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Abstract We present a novel means of algorithmically describing a growth
process that is an extension of Lindenmayer’s Map L-systems. This growth
process relies upon a set of rewrite rules, a map axiom and a novel geo-
metrical interpreter which is integrated with a 3D simulated environment.
The outcome of the growth process is a digital surface in 3D space which
has “grown” within and in response to its environment. We have developed
a complementary Evolutionary Algorithm (EA) that is able to take over
the task of generating the rewrite rules set for a growth process. Using a
quantitative multi-objective fitness function that evaluates a variety sur-
face properties, the integrated system (EA + Growth Process) can explore
and generate diverse and interesting surfaces with a resemblance of organic
form. The algorithms have been implemented to create a design tool for
architects called Genr8.

1 Introduction

In this submission we describe how we have exploited an evolutionary algo-
rithm (EA) to explore and generate computational definitions of growth
processes. The growth processes are subsequently executed interactively
with a modeled physical environment and instantiated as three dimensional
(3D) digital surfaces. Our EA functions as a key exploration component
within an open ended design assistance tool named Genr8 [14] [13]. Genr8
is a design tool for architects for surface generation that was developed by
the Emergent Design Group (EDG) at MIT. Made up of architects and
computer scientists, the group has an interdiciplinary agenda. The aim of
the EDG is innovation in architectural design by exploiting and exploring
new algorithms from computer science. In particular, the EDG is interested
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in applying ideas from Evolutionary Computation (EC) and Artificial Life
(ALife) to architectural design. Both EC and ALife use Biology as an in-
spiration to develop novel algorithms. Our aim is to utilize these concepts
to generate biologically inspired form.

Natural form has always been important to architects and designers. To
many people, natural form has a strong aestethic appeal and is a highly
desirable property. Moreover, most natural structures are very efficient in
terms of structural capacity and economy of materials. Unlike most man-
made designs, they are robust to a wide range of failures and they can fulfill
multiple functions. Natural structures are the result of millions of years
of evolution and as designers we would like to be able to take advantage
of Nature’s strategies. There is a compelling argument that best way of
achieving these goals is to mimic the natural processes that give rise to
natural structures.

All organisms are created by growth from a single cell. Even though
this phenomenon has been studied extensively by biologists, we are still far
from a complete understanding of this complex process [10]. The process
takes place over multiple time scales making quantitative descriptions no-
toriously difficult. Many of the mathematical descriptions can be traced to
the seminal work by D’Arcy Thompson [43]. In his inspirational book he
uses physical principles to shed light on biological form. Another influen-
tial paradigm is that of Cellular Automata (CA) which was proposed by
von Neumann as a way of describing self-replicating systems [46]. A third
approach is Lindenmayer systems (L-systems) which were first introduced
by biologist Aristid Lindenmayer as a phenomenological description of the
growth of yeast cells. L-systems have since been successfully used to de-
scribe plant growth [33]. Unlike the work of Thompson, CAs and L-systems
are algorithmic descriptions of a growth process.

Hornby and Pollack [15] have demonstrated that one can achieve more
powerful results by employing a generative representation rather than a
direct representation of the design. They suggest that one should evolve
rules for creating an object rather than creating the object itself directly.
This is in accordance with biology, where the genome should be thought of
as instructions for how to build and maintain an organism rather than the
exact blueprint of the organism. For this reason, L-systems are of obvious
interest since they express growth using a set of rewrite rules which can be
represnted by a context-free grammar.

