adjust-
ment was needed since a wide range of positions worked well. The best
setting was approximately the same as the training data and the FRC
only individual. Objects not seen during training, such as chairs and
people, were also identified well. As with the FRC only individual, it
did not do well with the floor of the lab, often mistaking it for an obsta-
cle.

During operation, errors were mostly transient, although objects a
few pixels wide would again confuse it for two or three frames. The
combined individual ran at 5 to 8 frames per second. Profiling shows
that it spent two thirds of its time computing the median filter. The code
was not optimized, and in fact computes the median twice at every
pixel. Therefore, simply reorganizing the code to only compute it once
could speed it up by a third. During the actual validation runs, while
storing images to disk and communicating with the robot, the frame rate
dropped to 1.80 to 2.15, averaging approximately 1.83 fps. This could
be greatly sped up as well.

In operation most of the individual’s failure modes were transient,
even when the robot was stationary, and did not cause the navigation to
fail. Persistent errors were mislabeling doors as ground, and mislabel-
ling doors as ground when close to them and looking at them face on,
which only happened while turning around at the end of the hallway.
Finally, it would also label a dark shadow at the bottom of the image as
obstacle for a few frames. Most errors classified obstacle as ground, i.e.
they were not conservative.

The five runs of the validation set are summarized in Table 2. One
run ended when the robot collided with the filing cabinets behind it, out
of the view of the camera. Such a case is difficult for a reactive system
to avoid, although a cylindrical robot would not have had the same

Table 2: Validation Runs of the Best Combined Individual in the FRC

Number of
Laps

Length of Run
Seconds / Meters

Failure Mode

4 15:07 / 110m Evolved individual missed bottom of filing cabinet
while turning around.

3 11:07 / 82m Collided with filing cabinet behind it while turning
in place. A cylindrical robot would not have the
same problem.

2 7:17 / 55m Evolved individual missed bottom of filing cabinet
while turning around.

2.5 9:28 / 69m Evolved individual missed bottom of filing cabinet
while turning around.

2.75 6:23 / 75m Collided with chair.

���

problem. Three runs ended because the evolved individual misclassi-
fied the bottom of the filing cabinet as ground in two consecutive
frames. When the robot was nearly done turning, this was the only col-
umn of the filing cabinet in the “panic halt” zone, so the robot would
start moving prematurely. This is the same circumstance that caused the
FRC runs to collide with the chair. The last run collided with the chair
in the same manner as in the FRC runs.

Newell Simon Hall
In these validation sets, the individual was limited to a single lap. After
the first two runs of the combined individual, it was decided to divert
the robot into areas it had not seen during training, from which it would
find its way back and complete the lap. As with the FRC validation
runs, the robot started by retracing the route it used during training. In
all runs, it treated the black stripe at the end of the hallway as obstacle,
causing it to turn back. While this was happening, a large recycling bas-
ket was placed in its way, causing it to divert from the hallway and head
toward a kitchenette. The linoleum floor of the kitchenette was labeled
as obstacle, causing it to double back towards a copier room. Again, the
white floor of the copier room was labeled as obstacle, causing it to
head back toward the hallway. It would then find the black stripe once
more and turn around again to find the recycling bin gone and the path
clear to return to where the experiment began. This distance was
approximately 40m.

The individual trained on only the NSH data is discussed first. Again,
while adjusting the iris, the individual worked well on a range of set-
tings, so only a coarse adjustment was needed. The best iris setting was
approximately the same as that used on the training data, between a half
and three quarters of the way to fully closed. There were no pieces of
metal or paper on the floor, so transient ground errors were less common
than in the FRC.

On the 700MHz Pentium III, when only the image processing and
display were running, the NSH individual ran at 9 to 11 frames per sec-
ond. Again, several speed gains suggest themselves, so faster perfor-
mance is possible. During the actual runs, image saving and
communication with the robot drops the frame rate to 1.71 to 2.65, aver-
aging 2.15 fps, which could be greatly sped up.

In operation most of the individual’s failure modes were transient,
even when the robot was stationary, and did not cause the navigation to
fail. When the black patch of carpet was very far off (too far to affect
navigation), the individual marked it as obstacle, but before it came
within range, it correctly labeled it as ground. However, once the robot
was almost on top of it, it was labeled as obstacle, and the robot panic
halted and then turned around. As with the FRC individual, the output
of this individual danced around the bottoms of obstacles not seen in the
training data, such as the recycling bin or people’s feet, although it suc-
cessfully avoided them. These errors classified obstacle as ground, i.e.
they were not conservative.

Four of the five runs succeeded. In the exception, the second run,
the robot hit a door that was not seen during training. This door was
mislabeled as ground in most columns of all runs. In the first run, a few
columns in a few images labeled it correctly as obstacle; this was
enough to avoid it. Similarly, in the third run, the robot saw enough of it

���

to panic halt and start to turn; near the end of the turn, a person opened
the door revealing the white floor beyond. The white floor this was con-
sistently labeled as obstacle and the robot avoided it. In the fourth and
fifth runs, people opened the door as the robot was approaching it, and
the door stayed open long enough to be avoided.

When the combined individual was run, the iris setting was accidently
left at the proper location for the FRC hallway, which produced images
significantly brighter than the training images. Again most mislabelling
from the evolved were transient and not conservative even when the
robot was stationary, and did not affect navigation. Perhaps because of
the brighter images, the combined individual performed better than the
individual trained on the NSH data alone except in detecting the black
stripe of carpet, on which it consistently labeled as obstacle. In particu-
lar, it was better able to identify the bottoms of object not seen during
training, such as the recycling bin and the bottom of the new door.
However, it often labeled the brightest parts of the carpet as obstacle, in
a way consistent enough for obstacle avoidance to avoid it.

The first two runs did not divert the robot to the kitchenette and
copying machine. The robot successfully navigated the route used dur-
ing training, with the exception of the black carpet, which caused it to
turn around and retrace its steps. It returned to where it started without
incident. The other three runs used the recycling bin to divert the robot.
Two of these runs were completed without incident. In the other run,
just after being diverted, the misclassified the ground as obstacle consis-
tently enough to panic halt and turn around. It then went back to the
black stripe of carpet, turned around and was diverted again. Once
again it misclassified ground as obstacle, and eventually turned around
and headed for the black stripe. After turning around at the stripe, the
recycling bin was removed and the robot headed back to its initial loca-
tion without incident.

Observations
With the exception of the red carpet, the failures of the obstacle avoid-
ance were in areas not seen during training, such as the darkened end of
hallways or previously unseen doors. A more diverse training set,
including a larger variety of obstacles, may prove effective. Co-evolu-
tion, discussed in the next chapter, could allow for a greater training set
without increasing the run time of the offline learning.

Another possibility is the use of state. Objects could be identified
and tracked from frame to frame. With a more powerful evolutionary
system, this competency might arise naturally with the fitness function
used in this dissertation, or could be bootstrapped by having the individ-
ual predict future locations of the ground/non-ground barrier from pre-
vious locations.

The error properties bear some resemblance to those of sonar.
Transient errors that usually overestimate an obstacles distance are most
common, although consistent errors also occur. This suggests using
navigation algorithms that are typically used with sonar.

The navigation algorithm was not considered a contribution and
was therefore created and debugged in only of a few days. It could
clearly be improved. The process of creating it involved guessing at a
reasonable solution, trying it out, seeing where it failed, then changing

���

the algorithm to perform better in that case. This is exactly the sort of
process that this dissertation automates. In other words, once the vision
algorithm is fixed, it could be the input to a navigation routine which is
designed using evolution. This topic and more are discussed in the final
chapter.

Part III

Reflections

��	

�
��'��
��

Experiments
The experiments in this dissertation fleshed out the ideas in the chapter
“Technical Framework” and demonstrated the mechanics of the
research program. At the end of each chapter, the section “Observa-
tions” described the points that deserve further reflection. Those points
are summarized here and discussed further.

With very few exceptions, the initial population generally did as
bad as or worse than the best constant approximation. The average time
for a focused representation run—fifty generations, four thousand indi-
viduals—was just over a day on a dual 700MHz Pentium III. The runs
that converged on better solutions generally took longer, and spent a
larger percentage of their time in the image operator terminals.

In the three focused representation experiments, the fitness of the
best-of-run individuals was bimodal. With one exception, runs that
ended in the better scoring group had best-of-generation individuals
with fitness of over 50% by generation 11. The exceptional run took an
inordinately long time to run and performed worse than any other indi-
viduals in the better scoring group. Fitness did not improve signifi-
cantly once the median fitness came within one percent of the best
fitness for a few generations. By contrast, there was not any obvious
correlation between average fitness and future improvement.

With the exception of the non-seeded expanded representation
experiment, all experiments produced an individual which achieved a
fitness of greater than 85%. They did this despite burned out lights and
other effects that caused the carpet’s average intensity to vary from zero
to at least 140s out of 255; despite large gradients caused by luma cor-
ing; despite moiré patterns of image noise; and despite the shadow of
the robot.

All of the best-of-run individuals that were examined in this disser-
tation handled the bottom of the image differently than the rest. At the
bottom, the task is to decide whether or not the window images carpet,
whereas in the rest of the image, the goal is to find the boundary
between carpet and obstacles. In the focused representation, the indi-
vidual that was trained on the FRC data used the two branches for the
two cases, the best of the NSH runs tested the value of first-rect to
modify the values in many tests, and the best of the expanded FRC runs
tested first-rect at the beginning of each iteration. There is nothing
in the representation, fitness function or other details to suggest such a
division. In fact, this aspect of the problem was not appreciated by the
author until the best individuals were simplified, and was not a part of
any of the relevant related work. This is an example of the genetic algo-
rithm simultaneously exploiting regularities in both the problem domain
and the representation.

All best-of-run individuals worth examining used the strategy of, in
each window, deciding whether or not the window contained an object
or boundary between floor and object, and setting the “a” register to the
midpoint of the lowest such window. They all used multiple if-le

+

��

statements to create a high level structure similar to a decision tree.
However, the conditions being tested were often non-linear relation-
ships between two or more image operators. One individual’s second
branch detected objects that go to the bottom of the image, not by using
a decision tree, but instead by iterating a continuous function of an
image operator and previous register value.

With one exception, the registers were not used to maintain state
from one window location to the next, only to set the return value,
which was never read. The one exception was the best individual from
the seeded, expanded representation runs, which calculated the change
in average gradient magnitude over both one and two frames, and
ensured that a condition must be true on two consecutive iterations.

Random constants played a smaller role than they did in [Koza
1992]. Instead, image-max-y was more common in that role, more
common than both random constants and other constants. The horizon-
tal location of iteration was always in the desired column, that is, the
second parameter to iterate-up or iterate-down was always
numerically equal to desired-x, so that the window was always cen-
tered in the column it would be judged against. The representation in no
way implied such a correspondence, in fact, the correspondence was
only implicit in the training data.

On the training data the best individuals had only transient errors
that did not pose a problem for obstacle avoidance, except for the black
carpet on the Newell Simon Hall runs, which was consistently inter-
preted as an obstacle. They generalized well to different columns and
live video from the same hallway, requiring only minimal filtering. By
examining their simplified forms, it is clear that they make specific
assumptions about their environment, for example that the ground has
little or no visual texture. However, the success of the experiment that
combined data from both the Field Robotics Center and Newell Simon
Hall suggests that we can create one algorithm that works in multiple
environments by simply combining data sets.

The graphs of fitness vs. generation also show that most improve-
ment happens early on. After the first 20 or 30 generations, only mar-
ginal improvement is observed, even in poorly scoring runs. This is
confirmed by the seeded expanded runs, which did not record signifi-
cant improvement when extended for another 50 generations.

Discussion of Experiments
For those looking to use the framework mostly as is, the bimodal distri-
bution of the best-of-run individuals, along with the observation that
runs that were going to get good did so by generation 11, suggests a
strategy of terminating runs if they do not achieve 50% by, say genera-
tion 20. Also, the relatively minor improvements once the median fit-
ness becomes close to the best in a given generation, again suggests a
criterion for halting a run. Similarly, there was not much improvement
after generation 30, and the seeded expanded runs, which continued to
generation 100, did not see a lot of improvement. This suggests extend-
ing only the best runs if such incremental improvement is desired. It
would be interesting to continue runs to a large number of generations,
say 1,000 or 10,000, to see if any significant improvement develops.
For those seeking more fundamental improvement, these results suggest
that the population has become largely the same, differing largely in
branches that are never executed or in other ways that do not affect per-

���

formance. Various ways of maintaining diversity are discussed in the
section “Future Work” below.

Does the fitness measure used for the vision subsystem correlate
with performance avoiding obstacles in the real world? Because only
the best individual in each experiment was validated by developed it
into a full obstacle avoidance system and evaluated in practice, this dis-
sertation does not answer that question. However, several clues are
apparent. As the online validation made clear, the individuals did
almost as well on new data from the same environment as they did on
the training data, implying that they did not overfit. The error rates
achieved, approximately 10%, are low enough that errors can be
rejected if they are distributed evenly throughout the training data.
However, if the errors followed some pattern, even error rates this small
could seriously hamper obstacle avoidance performance in practice.
This was borne out in the online validation: in the Field Robotics Cen-
ter, where all errors were transient, the robot navigated quite well, but in
Newell Simon Hall, where red carpet is consistently misclassified, the
robot never succeeds in traversing it. Thus, at least in these experi-
ments, it can be said that (a) performance on the training data correlates
well with performance on new data, and (b) that overall error rates in
either case correlate well with performance in obstacle avoidance only
when errors are not systematic.

While Liana Lorigo’s work used a 20 by 20 window in a smaller
image, the best individuals here succeeded using much smaller win-
dows. That may be because neighboring columns often had objects
even when the desired column did not, meaning that a wide window
would often detect the wrong object. Also, as long as objects can be
reliably detected, a smaller window will localize their location with
more accuracy.

Because the representation is relatively low level—the atoms are
similar to those of a traditional programming language—they could be
put together in many ways and supported many styles of programming.
However, the examination of the best-of-experiment individuals was as
interesting for what it did not find as for what it did find.

Most interestingly, only the seeded experiment used the registers
for maintaining state from one iteration to the next. Without this, it
would most likely be impossible to distinguish the black swath of carpet
from the baseboards, especially since significant portions of each were
set to the same value by the luma coring. In this particular environment,
treating the black baseboards as ground would probably not affect
obstacle avoidance. However, with the evolved individuals used solely
to estimate the boundary between ground and non-ground, this would
need the ground truth to be modified. However, if the evolved programs
computed the direction to travel, or were simply scored on the naviga-
tion ability of the overall navigation algorithm, such a solution might
easily be discovered.

Returning to the lack of use of registers, if EC had problems with
two step processes, this could certainly explain it. In order for memory
to be used, it needs to be written during one iteration and read during the
next. The writing provides no visible benefit, and hence is subject to
genetic drift. In practice, although setting the registers was common,
they were often set to different values on different paths through the
individual. Unless these different values corresponded to something
useful to the next iteration, making decisions based on them would most

���

likely hurt an individual. Given that the majority of fitness cases could
be handled without it, there simply may not have been enough of an
incentive to use them. Co-evolution, discussed in the section “Future
Work” below, could help with this.

The evolved program’s use of the language certainly differed from
the way a human programmer would have used it. First of all, many
things were computed that were not needed. There were many “if”
statements whose condition always evaluated true or always false, and
values were often computed and then thrown away. This is not surpris-
ing given that there was no penalty for it. Also, the value of a single ter-
minal was often written to a register, then the register used in an
expression; in such a case, using the terminal directly would have been
clearer.

Clearly there are certain constructions that human programmers
come up with that would be difficult for the system in its current form.
Coordination for example, where, say, a variable is set and used in many
different locations. Knowing that the form must have a certain structure
is another, for example knowing that image operators must influence the
result. However, these could be incorporated into the framework.
Crossover can cause the same subtree to occur in many different loca-
tions, and automatically defined functions can also help. Typing can
enforce various structural constraints. It would be interesting to add
more language constructs and genetic operators, based on ideas from
procedural, functional and object oriented programming, and perhaps
incorporating various software design patterns.

It should be clear that it was not restricted by the normal problems
with human readability of code. Does it only create messy, spaghetti
code that is difficult or impossible to modify in useful ways? While a
random search might, simulated evolution selects for programs that are
evolvable, that is, that when modified by genetic operators, are likely to
produce better results. Co-evolution, described in the section “Future
Work,” should facilitate this even more.

We can also ask if it generated any solutions that people would not
have generated. Certainly the implementation is different, but when
simplified, we can identify elements that seem familiar, such as ignoring
the gradient when the image brightness is low, which presumably ame-
liorates the effects of luma coring. Can every line of the programs be
similarly explained?

At this point we simply can not know. This dissertation is a first
step of an entire research program, so it is quite possible that the solu-
tions discovered here are equivalent to those a human programmer
would construct. However, structures such as the recurrent mathemati-
cal expression, the nonlinear conditions and the particular use of regis-
ters in the best expanded run all point to the possibility of a more subtle
mechanism.

It should also be noted that the above discussion demonstrates that
far from being opaque, both the evolved individuals and the evolution-
ary process can be understood well enough to suggest improvements
and new directions for research. The focused representation was borne
out of observations about what the best individual in the seeded experi-
ment kept from the seed, and what was modified. The result producing
branch was simply used to return the value of one register, which meant
that only a single iteration branch was ever used. As well, within certain
limits of complexity, any computation on a register in the result produc-

���

ing branch could be done in the iteration branch before the memory
location is assigned, and since such complexity was not being used, no
expressive power was lost. The fitness measure was redesigned using
the reflections described above.

Discussion
There are a number of ways of looking at the approach of this disserta-
tion. At the most practical, the approach in this thesis automates all the
tweaking that researchers do when developing algorithms. For exam-
ple, the evolved individuals would declare a boundary in regions where
there were large intensity differences. However, the luma coring in the
FRC focused representation experiment created just such large differ-
ences on the carpet. Therefore, the evolved program developed a
branch to ignore image differences when the average image brightness
was near the cutoff.

Such tweaking is both essential for creating a working system, yet
not considered research in and of itself. Much of the time spent in get-
ting a robot to work in a competition or museum involves such tweak-
ing, and distracts from the research. The system described here has the
potential to accelerate research in the same way that buying pre-existing
computers and robot hardware does: it solves practical problems, allow-
ing researchers to spend their time on research.

This same idea can be applied in many different areas. When
approaching almost any problem, we can often think of many possible
approaches. For example, if a camera is tracking a lecturer and trying to
determine where they are looking, we could separate the lecturer from
the background by tracking skin tone, performing background subtrac-
tion, using gait analysis, etc. Given pencil and paper, we could write out
these algorithms in pseudo code. The framework advocated here can be
seen as searching this space, looking for a combination of approaches
that works well. In presentations of this work, this is the aspect which
excites people the most.

From a machine learning perspective, it can be seen as using a
novel representation, essentially that of a traditional programming lan-
guage. Previous uses of machine learning to create programs that con-
trol mobile robots have used continuous functions or other
representations which seem unnatural outside of machine learning. In
other words, when a programmer sits down to write a program to con-
trol a robot, they will not typically create a single continuous function
that maps an array of image values to a steering direction. Instead, they
will most likely use loops and flow control in addition to continuous
functions. Methodologically, they will construct a program by specify-
ing symbols and their relation to each other. While the idea of searching
the space of programs has been around for decades, it is only now feasi-
ble to apply it to practical robotics problems in unstructured worlds.

This representation has many advantages. It allows us to leverage
most existing algorithms in vision and robotics, since they are already
expressed in this form. We as programmers have a lot of insight into the
properties of this representation, since we have used it ourselves. It also
is amenable to special hardware. For example, in retrospect, the repre-
sentation in this dissertation is similar to that provided by DataCube, a
set of computing hardware elements that can be combined into image
processing pipelines. It might be worthwhile to use the basic elements

���

provided by such hardware either as an inspiration, or copy them
exactly and evolve programs for the hardware.

It also changes how the evolved programs generalize to new data.
In supervised learning, it is the representation that is crucial in determin-
ing how the learned algorithm generalizes to new data. We program
using traditional programming languages in part because we believe that
the proper algorithm should have a brief description in such a language.
This is also why we use mathematical expressions; again, we feel that
mathematics is the “right” language for many things, that significant
insight can be expressed briefly in mathematics. When discussing sim-
plification, it was argued that if the program always took a given branch
of an if-le on the training data, then it should probably be modified to
always take that branch, on all data. This can be seen as a special case
of the general argument that code is the right representation for such
algorithms.

To give a concrete example, stereo vision uses a formula to com-
pute the degree of similarity between two windows, one from each cam-
era. This formula can take many forms, e.g. sum of squared differences,
correlation, correlation after subtracting the mean intensity, correlation
after subtracting the mean intensity but only if the mean intensities are
similar, correlation that subtracts the image mean but adds a penalty
proportional to the difference in image mean, etc. When creating this by
hand, we are much more likely to use a simple mathematical expression
than, say, adjusting the coefficients of a tenth degree polynomial. We
feel that this is the “natural” representation for the problem. There is no
reason machine learning can not use this representation too.

While the programs that evolve have a relatively short expression
as code and/or mathematics, they may not be conceptually clean. For
example, the best-of-experiment individual from the seeded runs sub-
tracted the average gradient over one window from the average over the
next. This effectively computed the average gradient over one horizon-
tal line, minus the average over another line eight pixels away. Is this an
approximation of a second derivative, or is the second derivative an
approximation to the most useful operator? This applies to other
endeavours as well. For example, should a certain network of neurons
be viewed as computing an approximate Fourier transform, or is the
Fourier transform merely an approximation to some more useful func-
tion that the network is computing? Is the wax and wane of caribou
populations a discrete approximation to a differential equation, or vice
versa?

While these questions do not need to be answered by those inter-
ested in applying or developing this technique, they do seem to be
important for an understanding of its role. If conceptually clean algo-
rithms and mathematics are truly fundamental, then the evolutionary
approach will forever be doomed to approximating the best approach. If
not, then evolutionary computing may search a larger, richer part of the
space, allowing a better approximation than conceptually clean algo-
rithms do. While the author sides with the latter, as with most funda-
mental questions, only time will tell. This seems to be a modern
incarnation of the difference between “neat” and “scruffy” AI.

The shift from creating all details by hand to giving some of the
work to machine learning subtly influences the research program. It
allows researchers to focus on the representation and let the computer
take care of applying it to a particular problem. Instead of having to

���

advocate all the details of a single technique, the researchers can specify
a space of techniques to be searched. They must be careful not to bias
the space toward a single class of solution, or to make even simple solu-
tions too hard to find, as was apparently the case in the expanded repre-
sentation experiments.

The discussion to this point emphasizes the search for solutions that
researchers could find eventually anyway. However, there is every rea-
son to believe that the solutions found could be more complex than
those constructed by hand. For example, the people finder could use a
combination of background subtraction, skin hue tracking and motion
analysis, using each one to assuage the deficiencies of the others. In
fact, this may have happened in this dissertation. The non-linear condi-
tions, the iterative mathematical sequence and even the number of con-
ditions could be elements that researchers would either not find or
actively avoid. Certainly, the vision systems most similar to this work,
namely those of Horswill, Lorigo and Ulrich & Norubakhsh, used fewer
image statistics than the evolved programs in this dissertation.

This was the motivation for the technique, as described in the next
chapter, “Philosophy & Manifesto.” While many of the goals of that
chapter, such as non-bottom-up perception and the integration of multi-
ple depth cues, have yet to be fulfilled, the experiments here have dem-
onstrated tantalizing steps in that direction. Even in this nascent form it
creates useful programs for unstructured environments today, programs
which superficially, and potentially in their essence are of greater com-
plexity than those previously reported. Such an ability is needed before
we can create systems with the abilities of the human mind.

[Nishara 1984, Practical Real-Time Imaging Stereo Matcher] lists
four criteria for a successful computer vision algorithm: noise tolerance,
practical speed, competent performance, and simplicity. The fact that
the other three are not enough by themselves is telling, it implies that
simplicity acts in opposition to the other three. The advocated frame-
work relaxes that criteria.

The advocated framework can also be seen as a form of evolution-
ary computation that is friendly to the incorporation of existing knowl-
edge and techniques. This is often discouraged out of an attempt to be
tabula rasa, either for purely theoretical reasons or to emphasize that
the user does not need to know much about the subject. It is also dis-
couraged out of a belief that traditional approaches have emphasized the
wrong things and constructed the wrong building blocks. However,
such antagonism is unnecessary, and the results of this dissertation are
testament to the power of incorporating the best of both worlds. This
framework can therefore be seen as bridging the gap between the
machine learning and hand construction communities, since they both
use essentially the same representation (a programming language) but in
different ways.

It has also been pointed out that the specific algorithms that were
developed differed from previous work and the seed in ways not unlike
how Lianna Lorigo’s Master’s thesis differed from Ian Horswill’s previ-
ous work. From this point of view, the system can be seen as automat-
ing the Master’s thesis.

���

Contributions

Robotics
The main technical innovation of this dissertation to robotics is realizing
the value of using a programming language as a representation for learn-
ing and working the details of one way of applying it in practice. The
previous subsection discusses the nuances of this in some detail.

The system developed in the experiments is another contribution.
This system is a successful example of the application of genetic pro-
gramming to a real world problem in robotics. A programmer could use
it as is to evolve obstacle avoidance algorithms for a particular robot and
environment that may work as well as hand coded ones, yet do not
require the programmer to have detailed knowledge of computer vision
and robotics. In addition, researchers can use it as a starting point for
their own experiments, modifying it in various ways in order to improve
it or adapt it to similar problems.

This dissertation also demonstrates a description of certain kinds of
algorithms that the example system can learn, and a description of cer-
tain kinds it is unlikely to learn. This knowledge could help others to
predict what sort of problems it could succeed on, as well as direct
efforts on improving the system.

At a theoretical level, this dissertation demonstrates an inclusive
framework, i.e. a framework that does not require a particular architec-
ture of representation, but rather allows many to coexist and interact. It
also shows how critiques of AI can be used to guide the search for alter-
native methods.

Other novel aspects of this work with respect to robotics include a
list of approaches to constructing obstacle avoidance from sonar and
their failure modes, and a the set of guidelines that grew out of that. In
addition it demonstrates an extension of the Horswill/Lorigo/Ulrich
algorithm to reactively identify objects that extend to the bottom of the
image, a different task than finding the boundary between floor and
object.