We proceed in the following manner: In Section 2 we discuss algorithms
that have been used to generate computational versions of growth and EAs
in the context of architecture. In Section 3, we provide an overview of the
Genr8 system architecture. In Section 4 we describe the rewrite systems
and geometrical interpreter we have designed to “grow” surfaces in 3D. In
Section 5 we describe how we extend Grammatical Evolution [31] so that
we can exploit an EA to explore and discover rewrite systems. In Section 6,
we show Genr8’s surfaces that are the products of our EA and generative
growth system integration.
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2 Related work

The use of growth-like algorithms has been very successful in a wide range
of areas in science and engineering, including but not limited to, computer
graphics [38] [33] [17], neural networks [12] and analog circuit design [22]. In
this brief review, we will focus on applications of growth algorithms and EAs
in architecture. The use of EAs to produce artistic works has been reviewed
by Johnson and Romero [19]. A recent review of aesthetic evolution of L-
systems can be found in [27]. Applications of EAs to art and design are also
presented in the collections edited by Peter Bentley [24] [4].

The ideas of using generative algorithms and procedures in architec-
ture is not new. One of the early pioneers was John Frazer who began his
work at the Architectural Association in the 1960’s [11]. The title of his
book “An Evolutionary Architecture” conveys his interest. It investigates
“fundamental form-generating processes in architecture, paralleling a wider
scientific search for a theory of morphogenesis in the natural world”. His
early projects include the Reptile structural system which incorporates no-
tions of growth and evolution, albeit without an explicit specification from
a formal language. The basic strategy was to use growth involving a small
set of tiles repeatedly (rep-tile) starting from a minimal seed. His group has
also evolved surfaces, although it used a mathematical description rather
than growth language. The fact that his EA based form generating ex-
periments are implemented physically allows them to be “understood in
architectural terms as an expression of logic in space”. Frazer’s digital sim-
ulation efforts were impeded by the computing resources available at the
time. Instead, many of his projects were implemented as physical devices
using custom-built hardware, sensors and actuators. The Generator project
uses embedded electronics in each component to create a building with
distributed intelligence. The result is a reconfigurable space which can re-
spond to varying needs. The most facinating of Frazer’s many projects is
the Universal Constructor, a working model of a self-organizing interactive
environment. The project is a physical 3D CA, realized using custom-built
cubes which can respond to the environment and interact with the user.
In another example of environmental influence the group developed tools
to help architects understand the impact of the geometry of the sun. The
tools went beyond the standard, poorly understood stereographic projec-
tions. Frazer has also embraced the idea of creative design tools [47] [5] and
in particular he has advocated the use of EC emphasizing exploration rather
than optimization [18].

CAs have been used by other architecture researchers to generate form
and structure. Kicinger et al [20] used a CA representation of topologies for
structural steel systems in tall buildings to evolve efficient structures. CAs
have also been used to generate form in more architectural applications.
One example of how to interpret the result of a CA is to uses Conway’s
Game of Life and “stack” the planes to get obtain a 3D form [23] [7].
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L-systems have also been used in previous architecture applications, in
particular by the group lead by Paul Coates. They have combined L-systems
and an EA to create form on an iso-spatial grid. Using an environment to
simulate for example sun and wind, they evolve structures that are opti-
mized for certain performance criteria such as enclosing space. Their work
also explores how the biological concepts of symbiosis and co-evolution can
be incorporated in a form-generating algorithm. They point out that evolu-
tionary optimization would probably have had a strong appeal to modernist
architects, such as Le Corbusier and Van der Rohe, since the aesthetics of
the outcome is purely based on the function [6]. The EDG has also explored
the potential of L-systems in the design tool MoSS [42]. A more design-
oriented investigation of L-systems was pursued by Hornby and Jackson
[15]. They developed a generative design system called GENRE which has
been applied to table and robot design. Moreover, they conduct quantative
experiments to demonstrate the advantage of generative over non-generative
encodings. The generative approach is more compact and it makes it easier
to evolve re-usable design modules.

A dominant way of describing architectural form is shape grammars [39]
[30]. They have been combined with EAs [3]. EAs are a popular method to
generate form and many of the previously mentioned authors have incor-
porated such a component in their work. Further applications include the
evolution of floor plans [35] [28] and 3D design of buildings inside a CAD
tool [45].

3 Overview of Genr8

One goal of the Genr8 project is to demonstrate that a combination of a
growth algorithm and EA is useful for form exploration within the architec-
tural design process. As a proof of concept, the algorithms have been imple-
mented in C++ and thereby we have developed a software tool which can
be (and is) used in educational practice. This section gives an overview of
the software system, which has two main components: the HEMLS growth
engine and the EA (see Figure 1). The growth engine uses the HEMLS
interpreter to parse a rewrite system. It geometrically interprets the ax-
iom and set of rewrite rules of the parsed system. A rewrite rule set (or
system) is a context-free grammar. We name the combination of HEMLS
interpreter with Genr8’s rewrite rule set syntax and semantics a HEMLS:
Hemberg Extended L-System and dub the results HEMLS surfaces. The
HEMLS growth engine’s growth process is strongly influenced through its
interaction with a computationally simulated physical environment. This
environment is the architect’s means of abstractly imposing influence on
the growth and representing design space elements which should interact
with the growth process. It is important to emphasize that the tool can be
(and has been!) used with the growth algorithm alone.

The EA is an optional, added-value feature which leverages Genr8’s ex-
pressive power by automatically generating and evaluating a large number
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of rewrite rule sets. Of note is the fact that Genr8 evolves instructions
for growing surfaces rather than the surfaces themselves. The EA’s selec-
tion and variation components provide the principles of design evolution.
It gives the architect an additional perspective: that of parallel, ancestral
traversal through a space of multiple designs. The procedural loop of the
EA is standard. Iteratively a new population is generated through selection
and mutation of parents of the current one, then each member is evaluated
for fitness. Genr8 employs a linear genome of integers as per Grammatical
Evolution [31]. The genome is mapped to a set of rewrite rules (i.e. context
free grammar) with the auxiliary aid of a Backus-Naur Form representation
that defines the syntax of the context-free grammar. Then the surface is
grown by the growth engine in the simulated environment using the inter-
preted set of rewrite rules. It is the resulting surface that is evaluated for
fitness.

Fig. 1 An overview of the Genr8 system. At the heart of the system is the growth
engine which is algorithm for growing HEMLS surfaces. The growth process is
influenced by the environment. The system contains a parser (HEMLS interpreter)
that interprets a rewrite system. The user can supply a hand written rewrite
system or use a predefined one. In these cases, the EA component is inactive.
The EA is used to automatically generate rewrite systems. The genome of each
individual in the EA is mapped to a HEMLS rewrite system using Grammatical
Evolution and a Backus Naur Form definition of a HEMLS rewrite system. The
surface corresponding to the genome is subsequently interpreted and grown then
evaluated for fitness.

We chose to implement Genr8 as a plug-in for Maya. It has a well-
documented Application Programmer’s Interface (API) which is easy to
work with. From a development perspective, a tremendous advantage of-
fered by Maya is the pre-existing modeling capabilities for visualization and
user interaction. Its very powerful framework saved uncountable hours of
development time. The advantage to Genr8’s users is that it is easier to
learn how to use the tool since it is part of the Maya environment. Genr8’s
data object level integration within Maya implies a HEMLS surface is also
a regular addressable Maya surface which very advantageoulsy allows a user
to manipulate it in the usual Maya ways. A compiled version of Genr8 as
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well as the source code is available on the web1. The implementation is
not Maya-specific and in principle it could be implemented as a plug-in for
another 3D modeller or as a stand alone software.

4 Extending L-systems to obtain a model capable of generating
surfaces

Our aim is to create surfaces with qualities that are reminiscent of those
in natural forms. To achieve this goal we employ an algorithm which is an
extension of L-systems. Even though L-systems have been successfully used
to model trees and flowers (see Figure 2) [33], it should be pointed out
that they are purely phenomenological and not derived from the physical
properties of a growing plant. This is of little concern to us since we are
interested in creating a tool which is useful to designers. Thus, the growth
model presented in this paper should be appreciated from a metaphorical
point of view and not as a faithful description of biological growth.