Evolutionary Computation
While the use of evolutionary computation to evolve algorithms to con-
trol mobile robots already existed under the name “evolutionary robot-
ics,” it has never been applied to realistic unstructured environments,
and therefore has not garnered much interest in the robotics community.
This dissertation demonstrates that the approach is viable, that is, that
evolutionary computation can produce vision algorithms for unstruc-
tured environments in robotics, that the algorithms do not suffer from
overfitting, that they can successfully control a robot in real time using
new data from the same environment. It demonstrates this by being the
first to do it. In addition, this dissertation is the first work of evolution-
ary robotics to produce a vision algorithm that was not obvious from the
problem definition. It is also the first to not force the image data
through an information bottleneck.

The design of the system itself, and the exposition of its properties,
is novel in evolutionary computation as well as robotics. In particular,
the “iterated rectangle” node and associated image operators allow us to
avoid the information bottleneck, by limiting the evolution to significant
algorithms whose execution time is none the less reasonable on today’s
computers.

���

This dissertation also demonstrates that evolved programs can be
simplified and understood, and that understanding can be used to
improve the system, as was shown by the changes to the representation
and fitness function.

Other novel aspects in evolutionary computing include the demon-
stration of a different structure for individuals, namely multiple
branches that communicate, not through return values, but through the
final values of registers. This dissertation is also another case study of a
system that contains memory registers and describes how they are used
and not used. And finally, the dissertation is another example of using a
seed to improve the performance of a genetic algorithm.

Critiques of Artificial Intelligence
This dissertation raises the idea that the sort of systems that AI has
explored have been influenced by the affordances of the researcher’s
minds. In particular, when programs are created by hand, they must be
understandable by people, and this is a strong constraint. It leads to
modular, black box subsystems that cannot take into account each
other’s limitations, and ultimately brittle systems.

It also delineates a new distinction, between exclusive and inclusive
frameworks. Exclusive frameworks make their contribution by pro-
scribing large parts of an architecture or representation, thus limiting the
sort of algorithms that can be created. In contrast, inclusive frameworks
allow for the coordination of many different, existing approaches to
work together. And finally, this dissertation contains another call for
and an example of what Philip Agre calls a critical technical practice
[1997, Computation and Human Experience].

Contributions to Robotics

1. Introduces the use of a scripting language as a representation for
learning in robotics.

2. Provides an example working system that others can use as is to
create obstacle avoidance algorithms on par with what people can
create.

3. Researchers can use the example system as a starting point, modify-
ing it in various ways to improve it or adapt it to similar problems.

4. Demonstrates what kinds of algorithms the example working sys-
tem can learn, and what it is unlikely to learn.

5. Demonstrates an inclusive framework, i.e. a framework that does
not require a particular architecture of representation, but rather
allows many to coexist and interact.

6. Demonstrates how to use critiques of AI to guide the search for new
approaches.

7. A list of approaches to constructing obstacle avoidance from sonar,
and their failure modes.

8. Guidelines for constructing an obstacle avoidance algorithm from
sonar.

9. Extension of the Horswill/Lorigo/Ulrich algorithm to distinguish
objects from floor at the bottom of the image reactively.

���

Contributions to Evolutionary Computation

10. Demonstrates that evolutionary computation can tackle real world
problems in robotics today.

11. Introduces the “iterated rectangle” node and associated image oper-
ator terminals as a way of achieving 2.

12. First evolutionary robotics system to tackle an unstructured envi-
ronment.

13. First evolutionary robotics system to create a vision system that
uses large parts of an image, rather than forcing it through a bottle-
neck.

14. Demonstrates that evolved programs can be understood, and that
understanding used to improve the representation.

15. Demonstrates a different structure of individual: multiple branches
that communicate not through return values but the values of regis-
ters

16. Another example of a system containing memory registers, and
how they are used.

17. Another example of using a seed to improve the performance of
genetic programming.

Contributions to Critiques of Artificial Intelligence

18. Human understandability is a constraint on algorithms, that leads to
isolation of subsystems, and ultimately brittle robots

19. The distinction between exclusive frameworks, which specify
architecture or representation, and inclusive ones, which allow
many possible approaches to work together.

20. Another call for and example of a critical technical practice.

Future Work
If someone wanted to use this to create a visual obstacle avoidance sys-
tem for their robot today, I would suggest using the “focused representa-
tion” setup with the following changes:

• Remove the second parameter to the iterate functions, the horizon-
tal location, hard coding it as desired-x.

• Perform ten or so runs to see if your distribution is bimodal, and if
so, whether the final performance can be predicted early on. If so,
abandon runs that are performing poorly.

• If incrementally better performance is desired, extend the best run
for another 50 generations.

While many extensions are exciting, it is easy to assume evolutionary
computing is the black box that finds the best algorithm in your repre-
sentation. Unfortunately, EC is not as powerful as all that. The experi-
ments in this dissertation give some concrete examples, of both a setup
that the GP found tractable, and one that it did not. As described above,
there were many affordances of the representation, many possible possi-
ble algorithms that were not explored. Therefore, it is important to only

��	

attempt extensions that do not make the search a great deal more diffi-
cult.

Near Term Projects
It would be interesting to use training data from a wider array of envi-
ronments. This may lead to a more general free space finder, one that
can handle a large variety of ground types.

The set of image operators could be augmented with other qualities
and depth cues such as stereo, optical flow, spatial and temporal wavelet
transforms, and colour. It should also be possible to evolve the image
operators, to both create better ones, and see which ones are most use-
ful. Sensor fusion might be easy in this framework; for example, sonar
and vision could be an interesting starting point.

The navigation function, which takes the estimates of object loca-
tions and returns the direction to travel, could be learned. Since a con-
tinuous function seems appropriate, a neural net or similar
representation may actually be best. If the evolved object estimator also
provided confidences, the navigation function might be able to use them
to become even more robust.

As suggested above, the framework in this dissertation might apply
to more traditional vision problems, such as extracting a particular class
of object from a still image or video stream.

While training on data from many environments simultaneously
would not doubt prove interesting, the most general free space finder,
one that can handle any kind of pattern on the carpet and transitions
from one floor type to another, will probably need to look at more than
just a column in the image. It may need to extract lines and edges, and
use other such geometric techniques. As well, the depth of a textureless
grey wall can not, in general, be estimated from the grey patch itself.
Instead, any estimate would need to examine at least its boundary. A
representation that allows such algorithms to be explored in a computa-
tionally efficient manner, analogous to the iterated rectangle from this
dissertation, would be exciting.

These would most likely benefit from changing the representation
assumed by the outputs, and therefore the fitness function. How would
one evolve depth maps, 2D or 3D evidence grids? What about stereo or
optical flow?

More conceptually driven elements could be encouraged by having
the image operators take parameters, such as the direction along which
to compute the gradient, or perhaps the mask to use with a convolution.
This would allow the evolved programs to set these parameters depend-
ing on context.

Maintaining state from one image to the next could open up a new
set of possibilities, including the technique of Ulrich and Nourbakhsh of
using as reference a portion of a previous image that has since been tra-
versed. Since the evolved programs are interested in the ground/non-
ground transition, which is on the ground, a column in a previous image
can be mapped to a line in the new image by assuming it is on the
ground and that the ground is flat. This would allow approaches such as
computing image differences over time, and seeing when large differ-
ences were a natural sign of obstacles.

A simulation may discover other approaches to navigation. In pre-
vious chapters it was argued that current computer graphics techniques
probably were not up to the task of simulating images, but if the input to

��

new algorithms is the output of the ones developed here, we only need
to simulate its errors. They should be relatively easy to quantify. It
should be reasonable to assume they are conditional on the obstacle and
independent of everything else. That is, there is a certain chance that
ground will be labeled as obstacle, and that probability is independent of
the column location, the frame number, or even the image as long as
there is ground in that column of the image. If the ground is not misla-
belled, then the boundary between ground and the lowest object is
found. We decide at random whether there will be an error here. The
probability depends on whether that object is a door, a wall, etc. When
there is an error, it should not be hard to find an alternate value to return.

Such a simulation could be used in a traditional evolutionary robot-
ics framework, of the types described in the “Related Work” chapter. It
could then learn to do many tasks, such as wall following, navigating to
a particular point, navigating to a user specified point, delivering mail,
etc.

Understanding Evolved Programs
In general, the analysis of evolved programs is different than traditional
methods of reading code. It is similar in spirit to the analysis of biolog-
ical systems, although somewhat easier since perfect knowledge of a
program’s construction and components exists. In fact, in performing
the analysis for this dissertation, the best analogy seemed to be analyz-
ing the winners of the obfuscated C contest, a contest to make intention-
ally obfuscated computer programs.

However, this dissertation has raised the possibility that the evolved
programs can be completely understood, that is, simplified until the
structures and details are simple enough that we can understand how
they work by applying existing knowledge of computer vision. The fact
that the elements are familiar—existing operators and standard elements
of mathematics and programming languages—is a great help. In either
case, such analysis could ultimately help answer questions such as “Are
there any obvious failure modes that we have not seen?” and even
“Could a human programmer come up with this?”

The simplification process was partially automated, but automating
it more fully would allow the best individual of every generation to be
simplified, to see how its workings change over time, and discover how
it uses the various affordances of the representation. The techniques
used are similar to compiler optimizations, which suggests that our
choice of representation once again allows the leveraging of decades of
computer science knowledge, this time in compiler design.

After simplification, other methods of analysis could be used. Dis-
playing which portions of an image a given branch is used could give
insight into its function, as could a trace of the value of various memory
locations. If certain branches are only used in one or two fitness cases,
or are not used on a test set, that could be a clue that the branch is due to
some form of overfitting. The same branch could also be tracked from
generation to generation, to see the change in both where it is activated
and what it does.

Ideas from Evolutionary Computing
Evolutionary Computing has been studied for decades and has devel-
oped a number of concepts and techniques that apply to any such sys-
tem, including this one.

���

Co-evolution can be a powerful technique for maintaining diversity
and creating solutions for problems that require slightly different solu-
tions for different fitness cases, such as the black carpet. The central
idea is to use only a subset of fitness cases to evaluate each generation,
but to evolve that subset. That is, the fitness of an individual is how
well it performs on a set of fitness cases, but each fitness case is
assigned a fitness proportional to how poorly the individuals of the pop-
ulation do. Thus, as soon as the population starts to converge on a par-
tial solution that does well on some images, the training set changes to
include mostly other images. This technique could prove powerful for
keeping the diversity up, and making sure that errors are distributed
evenly, rather than concentrated in one area.

Another idea is demes. The demes approach considers each indi-
vidual to be attached to a location. The locations usually form a two
dimensional or three dimensional grid, although other topologies are
possible. When creating an offspring for a given location, parents are
chosen from nearby locations. This generally results in local conver-
gence, with genetic material passed at the boundaries.

Another idea, thought up by the author and not known to be previ-
ously discovered or published, derives from the idea that crossover
works best between similar individuals, and similar individuals are
likely to have similar fitnesses. Specifically, the idea is to choose the
first parent using traditional selection techniques, then choose the sec-
ond to be preferentially close to it. If tournament selection is used, the
second tournament could choose, not the individual with the best fit-
ness, but the individual with the fitness closest to the first parent.

Following the ideas in the Ph.D. thesis of Tina Yu [2000], elements
of functional programming could be introduced in addition to the exist-
ing procedure elements. Other approaches such as object oriented pro-
gramming could also be examined for ideas.

A strategy to halt runs early could also be developed. It was sug-
gested above to halt runs that were not performing well by generation
20. A generalization is to perhaps start a number of runs, and halt the
lowest scoring one after so many generations, the second lowest one a
few generations later, etc.

If a lot of computer power was available temporarily, much longer
experiments could be run, for example 1,000 or 10,000 generations, to
see if any improvement happens. Given the trace of best fitness vs. gen-
eration for such runs, it is not hard to calculate the best length to maxi-
mize the probability of finding a successful individual.

Other Ideas
With a combination of more powerful evolutionary techniques or simply
more computer power, new approaches become possible. Instead of
evolving the program directly, a description of a program could be
evolved, and before evaluation, the description elaborated into a work-
ing program. This is similar to evolution in nature, where living sys-
tems go through a long developmental process.

In “Artificial Life and Real Robots” Brooks argued for simulta-
neously evolving the hardware and software of a robot. He mentioned,
for example, that Ghengis had six copies of the same controller, one for
each leg, and mutated insects that have extra sections, complete with
legs, have the controllers for those legs as well. In the real world, com-
putational elements are also physical elements, are created through

���

some developmental process, and are ready to interface with other
nearby segments. Thinking about this may reveal a way to go beyond
genetic programming, to provide another framework for evolving pro-
grams.

Such a developmental process could use an alternate representation
for programs. A general directed acyclic graph could prove a more nat-
ural representation for computation and allow direct implementation in
hardware, or the manipulation of logic gates as primitive elements.

Other representations needing only slightly more computer power
could soon be explored. For example, at every pixel or small window,
we decide what object is there, or at least whether or not it is ground.
Windows can get information from their neighbors in semantic network/
neural network fashion, to help propagate constraints. The output could
simply be the location of the lowest window that is not “ground.” The
windows could even overlap. The evolved program would then be
working with a low resolution version of the image, but each pixel in the
low resolution image contains info about average gradient, etc. over that
window. One way of serializing this rather parallel setup is to try to use
transformed info from the previous image, i.e. so that the information
propagated from neighbors is one frame out of date. Another is to do a
grassfire transform-style iteration, where updates happen in raster scan
order from upper left to lower right, replacing existing values, then
reverse raster-scan order from the lower right to upper left. The iterated
rectangle can be seen as a limited version of this, where each window
can only know about the window below it.