Fig. 2 Left, a rendered image of a flower created using L-systems. Centre, a
photograph of the the gametophyte microsorium linguaeforme. Right, a map L-
system used to model it the gametophyte in the middle [33].

We begin by presenting ordinary L-systems and show how they can
be extended to create surfaces in 3D space. Special focus is placed on the
context-free grammar used to describe the L-systems since it plays a central
role in Genr8. First we introduce notation from formal language theory [36,
41,33].

Definition 1 (Grammar) A grammar G is a finite specification of the
(possibly infinite) sets of sentences of a language. It can formally be ex-
pressed as a tuple G = {N, T, S, P} where:

– N is a finite set of non-terminals.
– T is a finite set of terminals.
– S is a start symbol such that S ∈ N .

1 http://projects.csail.mit.edu/emergentDesign/genr8/
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– P is a set of productions (or production rules of the form B → α,
where B ∈ N and α is a string of symbols from N ∪ T .

There is a hierarchy of four different grammars; unrestricted grammars,
context sensitive grammars, context free grammars and regular grammars
[8]. The difference between the grammars is that they have increasingly
stricter productions and that they can express fewer formal languages. Con-
text free grammars are of particular interest since they are powerful enough
to describe most programming languages. To express context free grammars,
a syntactic metalanguage known as Backus Naur Form (BNF) is often used.
BNF is useful for formal descriptions of a language since it provides a suc-
cinct representation using a limited number of rules. The BNF notation has
a number of advantages that makes it useful as a syntactic metalanguage; it
is concise, precise, natural, general, simple, self-describing and linear. The
last point can also be considered the biggest limitation of BNFs, they can
not express non-linear grammars and they are often inadequate for defining
more complex grammars. Fortunately, they are relatively easy and natural
to extend if one needs to handle more complex situations [16].

A BNF specification uses a number of derivation rules written as <Non
Terminal> ::= <String of Non-Terminals and Terminals>. This should
be interpreted in such a way that the left hand side can be replaced with
whatever is on the right hand side. In 1977, Wirth [48] introduced a number
of metasymbols to further facilitate the use of BNFs. The symbols that are
relevant to this paper are presented in Table 1.

Table 1 Meta symbols used to describe a BNF [41].

Symbol Meaning

| A vertical bar is used to denote alternatives.
[ ] Square brackets denote the optional appearance of a symbol or a

group of symbols.
{ } Curly braces indicate that we can have zero or more repetions of a

symbol or a group of symbols.

4.1 Lindenmayer systems

In 1968, biologist Aristid Lindenmayer introduced L-systems as a way to
describe the growth of multi-cellular organisms. L-systems are based on
rewrite systems, a concept invented by Thue [2]. A rewrite system consists
of a seed and a number of rewrite rules that are repeatedly applied to the
string. Theoretical computer scientists soon took an interest in L-systems
since they are similar to context free grammars. In this paper, we use a
definition of L-systems from [33].
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Definition 2 (L-system) A 0L-system (also called a context-free or para-
metric L-system) is an ordered triplet G = {V, ω,R} where

– V is an alphabet.
– ω ∈ V + is a seed or axiom.
– R ⊂ V × V ∗ is a finite set of rewrite rules (these are often called

productions, but we shall avoid that term here since it clashes with Def-
inition 1). The notation a→ α is used for rewrite rules where the letter
a ∈ V is called the predecessor and the string α is called the succes-
sor. It is assumed that there exists at least one rewrite rule for each
letter a ∈ V and if none is specified, the identity rule a→ a is implicitly
assumed.

A 0L-system is deterministic iff there is exactly one successor for each
predecessor.

The string produced by L-systems can be interpreted as a topological
representation of a tree-like structure. This makes them useful for mod-
elling plants and one can capture the complex geometry of a plant in a few
lines using the L-systems formalism. To produce plant images, a geometric
interpretation is required. The geometric interpretation is independent of
the generation of the string. The most widely used geometric interpretation
based on turtle graphics [1] was introduced by Prusinkiewicz [33]. Briefly,
the idea is to interpret the string of symbols generated by the L-system as
instructions for an imaginary turtle moving a stylus in 3D space.