With more power, the evolution of learning could be explored.
Robots could benefit from learning during their lifetime, but evolution-
ary computation is probably both too computing intensive and too gen-
eral to be most useful. Instead, learning algorithms that embody some
generalities of the environment but must learn its particulars should be
used, and the details of those could be decided by an offline evolution-
ary computation. This has the potential to be a very powerful technique
indeed.

Simulating images is a possibility, and could lead to the develop-
ment of active vision algorithms, as described in previous chapters. The
evolution of navigation, map building and the recognition and use of
landmarks is could also prove powerful.

Finally, Peter Cariani has discussed the idea of evolving sensors in
[2000, Cybernetic Systems and the Semiotics of Translation]. These
ideas are ripe to be incorporated in the simulated evolution of a percep-
tually based autonomous mobile robot.

Reflections
As for when I would recommend this technique: Clearly, in the case of
obstacle avoidance from vision for a mobile robot, this dissertation
demonstrates results comparable to the best hand written systems. For
those looking to build a practical vision based obstacle avoiding robot
today, to work in a single environment, creating the vision system by
hand would take less effort and lead to a greater understanding, while
achieving comparable results. Also, for researchers looking for a single
evolved program which can work in most environments, a completely
new framework is needed. Two or three eight-pixel-wide columns is

���

simply not enough information for even the human visual system, with-
out some prior knowledge of what ground or wall is likely to look like.

However, for researchers looking to build better robots tomorrow,
this technique offers a lot of potential. Many of the possible improve-
ments listed below have the potential for a dramatic increase in perfor-
mance. The potential benefits over hand creating a system are many. A
single setup can be adapted to many environments, by people without
much knowledge of robotics. It should be easier to maintain a focus on
the general properties of the representation, rather than be distracted by
the details. Expanding the representation to allow many different ways
of approaching the problem, rather than causing confusion, should allow
the genetic algorithm to integrate a number of styles in a way that works
well in practice.

In general, machine learning algorithms are best when a researcher
doesn’t know how to create a system as well as how to define the prop-
erties it should have. The next chapter argues the vision, if not all of
intelligence, falls into this category.

To those looking to dabble in genetic algorithms, a few things
became apparent through the course of this work. First of all, as has
been stated already, genetic algorithms are not a magic search technique
that can find intricate and subtle solutions with any arbitrary representa-
tion. Instead, it is important to make sure the type of algorithms you
wish to find are easy to express in your representation. In fact, you
would do well to create an individual or two by hand. This is how the
seed for the expanded representation experiments started, as a program I
sketched by hand to make sure my representation was reasonable and
complete.

However, simply being able to express the desired algorithms isn’t
enough. There must be a path from individuals typical of the initial
population, to the type of individuals desired. This may be why so little
state was used in the non-seeded runs: before a memory location can
affect fitness, it must be both written to and read from. Perhaps, without
much evolutionary pressure on the red swath, a feature difficult to dis-
tinguish from baseboard without state, that this path was simply too dif-
ficult for the GA to find. In other words, genetic algorithms are good a
finding an “obvious” solution, when there are so many solutions that
seem plausible that we can’t possibly search them all. That is, at least in
the year 2001, genetic algorithms are good at finding a needle in a hay-
stack, not at creating a better needle.

As for what this work has taught about vision: only that it is both
easier and more difficult than had been expected. While images are
notoriously noisier than people think, it was a surprise to find that the
carpet outside my office, a constant shade of grey, could range in bright-
ness in the image from almost black near the robot to over 2⁄3 of white
many meters away. But it was also a surprise to find how easy vision
can sometimes be. I had not expected a simple gradient to indicate the
boundary of obstacles so well, or for the evolved programs to generalize
so easily. Vision does seem to be ripe for learning: many algorithms we
think of are simply too naïve, and yet there are simple algorithms that do
work, if we can only find them…

���

,�
����%�-�.�
/��
�����

With the details of the work and the immediate implications behind us,
this chapter takes a broad look at Artificial Intelligence, using critiques
of it constructively, that is as a list of “do”s and “don’t”s for work in AI.
The work in this dissertation is seen as the first step in a research pro-
gram that answers these critiques. In fact, the considerations in this

chapter were the motivation for the dis-
sertation.

Critiques of Artificial
Intelligence
Artificial Intelligence has had many suc-
cesses, yet the goal of full human intelli-
gence has proven elusive. This section
examines the history of AI and critiques
of it, in order avoid these mistakes.
Many of these critiques are in the area of
language understanding, but apply more

generally, as explained below.
One of the few critics from within AI itself is Terry Winograd, the

author of the early success SHRDLU. SHRDLU was a program for
understanding natural language written at the M.I.T. Artificial Intelli-
gence Laboratory in 1968-70. It also controlled a simulated robot arm
that operated above the table top and could rearrange and stack the
blocks. More impressively, it carried on a simple dialog with a user
about a simulated world of children’s blocks.

But after studying language understanding in more depth, Wino-
grad came to believe that understanding human languages was impossi-
ble for a computer, and left the field. Among other things, he realized
that the boundaries of categories in such programs depend very criti-
cally on context. For example, Winograd and Flores point out the con-
text dependence of even something as simple as the literal meaning of
the word “water,” as demonstrated in the following dialog:

A: Is there any water in the refrigerator?
B: Yes.
A: Where? I don’t see it.
B: In the cells of the eggplant.

[Winograd and Flores, 1986, Understanding Computers and Cogni-
tion, p. 55]

While B is literally correct, this does not help A. Winograd and
Flores also point out that even the sense of the word “water” which
means “water in its liquid phase in sufficient quantity to act as a fluid”
could lead to problems. Consider:

The plain and simple fact is that perceptual scientists are actually
motivated to do things in the laboratory ... because they ... are trying to
answer broader issues than the specific empirical questions being
asked. ... This is all too often overlooked—these questions may not be
explicitly stated, but they are ubiquitous nevertheless. The degree to
which one is doing quality science that transcends the mundane collec-
tion of empirical measurements is closely associated with the degree to
which one understands this fact.

— William Uttal, 1988, On Seeing Forms, p. 48

�0

���

B: Yes, condensed on the bottom of the cooling coils.

This response is just as unhelpful as the one about the eggplants,
although the right context could make it appropriate. If A is there to
repair the fridge, or to find sources of humidity that ruined some photo-
graphic plates, response 1 would be quite helpful.

This is not a purely linguistic distinction. The world is full of regu-
larities, objects and processes that are similar to others in important
ways. A computer that needs to find water needs to work very differ-
ently depending on whether it is thirsty and looking for a drink, or a
refrigerator repair robot looking for symptoms. As above, these could
be treated as two different definitions of water, but then we would
quickly end up with a different definition for every context. And we
would be ignoring the relationships between these different senses of
“water.” Detecting dew on a leaf has much in common with detecting
condensed water on cooling coils.

In other words, the literal meaning of the question is not very useful
when trying to get along in the world. The meaning of the query is not
composed of the literal meanings of its constituent words in some con-
text free way. And yet, the question is different from “What can I do to
satisfy my thirst?” The original question expresses one approach to sat-
isfying thirst, namely finding something to drink, in particular finding
water in a refrigerator. So the question “Is there any water in the refrig-
erator?” expresses the subgoal of a plan, although the subgoal cannot be
usefully understood without the original goal.

Many current frameworks in machine learning are intended for pat-
tern classification, that is, given an input, determine which of several
pregiven categories it is in. Therefore, such frameworks were not used
here. Rather than attempt to spell out exactly how context interacts with
regularities in the world to determine useful concepts, the work in this
dissertation allows the genetic algorithm to determine this for itself.
That is, rather than provide the robot with a set of concepts or catego-
ries, the robot is provided with raw sensor data. In interpreting it, the
robot is free to decide exactly how it will distinguish between different
aspects of the environment. For example, the evolved programs gener-
ally execute different branches based on the image and the values of
memory registers. These decisions are under control of the genome.
Since they are only evaluated in the context of obstacle avoidance, they
will in general be task specific. A potentially fruitful extension of this
work is to add additional state, so that the context of previous images
can be used when interpreting the current image.

Critiques of AI have also come from outside. Philosophy has wres-
tled with the same issues and even discussed how they apply to AI At
its inception, the goal of Artificial Intelligence was to create computer
programs capable of the wide range of activities that, in people, are con-
sidered to require “thought” or “intelligence.” It should therefore come
as no surprise that many AI frameworks embody answers to old philo-
sophical problems about thought, the nature of the outside world, and
the relationship between the two: the balance between empirical and a
priori knowledge, the interrelations between abstract and specific
knowledge, and so on. Philosophers have debated these questions for a
long time, in some cases for millennia, and while none of them have
universally accepted answers, there is much discussion on the strengths

���

and weaknesses of competing ideas. Explicitly considering the relation-
ships between these two fields can bear fruit for both.

Dreyfus and Dreyfus offer one attempt to trace the relationship
between Artificial Intelligence and European philosophy. They are par-
ticularly interested in Good Old-Fashioned AI or GOFAI, a term they
attribute to John Haugeland. For example, they write:

GOFAI is based on the Cartesian idea that all under-
standing consists in forming and using appropriate
symbolic representations. For Descartes, these repre-
sentations were complex descriptions built up out of
primitive ideas or elements. Kant added the important
idea that all concepts are rules for relating such ele-
ments, and Frege showed that rules could be formal-
ized so that they could be manipulated without
intuition or interpretation. ... AI turned this rationalist
vision into a research program and took up the search
for primitives and formal rules that captured everyday
knowledge.

[From Dreyfus, 1992, What Computers Still Can’t Do, pp. x - xi]

However, before AI even existed,
philosophers such as Wittgenstein, Mau-
rice Merleau-Ponty and Martin Heideg-
ger reflected on this program and found
problems with it. As researchers in AI
later discovered, propositions are the
wrong representation for common sense,
everyday knowledge. There is little evi-
dence that this representation underpins
much of human intelligence, and it does
not work well in practice.

One reason has already been dis-
cussed, namely that the concepts we use
are context and task dependent. Another
is the problem of how relevant knowl-
edge can be brought to bear in particular

situations, to avoid the exponential explosion of combinatorial search.
In philosophy this has come to be called the frame problem. As Dreyfus
explains about all activities that happen inside a room,

We are skilled at not coping with the dust, unless we
are janitors, and not paying attention to whether the
windows are open or not, unless it is hot, in which
case we know how to do what is appropriate. Our
expertise in dealing with rooms determines from
moment to moment both what we cope with by using
and what we cope with by ignoring (while being
ready to use it should an appropriate occasion arise.)
[Ibid. pp. xxviii-xxix.]

Creating a collection of meta-rules to determine what is important
in a given situation begs the question. We cannot try all meta-rules

For example, in “On the Art of Combinations” (1666), Leibniz pro-
posed that all reasoning can be reduced to an ordered combination of
elements. If we could define such an algebra of thought, it would
become possible for a machine to reason, like clockwork. Such a
machine would be capable of resolving every philosophical controversy,
as well as making discoveries by itself. Leibniz’s thesis amounts to a
theory of artificial intelligence for the seventeenth century. ... The GPS-
style description of reasoning (in terms of simple algebraic symbols and
operations that combine these symbols into expressions) directly follows
from Leibniz’s thoughts and “debugs” them. As far as I know, develop-
ers of AI systems have never emphasized just how much their work
relies upon and develops related philosophical theories.

— Serge Sharoff, 1995, Philosophy and Cognitive Science

���

without encountering combinatorial explosions, so how do we deter-
mine which meta-rules to try?

AI has traditionally avoided these problems by working in easily
definable micro-worlds such as chess, where the set of things that the
computer must know about the world is clearly definable. They liken
this to the frictionless plane in physics, which simplifies the problem to
expose the heart of the matter. The implicit argument is that real world
problems are just as clearly definable but much larger. But as Varela et
al. point out, the boundaries are not clear at all.

They use the example of an auto-
mated car that is to drive within a city
[1991, The Embodied Mind, p. 147].
Certain things clearly need to be
described, such as stop lights and other
cars. But do we need to teach it about
pedestrians? To distinguish weather con-
ditions and how to take them into
account? Or the driving customs of the
city in which it is located? The driving
world does not have clear boundaries,
but rather different factors have varying

relevance that blend into the continuous use of common sense and back-
ground know-how.

In fact, AI has traditionally assumed the world is organized much
like a text adventure game, with a small number of possible actions at
each point, which are executed precisely, in a world that has a small

number of well defined objects with
clear relationships to each other. AI has
spent its time creating programs that
work in these adventure-game-esq
worlds, and assuming that these tech-
niques will work in the real world. But
the real world is much “messier” than
that. Brian Cantwell Smith makes the
same point rather colourfully in the pref-
ace to his book On the Origin of Objects,
quoted at left.

These problems do not apply to AI
alone, but to any programming that must
model the vagaries and complexities of
the real world. That includes such mun-
dane things as employee databases, or
even vector image manipulation such as
Adobe Illustrator. In fact, as others have
pointed out (Smith, Sharoff), Object Ori-

ented programming models real world categories as classes with clearly
delineated boundaries and precise relationships to one another. This
means the line of enquiry discussed here could set the stage for a new
framework for programming in general.