4.2 Map L-systems

To study cellular development of organisms that do not have a tree-like
topology, Map L-systems were introduced by Lindenmayer and Rozenberg
[26]. Map L-systems are L-system type grammars that are applied to maps.
The parallel map generating systems introduced by Lindenmayer and Rozen-
berg are formally referred to as binary propagating map 0L-systems, or
BPM0L-systems for short. To convey how Map L-systems differ from or-
dinary L-systems, we will give an informal definition from [25] (a formal
definition of maps can be found in [44]).

Definition 3 (Map) A map consists of vertices, edges and regions.
Edges are ordered pairs of vertices and regions are bounded by finite se-
quences of edges. Each edge has one or two vertices at its end and each
vertex is associated with one or more edges. All edges and vertices lie on
boundaries of regions. Thus, a map is a connected structure without isolated
islands or protruding vertices.

An L-system is effectively a string rewriting system where the geometric
interpretation is independent of the grammar. Map L-systems on the other
hand can not be separated from the map topology and they can not be
considered as one dimensional strings alone. However, only the topology
is required: there is no need to specify spatial coordinates or quantitative
relationships of the node and edge positions.
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4.3 Hemberg Extended Map L-systems

To obtain a description of surface growth which is more suited to Genr8’s
needs, we have extended the Map L-systems model. HEMLS allow a wide
variety of surfaces to be grown in 3D (unlike Map L-systems that are con-
fined to 2D). From a formal perspective, HEMLS can be described as map
rewriting systems. Unlike L-systems, HEMLS can not be considered simply
as rewrite systems, the geometric interpretation is an integral part of the
definition of HEMLS (specifying only the topology as in Map L-systems is
not sufficient).

Definition 4 (Hemberg Extended Map L-systems) A context-free
HEMLS consists of

– A finite set of edge labels and turtle commands Σ.
– A seed or axiom ω.
– A set of edge rewrite rules, R. Each rewrite rule is of the form a→ α,

where the edge a ∈ Σ is called the predecessor. The string α is called
the successor and consists of one or more symbols from Σ. It is assumed
that there is at least one production for each edge a ∈ Σ. If no production
is explicitly specified, it is assumed that the identity production a → a
belongs to the set of rewrite rules.

– Two numerical values in the interval [0, 90] that specify a turn an-
gle and a branch angle. There is also a boolean variable, sync, that
determines the method for joining the branches (discussed below).

In the following, we shall use the term HEMLS rewrite system or simply
rewrite system to denote a sentence specifying a seed, a set of rewrite rules
and parameters (i.e. what is included in Definition 4). To grow a HEMLS
surface, the seed is first placed in the starting position. Next, a number of
derivation steps take place. Each derivation step consists of:

1. Increase size. A displacement vector is calculated for each vertex. The
vector originates from the center of the surface. Each vertex is moved
along the line defined by the displacement vector r. The distance moved
is determined by a scale factor s. We allow for s < 1 which means
that the surface can shrink as well. Vertices are also affected by the
environment which may result in further modifications or truncations of
the growth displacement vector (see Section 4.7).