For that reason, this dissertation did not simplify or control the
environment, but rather created algorithms for an everyday world that
contained a variety of obstacles such as boxes and people. The robot
had to decide for itself which visual differences were significant and
which insignificant.

One can still single out in this “driving space” discrete items, such
as wheels and windows, red lights, and other cars. But unlike the world
of chessplaying, movement among objects is not a space that can be
said to end neatly at some point. Should the robot pay attention to
pedestrians or not? Should it take weather conditions into account? Or
the country in which the city is located and its unique driving customs?
Such a list of questions could go on forever.

— Varela et al., 1991, The Embodied Mind, p. 147

And for better or worse—but mostly, I believe, for worse—the con-
ception of “object” that has been enshrined in present-day science and
analytic philosophy, with its presumptive underlying precision and clar-
ity, is more reminiscent of fastidiously cropped hedge rows, carefully
weeded rose gardens, and individually labeled decorative trees, than it
is of the endless and rough arctic plain, or of a million-ton iceberg mid-
wifed with a deafening crack and splintering spray from a grimy
10,000-year-old ice flow. ...

That is what is profound about gardens: they have to be main-
tained. It takes continuous, sometimes violent, and often grueling, work,
work that is in general nowhere near as neat as its intended result, to
maintain gardens as the kind of thing that they are. ... What more could
one ask for, by way of ontological moral?

— Smith, 1996, On the Origin of Objects, pp. viii-ix. Emphasis in
the original.

��	

If our representational primitives and rules are not context free,
then traditional deductive and symbol manipulation approaches do not
apply. We need a new way to manipulate our primitives. The context
dependent nature of concepts and the problem of relevance are crucial
issues which must be addressed in any framework that aims at full,
human level intelligence. The importance of these issues argues against
physical symbol systems, frames, scripts, schema, propositions, deduc-
tion, and planning as central elements of intelligence.

After philosophers pointed this out to AI researchers, some within
the field drew the same conclusions. Terry Winograd was discussed
above. Philip Agre and David Chapman argue for a minimal representa-
tion, coining the phrase “the world is its own best representation.”
[Chapman, 1991, Vision, Instruction, and Action, p. 20] When repre-
sentations are needed, they argue for “deictic representations,” repre-
senting things in terms of their relationship to the agent. As Chapman
says, “For example, the-cup-I-am-drinking-from is the name of an
entity, and the-cup-I-am-drinking-from-is-almost-empty is the name of
an aspect of it. ... It is defined functionally, in terms of the agent’s pur-
pose: drinking.” [Ibid., p. 30]

For this reason, dense or literal representations are eschewed. The
representation of programs allows only 5 floating point registers of
state. While expanding this, and allowing state from previous images,
would allow the use of context, the use of such state should be at the dis-
cretion of the genetic algorithm. Out of fear that the problem would be
too difficult, the output of the vision system was given a fixed represen-
tation, namely the location in the image of traversable space. However,
this form of representation is very weak (only a handful of numbers per
image), and is much less tradition schemes such as stereo vision. It is
also two orders or magnitude less than what was found in the proposal.

Bickhard and Terveen [1996, Foundational Issues in Artificial
Intelligence and Cognitive Science] support these basic criticisms and
add some of their own, faulting much of AI and Cognitive Science for
what they term encodingism. They focus on how representations inside
the computer come to actually refer to states of affairs in the world out-
side the computer. In brief, they argue that the computer must be
embodied, and have its representation develop through interaction with
the outside world.

Others have called for embodiment as well. Rodney Brooks, who
also rejects the traditional role of representation, proposes that simula-
tion can simplify away the real problems, and lead to solving irrelevant
problems. For example, he points out:

• We must incrementally build up the capabilities of
intelligent systems at each step of the way and thus
automatically ensure that the pieces and their inter-
faces are valid.
• At each step we should build complete intelligent
systems that we let loose in the real world with real
sensing and real action. Anything less provides a can-
didate with which we can delude ourselves.

We have been following the approach and have
built a series of autonomous mobile robots. We have
reached an unexpected conclusion (C) and have a
rather radical hypothesis (H).

��

C: When we examine very simple level intelligence
we find that explicit representations and models of the
world simply get in the way. It turns out to be better
to use the world as its own model.
H: Representation is the wrong unit of abstraction in
building the bulkiest parts of intelligent systems.

[Brooks, 1991, Intelligence Without Representation]

This suggests that to create intelligence, we need to create programs
that confront the messy nature of categories head on, through gaining
competency in the real world. In other words, the path to intelligence is
through embodied perception. For this reason, this dissertation is con-
cerned with computer vision for a mobile robot.

The Nature of Human Perception
Since the goal is perception, human perception provides an informative
precedent. This section discusses what psychology teaches about
human perception, in particular, about how people understand the spo-
ken or written word.

Context And Perception
An initial, “obvious” theory is that we identify the letters and spaces (for
written text) or phonemes and breaks (for spoken text) individually, then
put them together to identify words, then figure out the syntax of the
sentence, and finally the semantics. This is known as the “data driven”
approach. This approach is so self evident that it may seem necessary
— how can one identify a word before identifying the individual letters?

There is much evidence, however,
that words and letters are identified
together. Two famous examples are
shown in Figure 1, the first due to Self-
ridge [1955, Pattern recognition in mod-
ern computers] and the second from
Rumelhart, et al. [1986, Parallel Distrib-
uted Processing], based on Lindsay and
Norman [1972, Human Information Pro-
cessing]. In the second example none of
the three letters are unambiguous on their
own, as is demonstrated by the bottom
line. As a third example, we often do not
notice spelling mistakes, which evi-
dences the idea that they are corrected
early on.

So, lets assume the letter detectors
return a set of possible interpretations,

and our word identification algorithm tries out all combinations of let-
ters, choosing only those that are real English words. However, written
text is not always composed of correctly spelled and rendered words
from a predefined list. A spelling mistake which substitutes a com-
pletely unrelated letter would foil our system, as would new words, let
alone The Jabberwocky. Further, this assumes that we can, before any
other processing, unambiguously find the division between letters.

In the realm of spoken language, things are even worse. The length
of a pause within words is often longer than that between words [Ash-

Figure 1: A naïve theory of how we read would have it that letters are
identified first, then put together to identify words. But as these exam-
ples show, word identity can influence letter identity. Note that in the
second line, none of the letters are unambiguous, as is demonstrated in
the third line.

���

craft 1989, Human Memory and Cognition, pp. 390-391]. Our percep-
tion of foreign languages is closer to the mark: they sound like a
continuous stream of babble. But even if we did somehow start by seg-
menting the string of sounds into separate words, people do not recog-
nize individual words in isolation. Pollack and Pickett [1964,
Intelligibility of excerpts from fluent speech] recorded several spontane-
ous conversations, spliced out single words, then played them to sub-
jects. Presented in this way, subjects identified the words correctly only
47% of the time. Success went up as the length of the segment
increased.

So how do we recognize words? Consider the following sentences:
I like the joke.
I like to joke.
I like the drive.
I like to drive.

The ‘to’ or ‘the’ seems to determine whether the last word is inter-
preted as a noun or a verb. Indeed, this effect is very strong in English,
and can force a word to be interpreted as verb or noun even when it is
not usually interpreted that way:

I like to chair.
However, an experiment by Isenberg et al. [1980, A top-down effect

on the identification of function words] showed that the most common
category for the last word can influence whether we hear ‘to’ or ‘the’
before it. They presented sentences with sounds half-way between ‘to’
and ‘the’, and found that when the sentences ended in words like ‘joke’,
which is more commonly a noun, the ambiguous word is interpreted as
‘the’, whereas words that are usually verbs (like drive) result in hearing
‘to’. So, how we identify words does not depend only on physical stim-
ulus, but on their syntactical relations.

In fact, the lowest level of perception—how we identify individual
sounds in spoken speech—can depend critically on the highest level—
what those words mean. Warren and Warren [1970, Auditory illusions
and confusions] presented subjects with recordings of sentences. In the
recordings, one speech sound was replaced by white noise (a cough
works just as well). Here is one set:

It was found that the *eel was on the axle.
It was found that the *eel was on the shoe.
It was found that the *eel was on the orange.
It was found that the *eel was on the table.

In all cases, subjects perceived the “right” sound, the sound that
best completed the meaning of the sentence. Apparently, none of the
subjects even noticed anything unusual about what they heard.

Even when the utterance is unambiguous, people use semantics to
speed up perception. Meyer and Schvaneveldt [1971, Facilitation in
recognizing pairs of words; also Meyer et al. 1975] gave people two
strings of letters and asked them to determine, as quickly as possible,
whether or not both strings were English words. (Non-words looked
like real words and could be pronounced, e.g. “manty”, “cabe”). When
both strings were words, reactions were faster and more accurate if the
words were related (e.g. nurse-doctor) than if they were unrelated (e.g.
bread-doctor).

So we do not identify letters or phonemes in isolation; we identify
letters and words together. And we do not identify words (and therefore

���

letters) without also identifying the syntactic and semantic meaning of
the sentence.

This argument should not be taken mean that context is somehow
more important than the stimulus, or that unexpected stimuli are unin-
terpretable. Rather, human vision seems to find the best answer given
the sensor data, context, domain knowledge, task knowledge, previous
state, etc. Whereas traditional computer vision sees vision as “under
constrained,” it is perhaps better to think of it as “over suggested.”

This view that context is as central to perception as the stimulus is
the accepted view in psychology. “Context” here includes both “global”
elements, such as expectations and domain knowledge, and “local” ele-
ments, such as other areas of the image or utterance. Consider this pas-
sage from a sophomore textbook:

After perceiving the first 150 msecs worth of informa-
tion in the spoken word, we seem to know what word
we are hearing. This certainly is based not only on the
phonological cues in the spoken word, but also on the
context that the earlier part of the sentence has gener-
ated. As you hear “Some thieves stole most of the ...,”
your syntactic and semantic knowledge can specify
fairly accurately what kind of word must come next
— syntactically, it will probably be a noun or an

adjective, semanti-
cally it must be some
physical thing of
enough value to be
worth stealing. Thus
context, both of syn-
tactic and semantic
nature, is having an
influence on the pro-
cess of word recogni-
tion. Indeed, such
context is even influ-
encing the phonologi-
cal component, in that
the entire phonologi-
cal representation of a
word is not necessary
to identify and com-
prehend the word.
[Ashcraft, 1989, p.
429]

Lessons Learned from
Neuroscience
William Uttal, in his review of the neuro-
science literature on visual perception

[1988, On Seeing Forms], concludes that visual illusions are persuasive
evidence against models that emphasize local features, and for the use
of perceptual context. He argues that it is now clear that classic Gestalt
psychology was correct in its emphasis on global, holistic analysis.

[T]here has been much too great an emphasis on local-feature-ori-
ented models of perception rather than theories accentuating the global,
Gestalt, holistic attributes of stimulus-forms. In my judgement, all too
many perceptual theories have currently fallen victim to the elementalist
technological zeitgeist established by neurophysiology and computer
science. Although disappointing, this is not surprising, because it is
exactly comparable to the way in which theoreticians in this field have
been influenced by the pneumatic, hydraulic, horological, and tele-
phonic analogies that have sequentially characterized theories of per-
ception and mind over the last two millennia.

In spite of this fallacious tendency toward features, a considerable
body of evidence, only some of which has been surveyed in this volume,
suggests that in fact we see holistically, that is, that there is a primary
global precedence in human perception. We can, of course, direct our
attention and scrutiny to the details of a picture, but we are as often
ready to perceptually create details on the basis of some inference as to
be influenced by the presence of the real physical details of the stimulus.
First-order demonstrations [e.g. visual illusions], usually ignored but
always compelling, urge us to consider the global aspects of a form,
whereas one has to carefully construct an experimental situation to
tease out some semblance of local precedence.

— William Uttal (1988) On Seeing Forms, pp. 282- 283

���

He also points out that when we perceive hue, we are not simply
recovering objective properties of the stimulus (the wavelength of
light). What we are doing involves much more interpretation than that.
In fact, virtually any hue can be associated with almost any wavelength
by manipulating the context [Land, 1977, 1983; Land & McCann,
1971].

Integration of Depth Cues
A final point, this one about depth cues. People do not use a single cue
to determine depth, but integrate a number of cues. These include bin-
ocular stereo, texture gradients, linear perspective, relative size, occlu-
sion, focus, support and optical flow; some examples are show in Figure
2. While all of these are individually fallible, together they work pretty
well.

There is often a tendency, among roboticists, to consider vision
synonymous with stereo, so let me point out that in human perception
there are many times when stereo is not even used. For example, if we
cover one eye we can still tell which objects are close to us and which
far away. And when we watch movies, stereo is not giving us no infor-
mation, it is giving us wrong information with complete certainty. Ste-
reo tells us that everything is at the same depth (that of the screen), yet
we can still perceive majestic landscapes stretching off into the distance,
or that Tyrannosaurus Rex lunging at the Brontosaurus. Even when we
are looking at a still image (which lacks any motion cues), we have a
good idea of how far away the different parts of the scene are.

With this analysis in hand, I now turn to a critique of current methods in
robot design.

The Traditional Approach to Robot Perception
In contrast to human perception, most robot visual perception uses a sin-
gle depth cue and is completely data driven. For example, the most
common techniques for recovering depth information are stereo match-
ing and optical flow. They both rely on finding the same object in two
or more images, and they do this by template matching between small
windows in each image. There are many situations where this does not
work or is misled. The three most common are areas of low texture (e.g.
a flat grey wall); fence post errors, where a feature repeats through the
environment (e.g. a fence or row of file cabinets); and the halo effect
where one object occludes another.

Perhaps the most explicit statement of this traditional view is still
given by David Marr and H. Keith Nishihara [1978, Visual Information
Processing]. They state “the problem commences with a large, gray-
level intensity array, ... and it culminates in a description that depends
on that array, and on the purpose that the viewer brings to it.” The role
of expectations and domain knowledge are at best down played by this
description, and at worst absent. Marr and Nishihara point to con-
straints such as continuity or rigidness as the basis of a theory of vision,
because they are universal constraints, that is, independent of a particu-
lar domain or task. Yet, such algorithms work only in limited domains,
because those constraints are not universal. For example, most scenes
contain discontinuities at object boundaries, the ultimate discontinuity.
There is little or nothing that is truly universal in perception.

���

(D) Linear perspective

(C) Occlusion(A) Texture gradient Uniformly
textured surfaces produce texture
gradients that provide information
about depth, for example, in the
mud flats of Death Valley.

(B) Changes in texture gradients
Such changes can be cues to corners,
occlusions and other phenomena.

(E) Perceived size and distance The 2D size of the men in the image—which
corresponds to the size of their retinal image—is in the ratio of 3 to 1. But in
the left image, they look roughly equal in size, with one about three times fur-
ther off than the other. In the right image, however, the smaller man appears to
be at the same distance as the other man, and one third the size.

Figure 2: An assortment of depth cues.

���

Marr and Nishihara think of vision as the inverse of computer
graphics: given an image, and a model of the physical processes that
went into producing it, what scene was rendered? However, to be fast
and robust in the face of noise and other problems, the human visual
system often “fills in the gaps” (think of the phoneme restoration effect

above, or the subjective contours in Fig-
ure 3). Our edge detectors are not simply
recovering objective properties of the
image or the world, but using the image
as one clue, together with much other
information. Or consider that the colour
of an object (as we perceive it) can
change when we put a different colour
next to it.

To say that people are bad at deter-
mining colour or intensity gradients
misses the point. Much of the evidence
that vision is bottom up comes from
experiments where all context is elimi-
nated. Whether it is anesthetized cats
starring at line segments or people star-
ing at triangles and circles, we use bot-
tom up processing because it is all we
have left. But in more normal circum-
stances there is a wealth of extra infor-
mation we bring to bear. Whereas Marr
and Nishihara think in terms of the vision

problem being under constrained and what constraints to add to it, it
seems more helpful to look at it as “over suggested,” and ask how we
can best take all our information into account.

As the Related Work chapter made clear, obstacle avoidance based
on bottom up perception does not work reliably for long periods of time.

Even those researchers searching for
constraints recognize the potential bene-
fits of including some contextual ele-
ments in perception, yet still choose not
to investigate that path.

Why not? The main reason is com-
plexity; a system that takes into account
its context would be considerably more
complex than a data driven pipeline sys-
tem. To manage complexity, researchers
decompose intelligence into a number of
smaller, independent problems (e.g. find
edges given only the image), which are
individually tractable. The particulars of
how scientists manage complexity shed

light on both the limitations of current robotics and the possibilities of
circumventing them.

Black Box Systems
There are many concessions to complexity that researchers make, but
two in particular concern us here. The first results from specialization,

Figure 3: Subjective contours. On the left, we see a white triangle
whose vertices lie on top of the three black circles. The three sides of
this white triangle (which looks brighter than the white background) are
clearly visible, even though they do not exist physically. On the right,
black and white are reversed. Here, there is a black triangle (which
looks blacker than the black background) with subjective black con-
tours. [Kanizsa, 1976]

It is now known, for example, that there is not even any unique rela-
tionship between such “simple” and “directly” related parameters as
perceived hue and stimulating wavelength (Land, 1977, 1983; Land &
McCann, 1971). Rather, virtually any hue can be associated with
almost any wavelength if one is given control over the spatial and tem-
poral environment of the stimulus. In short, the causal relationships
between stimuli and visual responses must be considered to be very
loose; at the very least, multidimensionally determined; at the very
worst, only fortuitously correlated by the very complex processes under-
lying what we glibly call illusion and perceptual construction.

— William Uttal (1988) On Seeing Forms, p. xv

���

in which each researcher focuses on a different subsystem of a robot.
Examples of specialties include perception, planning and position esti-
mation. Robots, after all, are complex systems and by specializing in
how to model, analyze and build in one area, researchers can explore
that area in greater depth. But at the same time, researchers want their
approach to be usable by many different people, in many different areas.
So they make them as independent of the other subsystems as possible,
and usable for as many tasks as possible. Thus, robot software is com-
posed of a number of black boxes.

In this dissertation, I intend the phrase “black box” to be a technical
term to describe the components of such a design. The essence of a
black box is that the task it performs and how it is used can be described
succinctly, and that as long as one has this description, there is no need
to know how it works.

A few clarifications are in order. To say that its function and use
can be described succinctly, I mean that in order for someone outside
that subfield to use it, they do not need to know as much as the imple-
menters did, let alone the designers. For example, a canonical black box
is the microprocessor. Although microprocessors are quite complex,
those who design and build PCs do not need to understand this complex-
ity; all they need to understand is the interface: the power pins, the
address, data and control pins, and so on. And the interface to a black
box is often described using new concepts or abstractions. Of funda-
mental importance to the microprocessor are the concepts of the instruc-
tion, the operand, various addressing modes and the like. Together
these form the abstraction of the machine language.

When a black box does not conform to its interface, we declare it
broken, as with the bugs in floating point divisions on early Pentiums.
If we can describe under what conditions the error happens and what
goes wrong, we can roll that into the original description and work
around it. To keep the description simple, we usually give a superset of
the error conditions (e.g. “during an fdiv statement”, even though only
certain numbers caused problems), and a bound on the error (e.g. pro-
duces accuracies as bad as four decimal digits). If this is not possible,
we throw it out and get a new one. When we design and build systems
using a black box, all we use is its description, possibly updated in the
face of such errors. If an error is discovered in one subsystem, all bets
are off and in general no one knows what the system as a whole will do.
This is why people wanted new Pentiums; they had no idea what the
ramifications of the fdiv bug were for the software they were using, and
for software makers to prove that errors would be small would be a huge
task. The simplification accomplished by black box decomposition is
huge; even a small deviation from the spec leads to a great ballooning of
complexity.

Phoebe Sengers makes a similar point in her Ph.D. Thesis [1998,
Anti-Boxology: Agent Design in Cultural Context]. Her interest is in AI
for characters in interactive narratives. As she points out, such charac-
ters are created from a set of independent behaviours. Unfortunately,
this typically leads to a lack of global coherence, which Sengers traces
to a strategy called atomization that AI shares with industrialization and
psychiatric institutionalization. She too argues that while this strategy is
essential for building understandable code, it is fatal for creating agents
that have the overall coherence we have come to associate with living
beings.

���

This dissertation agrees with Sengers about the nature and causes of
“boxology,” and the problems it can create. While the boxes in her area
are externally distinguishable agent states—behaviors—in this disserta-
tion they are subsystems of a robot. Thus both Sengers and this author
arrive at the same high level conclusion, albeit in different domains.

The Interaction/Complexity Trade-off
Comparing this with the important of context in human perception
above, the difference is apparent. Those who are interested in how
words get their meaning are in a separate group from those who study
the shape of letters and optics, so they create separate subsystems. For
example, to make them usable by each other, the latter might create pro-
grams that use camera images as input and ASCII as output, and the
former might accept ASCII as input. Once the first stage decides on a
word’s identity, that choice is never revisited.

But taken as a description of the field, that is oversimplified. The
black box framework does not require that the intermediate representa-
tion be a single ASCII character for each letter seen. Instead, for exam-
ple, it could return a list of letters with associated probabilities. For the
character between A and H, it could return A and H, each with a proba-
bility of 0.5. In general, a black box in a perception program could
return a “short list” of possibilities with associated probabilities.

But even so, this makes for slower perception. It cannot account
for the use of semantic expectations to speed up recognition (see the
“nurse-doctor” “bread-doctor” example above). More importantly, it
means that errors cannot straddle black box boundaries. The system can
never parse a situation where the physical stimulus is not all that close
and neither is the syntax, but together there is only one consistent solu-
tion. In other words, if each subsystem only provides a weak con-
straint—and in general, enumerating all the possible interpretations that
satisfy the constraint would be far too gigantic a task—the “list of possi-
bilities” representation is impractical.

Hard Separation vs. Soft Separation
The next fall back position is for each black box to provide constraints
in some constraint language. But the most natural language for such
constraints use the concepts from the analysis at that stage—the very
concepts that need to be contained within the black box, to manage
complexity. For example, even if we cannot tell whether a given shape
is an “R” or a “B,” we can tell that the top is round, the left side is
straight, and there is definitely something in the lower right. More
importantly, any non-trivial analysis reduces information. And without
knowledge of syntactic, semantic, task and domain constraints, we can-
not be sure what is relevant and what we can safely throw out.

There have been attempts at frameworks for stronger interaction,
such as blackboard architectures, recurrent neural nets, subsumption or
the current interest in Bayesian frameworks. However, in order for
these techniques to become widespread, they must work with a large
number of techniques on many and varied subproblems. Therefore, the
flavour of representation and interaction tends to be largely context and
domain independent. In other words, the social environment in which
theories are created and discussed provides additional constraints on
those theories.

���

What characterizes the black box approach is hard separation.
Since each box performs a qualitatively different task and has a simpli-
fied external description, there simply is not much room for subtle inter-
action between two boxes. Once we have decided on the structure of
the system—how we will break it down into subsystems—the sub-
systems become fairly isolated. As a result, the structure we impose is
rather rigid.

This is not to say that there should be no separation, or that there is
no separation in the human brain. Certainly the human perceptual sys-
tem is composed of a number of subsystems, physically located in dif-
ferent parts of the brain. However, these subsystems work
fundamentally more closely than the subsystems in traditional robots.
Using syntactic and semantic constraints in the word recognition sub-
system is not possible in a system with hard separation; I refer to such
interplay as soft separation.

This is also not to say that any old increase in communication
between the various subsystems is good. Simply allowing one sub-
system to read the internals of another subsystem is not enough; it needs
to know what to do with that information.

It should be noted that the hard separation/black box approach
applies not only robotics, but to most of Western science and engineer-
ing, if not other avenues of thought. We build our machines to have pre-
dictable and easily describable behavior. The connotations of the word
“mechanical” come from this. Anyone who has worked with machines
knows that naturally they shake and bend, that electronics is susceptible
to noise, and that much effort is expended on finding rigid materials,
precision machining and linear amplifiers. Viewing other endeavours in
this light may lead to fruitful insights. However, in this work I am inter-
ested in its impact on robotics alone.

Software Engineering: Friend or Foe?
A last note on the role of complexity: It could be said that software
engineering teaches the power of keeping code conceptually clean and
understandable. I would argue that representations that make useful
programs easier to express are directly applicable to the proposed
framework. But other aspects are concessions to human understanding
and maintainability of code. These aspects represent objects in the
world using context free classes with simple, context free relationships
to each other, and that make black boxes much easier to construct than
interconnected systems. Software engineering makes the point that
those help greatly when people construct programs. This work makes
the point that we will need to overcome them to construct truly intelli-
gent computers.

A Final Example: Depth Cues
Let’s see how this plays out in the case of using multiple depth cues.
Earlier we noted that people combine a number of depth cues, and it is
unclear whether a single depth cue is sufficient for even simple tasks
such as obstacle avoidance. Certainly researchers recognize the benefits
of combining depth cues. In fact, it can be considered an example of the
larger problem of sensor fusion. Why are not more people trying it?

By now, the answer should be clear: the problem is isolation and
complexity. Traditionally, for each depth cue, we analyze an image and

��	

return a depth map. It might make more sense to return a set of con-
straints, but what language would we use to describe them? We could
also try combining the depth maps, but again how do we do that?
Answers like “take the average” or “use the most common” are typical
data driven answers, because they are optimal assuming that the errors
of each method are independent of each other, independent from pixel to
pixel, independent from one moment to the next, independent of the
geometrical arrangement of objects in the environment, and in general
independent of all other variables in the robot, its environment and the
task.

A New Hope
So what would an alternate approach look like? As mentioned above, it
could still have subsystems, but they would be much more interdepen-
dent than current subsystems. Such a system may not have a central
organizing framework. Each group of subsystems may interact in some
ad hoc manner that is most appropriate for them.

However, this does not mean there would be total chaos. Regulari-
ties would most likely abound, because many algorithms or data struc-
tures work well in a variety of situations. Once we back off from the
idea that “one size fits all,” we are likely to find that one size fits many.

This is certainly true in biology. Animals have a large amount of
structure, with only a small number of basic cell types for example.
And brains definitely have structure, since different functions are
located in different areas of the brain. Nevertheless, similar structures
are used in many places, independently of each other, because they
work well. D’Arcy Thompson [1917, On Growth and Form] is one of
many to point this out.

Another interesting property of an alternate approach, perhaps the
most important property, is that it could include the best of many other
approaches. When a framework specifies that an interaction must hap-
pen a certain way, it excludes it from happening any other way. Sub-
sumption, for example, specifies the highest level structure of an agent.
It specifies discrete subsystems that interact through though virtual
wires that carry simple values, often just real numbers. Subsystems at
higher levels can only subsume the output of lower level subsystems,
that is, disable the lower level subsystem’s output and replace it with its
own.

This excludes other organizations, other ways for subsystems to
interact. Such exclusions often mean the system cannot embody some
ability that people have.

By contrast, what is argued for here is an inclusive framework, that
allows subsystems to use whatever works best. It may use a technique
or representation in many places, but allow exceptions where another
technique would work better. It should allow Bayesian methods where
they work best, subsumption where it works best, and any other method
where it works best. This, perhaps, is the most important aspect of what
is attempted in this work.

And in the end, this is what experienced engineers do. They know
the strengths and weaknesses of a large number of techniques, and select
the most appropriate one for every subproblem. While they often look
for an overall design that will avoid the majority of problems, they still

��

need to occasionally go outside of it to “hack around” the occasional
problem.

Summary
The problems and limitations of current robot perception algorithms
come from using the traditional method of managing complexity: the
black box methodological stance. This stance, which has been wildly
successful in science and engineering, works by isolating subsystems so
that the description of what they do and how to use them is much sim-
pler than how they do it. Also, those who use them do not need to know
about any of the issues of how they are designed. Although this is a
great win from the complexity and division of labour standpoint, it
makes for much isolation between subsystems. I call this type of isola-
tion hard separation.

In contrast, to get the most information out of a sensor’s readings,
the human perception system can use context: task and domain knowl-
edge influence even the lowest levels of perception, and all levels influ-
ence each other. However, a perceptual system in which each
subsystem can take into account the details of other components cannot
have hard separation between its components. This is not to say it must
be one undifferentiated mass; there should no doubt be identifiable sub-
systems, but these subsystems need to interact in subtle ways. I term
this type of interaction soft separation.

Marr and Nishihara reflect the traditional view in all of robotics
when they take hard separation as the fundamental tenet of computer
vision. In their view, research in computer vision should not worry too
much about the issues in other subfields of AI, but instead focus on find-
ing universal constraints for this under constrained problem. They natu-
rally pick only a single set of related issues to study, which they can
study in great depth. And they search for techniques that are as gener-
ally applicable as possible. In this way they are lured into creating black
boxes that are hard separated from other subfields’ boxes, and from task
and domain constraints. In fact, it is hard to see how else the problem
could be attacked.

The principles enunciated in this chapter, that the guide the development
of an alternative framework in this dissertation, are summarized here:

1. Context dependence of concepts: The world cannot be usefully
seen as composed of discrete elements and task. In practice, the
vast majority of useful concepts are dependent on context.

2. Relevance (the frame problem): The system must decide for
itself what part of the world around it, and what part of its knowl-
edge, is relevant. Micro-worlds are poor testbeds because the
researcher solves this problem. Many real world domains do not
have clear boundaries, but rather, different factors have varying rel-
evance that blend into the continuous use of common sense and
background know-how.

3. Use representation sparingly: Representations can fail to repre-
sent what is relevant, can get out of sync easily, and often are not
needed anyway. The world is often its own best representation.

���

4. Embodiment: Simulations necessarily embody assumptions about
how the world works, in particular the nature of concepts and what
is relevant. Historically, this has lead AI researchers to solve the
wrong problems. Therefore, intelligence is more likely to be devel-
oped by dealing more and more competently with the vagaries and
complexities of the real world, than by creating human level com-
petency in ever more complex micro-worlds. Embodiment is also
important in another sense: the body mediates how an agent views
and affects the world, which greatly affects how it things. When all
you have is a hammer, everything starts to look like a nail.

5. Guide the agent: The goal of perception is not to recover objec-
tive properties of the stimulus or even the object being perceived. It
is to understand enough of the world to guide the agent in its task.

6. Context dependence of analysis: Any analysis or decision, such
as identifying object boundaries, emphasizes some hypotheses over
others. Such decisions must take into account constraints from
other subsystems, as well as task and domain constraints. In other
words, the various subsystems that compose a system need more
interaction.

7. Soft constraints: There are many cues in an image that, while they
are not hard and fast constraints, suggest various interpretations.
The human perceptual system leverages those, and computers can
stand to gain much by leveraging them as well. Perception is use-
fully seen as over-suggested, not under-constrained.

8. Complexity: Researchers largely agree on the above two points,
but they do not incorporate them into their systems, instead creating
systems out of black boxes. They use black boxes because other-
wise the system would become too complex for them to work with.

9. Regularities: The most natural framework for a thinking device
may not have a central organizing principle, but instead have ele-
ments or approaches that are used many times independently.

10. Influences from research culture: The previous four points are
examples of a general point. The kinds of programs and frame-
works that are created by people are influenced by the affordances
of the human mind. These influences may come from universal,
innate qualities of the mind, from social influences, or—most
likely—both.

11. Inclusiveness: Frameworks should allow each design problem,
including the interaction between subsystems, to be solved with
whatever technique is most appropriate.

The first four (context dependence of concepts, relevance, use represen-
tation sparingly, embodiment) have been widely discussed in critiques
of AI. The next three (guide the agent, context dependence of analysis,
soft constraints) are generally understood in psychology and occasion-
ally acknowledged in AI, where they are greeted with lip service, apathy
or hand-wringing. The last four (complexity, regularities, influences
from research culture, inclusiveness) have been discussed to various
degrees in science studies, cultural studies and elsewhere, but have not
been seriously discussed within psychology or artificial intelligence

���

anywhere to my knowledge. Unless practitioners in these fields are
aware of and discuss these issues, they will not take these ideas to heart
and change their practices.

The last seven points (and the discussion about them) are the contri-
bution of this thesis in the area of the debate about AI.

The Proposed Research Program
A black box structure with strong separation appears necessary for man-
aging complexity when people design systems. Therefore, we need to
develop techniques for designing systems that are more interdependent
than what people can design. In other words, we need to hand at least
part of the design process over to software tools. Our problem then
becomes the meta problem: how do we design tools that design robot
software?

What could those tools be? How can they design fundamentally,
qualitatively different systems, on par with nature? Since nature has
been so successful, let’s take a page from its approach to design. The
fundamental difference is that nature starts with a number of designs,
chooses the ones that work best, and combines them in hopes of getting
the best of both or even something new. In other words, it uses learning.

Although learning is by no means new to robotics, it is not usually
applied to designing architectures. Most applications of learning start
with a decomposition into subsystems. This usually done by hand, in a
black box way, and only the internals of the boxes are learned.

If evolutionary computation or some other learning technique is
used to create the design, the subsystems can be tuned to the particular
task and environment. Whereas a technique or theory of vision strives
to be generally applicable, a technique or theory of vision design can be
general, while the designs it creates are specialized. This also allows the
individual subsystems to be more interdependent. Besides not having to
be “plug and play” in other designs, they are designed together, so they
can learn to compensate for each others weaknesses. The design does
not need to have a conceptually clean organizational structure, or be
simple enough to be understandable by a programmer. This is not to say
that anything goes or that it can be arbitrarily complex. As pointed out
above, animals have a wealth of structure. There are only a small num-
ber of basic cell types, for example, and different functions are located
in different areas of the brain. But the separation between parts can be a
soft separation.

Above I argued that hard constraints work most of the time, but fail
every once in a while. This makes them perfect for a learning algo-
rithm. Hopefully, a simple, general rule will be easy to find. Once
found, it is likely to be kept because of its great boost to performance.
Then, the cases where it fails will be noted and exceptions made for
them. This kind of fitness landscape, where there is a nearby approxi-
mate solution that can be further refined, is the most conducive to learn-
ing.

This process, known as iterative design, is what researchers already
do by hand when developing a new technique. After all, techniques and
frameworks are the main contributions of AI, and in order to demon-
strate and evaluate a new ideas they must be embodied in working pro-
grams. Systems never work the first time, and reflecting on what went
wrong and why provides feedback. Sometimes the reflection shows

���

mistakes during implementation, but other times is shows that the tech-
nique or framework was not applied in just the right way.

The simulated evolution approach described here can be seen as

automating this step1, although the details are different. In particular,
when constructing systems by hand, only a small number are imple-
mented, and the researchers spend a fair amount of time analyzing and
understanding how the program works and deciding what to try next.
The above critique indicates the biases and limitations of that approach.
By contrast, evolutionary techniques use a much simpler method of gen-
erating new designs, and try many more, typically hundreds of thou-
sands to millions.

This gives the research a different flavour. The researcher focuses
on the representation. It is seductive to treat evolutionary computation
(EC) as a black box that automatically finds subtle and intricate uses of
the building blocks provided. But after working with EC for a while,
one realizes that this is not so. If the representation has a certain fla-
vour, such as data driven or contextually dependent, it will be difficult if
not impossible for EC to develop strategies in a different flavour.

This makes the representation even more important. As the
machine learning community has discovered, representation is king.
Still, EC will compose the building blocks in complex ways, taking care
of many details, freeing us from the constraint of a conceptually clean
structure. And the framework is naturally inclusive. Unless the repre-
sentation explicitly forbids it, different parts of the program will use
whatever structure happens to work. New approaches, for example
active vision or conceptual driven elements, can be incorporated by
expanding the representation without losing other approaches. It is sim-
ilar to the programming language Lisp which, while known as a func-
tional language, actually contains both functional and procedural
elements, allowing the programmer to mix and match styles as appropri-
ate.

The main research question is how to choose a representation that
facilitates the EC search. Secondary questions include how to assign
fitness to potential programs and how those programs are used. Those
are at least partly perception and robotics issues; obviously there is
room for exploring way to modify the EC that are independent of any
domain. But it is also possible to leave those explorations to the EC
community, and simply acquire a knowledge of the strengths and weak-
nesses of EC. That is the path I have travelled in this dissertation.

The methodology works as follows: The researcher picks a task,
considers potential algorithms for that task, and comes up with a repre-
sentation for those algorithms. They then come up with a particular
instance of that task, select the specific inputs and outputs for potential
programs, decide how to assign fitness, then run the EC.

By examining how the best programs perform, where they succeed
and why, and by looking at how various primitives are used or not used,
researchers reflect on the representation and the other details and make
improvements. Improvements can also be inspired by the successes,
failures and trends in traditional research. For example, Tina Yu’s Ph.D.
thesis found that functional programming elements helped Genetic Pro-
gramming [2000, An Analysis of the Impact of Functional Programming

1. I am indebted to Ian Horswill for this observation.

���

Techniques on Genetic Programming]. Certain software engineering
elements could prove useful as well.

To elaborate, when considering a particular task in robotics or com-
puter vision, it is usually the case that we can write out a dozen or more
potential programs in pseudo code. The goal of the initial representa-
tion is to express all of these programs, and all obvious generalizations
and combinations of them, naturally and simply.

And although evolved programs generally will not be understood
line by line, the way traditional programs are, many useful principles of
their functioning can still be determined. We can determine under
which situations they work and which they do not, we can see the values
achieved by different parts in different situations, and we can explore
small combinations of elements that commonly repeat. These types of
analysis are more like those in neuroscience than traditional computer
science.

As such, the level of understanding and analysis is somewhat lower
than the norm in computer science. A sorting algorithm, for example, is
generally proven to always get the right answer before anyone will use
it. Simply saying “It was tried on a thousand lists and sorted them all
properly” is not generally considered strong enough evidence that it will
work.

However, this level of proof is simply not possible when interfacing
with the real world, as is done in robotics. Edge detectors, for example,
cannot be proven to find all the edges in an image. As such, robotics is
typically full of optimal algorithms that do not work well in practice,
since the conditions for optimality are rarely met. What can be done is
to test it well and gather empirical data to establish statistical signifi-
cance. And in practice this is more than good enough. If a vacuum
cleaning robot works well in a laboratory, then in a home, then in many
homes, that is more than enough of an argument that it works.

This leaves mathematical proofs with a secondary role in robotics,
that of proving under what conditions an algorithm will and will not
work. This can guide researchers in what to look for when the algo-
rithm is failing. In this role it is simply one analysis technique among
many. Much of machine learning trades off this ability in preference to
other ways of understanding, or other properties altogether.

Therefore, the contribution in this approach is not that different
than in traditional approaches. We still discover which representations
and classes of algorithms work best in which situations, and that both
guides us in engineering systems for particular problems, as well as
teaches us about the nature of the problem domain.

The rest of this dissertation describes the first steps in this research pro-
gram.

���

���	�����

Activision, Inc. (2000). Star Trek: Armada [computer software].
www.planetSTArmada.com

Agre, P. E. (1997). Computation and Human Experience. Cambridge,
UK: Cambridge University Press.

Anderson, S.L. (1990). Random Number Generators on Vector Super-
computers and Other Advanced Architectures. SIAM Review 32(2):
pp. 221-251

Ashcraft, M. H. (1989). Human Memory and Cognition. Scott, Fores-
man and Company.

Baluja, S. (1996). Evolution of an Artificial Neural Network Based
Autonomous Land Vehicle Controller. IEEE Transactions on Sys-
tems, Man and Cybernetics Part B: Cybernetics. 26, 3, pp 450-463.

Bickhard, M. H. and Terveen, Loren (1996). Foundational Issues in
Artificial Intelligence and Cognitive Science: Impasse and Solu-
tion. Amsterdam: Elsevier.

Blackwell, Mike (1991). The Uranus mobile robot. Carnegie Mellon
University Robotics Institute Technical Report CMU-RI-TR-91-06.

Brooks, Rodney (1991). Intelligence Without Representation. Artificial
Intelligence Journal, 47, 1991, pp. 139-160.

Brooks, Rodney (1992). Artificial Life and Real Robots. Toward a
Practice of Autonomous Systems: Proceedings of the First Euro-
pean Conference on Artificial Life, Varela and Bourgine (eds).
Cambridge, Mass.: MIT Press. pp. 3-10.

Camus, T., Coombs, D., Herman, M. and Hong, H.T. (1999). Real-time
Single-workstation Obstacle Avoidance Using Only Wide-field
Flow Divergence. Journal of Computer Vision Research, Summer
1999, Vol. 1, No. 3, MIT Press

Cramer, N.L. (1985). A representation for the adaptive generation of
simple sequential programs. Proc. of an International Conference
on Genetic Algorithms and their Applications. Erlbaum.

Coombs, D., Herman, M., Hong, T.H. and Nashman, M. (1997) Real-
time Obstacle Avoidance Using Central Flow Divergence and
Peripheral Flow. IEEE Transactions on Robotics and Automation.

Chapman, David (1991). Vision, Instruction, and Action. Cambridge,
Mass.: MIT Press.

Davies, E.R. (1997). Machine Vision: Theory, Algorithms, Practicali-
ties, 2nd Edition. San Diego: Academic Press.

Dreyfus, Hubert (1992). What Computers Still Can’t Do: A Critique of
Artificial Reason Cambridge, Mass.: The MIT Press.

Floreano, D. and Mondada, F. (1994). Automatic Creation of an
Autonomous Agent: Genetic Evolution of a Neural-Network
Driven Robot. Proceedings of the Third International Conference
on Simulation of Adaptive Behavior: From Animals to Animats 3.

Fogel, L. J., Owens, A. J., and Walsh, M. J. (1966). Artificial Intelli-
gence through Simulated Evolution. New York: John Wiley.

Friedberg, R. M. (l958). A learning machine: Part I. IBM Journal of
Research and Development, 2(1) 2-13.

���

Friedberg, R. M., Dunham, B., and North, J. H. (l959). A learning
machine: Part II. IBM Journal of Research and Development, 3(3)
282-287.

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems.
Ann Arbor, MI: University of Michigan Press. 2nd ed: MIT Press,
1992.

Harvey, I., Husbands, P., and Cliff, D. (1992). Issues in Evolutionary
Robotics. Proceedings of SAB92, the Second International Confer-
ence on Simulation of Adaptive Behavior, Meyers, J.-A., Roitblat,
H., and Wilson, S. (eds). Cambridge, Mass.: The MIT Press

Harvey, I., Husbands, P., Cliff, D., Thompson, A. and Jakobi, N. (1997).
Evolutionary Robotics: The Sussex approach. Robotics and Auton-
omous Systems, 20. pp. 205-224.

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems.
The University of Michigan Press, Ann Arbor.

Horswill, I. (1993). Polly: A Vision-Based Artificial Agent. Proceed-
ings of the Eleventh National Conference on Artificial Intelligence
(AAAI-93), July 11-15, 1993, Washington DC, MIT Press.

Horswill, I. (1994). Specialization of Perceptual Processes. Ph.D. The-
sis, Massachusetts Institute of Technology, May 1993.

Husbands, P. and Meyer, J.-A. (eds.) (1998). Evolutionary Robotics,
Proceedings, First Euopean Workshop, EvoRobot98. Paris, France,
April 1998.

Isenberg, D.; Walker, E. C. T.; Ryder, J. M. & Schweikert, J. (1980). A
top-down effect on the identification of function words. Paper pre-
sented at the Acoustical Society of America, Los Angeles, Novem-
ber 1980. Quoted in Rumelhart et al. 1986, Parallel Distributed
Processing Vol. 1.

Jakobi, N., Husbands, P. and Harvey, I. (1995). Noise and the Reality
Gap: The Use of Simulation in Evolutionary Robotics. In Advances
in Artificial Life: Proceedings of the Third European Conference on
Artificial Life.

Kanizsa, G. (1976). Subjective Contours. Scientific American 234: pp.
48-52.

Katragadda, L., Murphy, J. Apostolopoulos, D., Bapna, D. & Whittaker,
W. (1996). Technology Demonstrations for a Lunar Rover Expedi-
tion. 1996 SAE International Conference on Environmental Sys-
tems, Monterey, CA.

Keith, M.J. and Martin, M.C. (1994). Genetic Programming in C++:
Implementation Issues. Advances in Genetic Programmming.
Cambridge, Mass.: The MIT Press.

Kinnear, K. E. (1994a). A Perspective on the Work in this Book. in
[Kinnear 1994b]

Kinnear, K. E. (ed). (1994b). Advances in Geneti cProgramming. Cam-
bridge, Mass.: The MIT Press.

Koza, J. R. (1991). Evolving Emergent Wall Following Robotics
Behavior Using the Genetic Programming Paradigm. ECAL, Paris,
Dec. 1991.

Koza, J. R. (1992). Genetic Programming: On The Programming Of
Computers By Means Of Natural Selection. Cambridge: MIT
Press.

Koza, J.R. (1994). Genetic Programming II: Automatic Discovery of
Reusable Programs. Cambridge: MIT Press.

��	

Krotkov, E., Hebert, M. & Simmons, R. (1995). Stereo perception and
dead reckoning for a prototype lunar rover. Autonomous Robots
2(4) December 1995, pp. 313-331

Land, E. H. (1977). The retina theory of color vision. Scientific Amer-
ican, 237, pp. 108-128

Land, E. H. (1983). Recent advances in retinex theory and some impli-
cations for corical computations: Color vision and the natural
image. Proceedings of the National Academy of Science (USA),
80, pp. 5163-5169

Land, E. H. & McCann, J. J. (1971). Lightness and retinex theory,
Journal of the Optical Society of America, 61, pp. 1-11.

Langton, C. G. (ed). (1987). Proceedings of Artificial Life. Addison-
Wesley.

Langton, C. G., Taylor, C., Farmer, J. D. and Rassmuseen, S. (eds).
Proceedings of Artificial Life II. Addison-Wesley.

Lenat, Douglas & Guha, R.V. (1990). Building Large Knowledge-
Based Systems: Representation and Inference in the Cyc Project.
Reading, Mass.: Addison Wesley.

Lorigo, L. M. (1996). Visually-guided obstacle avoidance in unstruc-
tured environments. MIT AI Laboratory Masters Thesis. February
1996.

Lorigo, L. M., Brooks, R. A. & Grimson, W. E. L. (1997). Visually-
guided obstacle avoidance in unstructured environments. IEEE
Conference on Intelligent Robots and Systems September 1997.

Lindsay, P. H., & Norman, C. A. (1972). Human information process-
ing: An introduction to psychology. New York: Academic Press.

Maimone, M. (1997). Lunar Rover Navigation 1996 (Web Page).
http://www.cs.cmu.edu/afs/cs/project/lri/www/
nav96.shtml

Matthies, L. H. (1992). Stereo vision for planetary rovers: stochastic
modeling to near real-time implementation. International Journal
of Computer Vision, 8(1):71-91, July 1992.

Matthies, L. H., Kelly, A., & Litwin, T. (1995). Obstacle Detection for
Unmanned Ground Vehicles: A Progress Report.

Meeden, L.A. (1996). An Incremental Approach to Developing Intelli-
gent Neural Network Controllers for Robots. IEEE Transactions of
Systems, Man and Cybernetics Part B: Cybernetics. 26, 3, 474-
485.

Meyer, D. E. & Schvaneveldt, R. W. (1971). Facilitation in recognizing
pairs of words: Evidence of a dependence between retrieval opera-
tions. Journal of Experimental Psychology, 90, pp. 227-234

Meyer, D. E.; Schvaneveldt, R. W. & Ruddy, M. G. (1975). Loci of
contextual effects on visual word-recognition. In P. M. A. Rabbitt,
& S. Dornic (Eds.), Attention and Performance (Vol. 5, pp. 98-115).
London: Academic Press.

Miglino, O., Lund, H. H. and Nolfi, S. (1995). Evolving Mobile
Robots in Simulated and Real Environments. Artificial Life, 2, pp.
417-434

Horavec, H. P. (1996). Robot Spatial Perception by Stereoscopic Vision
and 3D Evidence Grids. CMU Robotics Institute Technical Report
CMU-RI-TR-96-34, September 1996. also Daimler Benz Research,
Berlin, Technical Report, 1996

��

Moravec, H.P. (2000). DARPA MARS program research progress,
http://www.frc.ri.cmu.edu/~hpm/project.archive/robot.papers/
2000/ARPA.MARS.reports.00/Report.0001.html, Januray 2000.

Naito, T., Odagiri, R., Matsunaga, Y., Tanifuji, M. and Murase, K.
(1997). Genetic Evolution of a Logic Circuit Which Controls an
Autonomous Mobile Robot. Evolvable Systems: From Biology to
Hardware.

Nelissen, M. (2000). The liblayout library. http://www.xs4all.nl/~mar-
cone/be.html

Nishihara, H. (1984). Practical Real-Time Imaging Stereo Matcher.
Optical Engineering 23(5):536-545, Sept./Oct. 1984.

Nolfi, S. and Floreano, D. (2000). Evolutionary Robotics. Cambridge,
Mass.: MIT Press / Bradford Books.

Nordin, P., Banzhaf, W. and Brameier, M. (1998). Evolution of a World
Model for a Miniature Robot using Genetic Programming. Robotics
and Autonomous Systems, 25, pp. 105-116.

Nourbakhsh, I. (1996). A Sighted Robot: Can we ever build a robot that
really doesn’t hit (or fall into) obstacles? The Robotics Practitio-
ner, Spring 1996, pp. 11-14.

Nourbakhsh, I. (2000). Property Mapping: A Simple Technique for
Mobile Robot Programming. Proceedings of the Seventeenth
National Conference on Artificial Intelligence (AAAI-2000).

Park, S.K. and Miller, K.W. (1988). Random Number Generators: Good
Ones Are Hard To Find. Communications of the ACM. 31: pp.
1192-1201.

Pollack, I. & Pickett, J. M. (1964). Intelligibility of excerpts from flu-
ent speech: Auditory vs. structural context. Journal of Verbal
Learning and Verbal Behavior, 3, pp. 79-84.

Pomerleau, D. (1989). ALVINN: An Autonomous Land Vehicle In a
Neural Network. Advances in Neural Information Processing Sys-
tems 1. Morgan Kaufmann.

Reynolds, C. W. (1994). Evolution of Obstacle Avoidance Behavior:
Using Nosie to Promote Robust Solutions. In Advances in Genetic
Programming, MIT Press, pp. 221-242.

Rice, J.A. (1988). Mathematical Statistics and Data Analysis. Belmont,
CA: Wadsworth, Inc.

Rumelhart, D. E.; McClelland, J. L. & The PDP Research Group
(1986). Parallel Distributed Processing: Explorations in the
Microstructure of Cognition. Volume 1: Foundations. Cambridge,
Mass.: The MIT Press.

Selfridge, O. G. (1955). Pattern recognition in modern computers.
Proceedings of the Western Joint Computer Conference.

Sengers, P. (1998). Anti-Boxology: Agent Design in Cultural Context.
Ph.D. Thesis, Carnegie Mellon University Department of Computer
Science and Program in Literary and Cultural Theory.

Sharoff, Serge (1995). Philosophy and Cognitive Science. From Stan-
ford Humanities Review, vol. 4, issue 2: Constructions of the Mind.

Smith, Brian Cantwell (1996). On the Origin of Objects. Cambridge,
Mass.: The MIT Press

Smith, T. M. C. (1998). Blurred Vision: Simulation-Reality Transfer of
a Visually Guided Robot. In Evolutionary Robotics, Proceedings
of the First Euopean Workshop, EvoRobot98, Paris, France, April.

���

Teller, A. and Veloso, M. (1997). PADO: A new learning architecture
for object recognition. In Symbolic Visual Learning, Oxford Press,
pp. 77-112.

Thompson, D’Arcy. (1917). On Growth And Form.
Turing, A. M. (1950). Computing Machinery and Intelligence. Mind,

LIX, 2236, pages 433-460.
Uttal, William R. (1988). On Seeing Forms. Hillsdale, NJ: Lawrence

Erlbaum Associates.
Varela, Francisco J.; Thompson, Evan & Rosch, Eleanor (1991). The

Embodied Mind. Cambridge, Mass.: The MIT Press.
Warren, R. M., & Warren, R. P. (1970). Auditory illusions and confu-

sions. Scientific American 223, pp. 30-36.
Winograd, Terry & Flores, Fernando (1986). Understanding Computers

and Cognition: A New Foundation for Design. Reading, Mass.:
Addison-Wesley.

Yamauchi, B. and Beer, R. (1994). Integrating Reactive, Sequential,
and Learning Behavior Using Dynamical Neural Networks. Pro-
ceedings of the Third International Conference on Simulation of
Adaptive Behavior: From Animals to Animats 3. The MIT Press/
Bradford Book.

Yam, P. (1998). Roaches at the Wheel. Scientific American 278 (1) Jan-
uary 1998, p. 45

Yu, Tina (2000). An Analysis of the Impact of Functional Programming
Techniques on Genetic Programming. Ph.D. Thesis, http://
www.addr.com/~tinayu/