2. Apply rewrite rules. Each rewrite rule in R is applied to edges with
corresponding labels. The edge is replaced by the successor starting from
the start vertex. The predecessor is divided into a number of new edges
as indicated by the rewrite rule. This step is similar to the derivation step
in Map L-systems. Edges that are drawn between one or more push-pop
pairs will not have an end vertex. These edges are called branches and
in order to restore the map topolgy, they will be removed or pairwise
joined into complete edges.
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3. Join branches. There are two modes for joining the branches, syn-
chronous or asynchronous. The latter is default and the former is used
if the keyword sync is included in the rewrite system. In synchronous
mode, all the rewrite rules are applied before the branches are joined. If
the keyword is not used, branches are joined after each rewrite rule has
been applied. Branches that could not be joined are kept through the
remainder of the derivation step which means that they will have several
chances of getting joined. When joining branches all pairs of branches are
checked to see if they fulfill the criteria for forming a new edge together.
To join two branches, the following criteria must be fulfilled:
– The branches must appear in the same region.
– They must have the same type.
– The scalar product of their orientation must be less than a given

tolerance. The tolerance is given as an angle by the BranchAngle

keyword.
– The branch points are within a specified maximum distance (which

can be set to infinity).
When all rewrite rules have been applied and there has been one or more
attempts to connect the branches, any remaining unconnected branches
are removed.

4.4 Example of a HEMLS rewrite system

In Genr8, there are two pre-defined rewrite systems that are considered
especially interesting and useful. The rewrite systems start from a square
or an equilateral triangle and proceeds by subdividing the original shape
into four new squares or triangles. The rewrite system for the squares is
shown in Table 2. Here the first line is the seed, derived from the <Axiom>

Table 2 The rewrite system for the squares shown in Figure 3.

ω A + B + A + B
A → A [ [ + B ] - B ] A
B → B [ [ + A ] - A ] B

Angle 90
BranchAngle 90

non terminal. Lines 2 and 3 are rewrite rules and the fourth line specifies
the turn angle for the turtle. Figure 3 shows the geometric interpretation
and application of these rules.

4.5 HEMLS variants

There are a number of variations and extensions of L-systems in the litera-
ture [33]. These can easily be applied to HEMLS as well to provide a more
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Fig. 3 One derivation step of the rewrite system in Table 2. The square to the
upper left is the seed and the arrows indicate how the vertices should be moved
when increasing the size. In the next step, the A edges have been split and the
new vertices are indicated by circles. Next, the branches are drawn and connected.
The same procedure is applied to the B edges in the middle panel on the bottom.
The figure on the bottom right shows the surface after one iteration of the rewrite
rules.

powerful growth model. A natural extension of L-systems is to make them
context-sensitive, that is rewrite rules require a specific context in order to
be activated. To represent this, we use the notation A < B > C− > α,
where A and C are edge labels that need to be connected to the start and
end node respectively. When applying the rules, the directions of the edges
is not taken into account.

Another interesting variant is to introduce stochasticity in such a way
that there are more than one possible rewrite rule that can be applied to
each edge. A probabilistic HEMLS is specified by a tuple G = {Σ,ω,R, π}
where π is a probability distribution mapping the set of rewrite rules to
the set of production probabilities. Every time a rewrite rule is applied to
an edge, one of the available rewrite rules is randomly chosen based on the
probability distrubtion π.

Timed L-systems allow us to change the rewrite rules that are applied
to edges over time. This can for example be used to model plants that first
grow a stem and then a flower. This feature is achieved by adding an age
parameter to every edge (represented as a subscript). Again, each rewrite-
rule can have multiple successors and the age of the edge determines which
one is chosen.
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4.6 The HEMLS BNF in Genr8

Genr8 includes a parser that can be used to grow surfaces specified by a
HEMLS supplied by the user within a text file. In order to make the file
easy to parse the general description presented above had to be restricted.
The grammar is represented in Figure 4 using the BNF notation.

(1) N = { <L-System>, <Axiom>, <RewriteRule>, <Predecessor>,

(2) <Successor>, <Modifier>, <Condition>, <Segment>,

(3) <Constant>, <Weight> }

(4) T = { +, -, &, ^, \, /, ~, ’[’, ’]’, ’<’, ’>’, ->, Edge,

(5) Angle, Sync, Edge_i, Edge_i+1, Edge_i-1, If, i, ’=’

(6) BranchAngle, ’0’, ’1’, ’2’, ... }

(7) S = { <L-System> }

(8) P = {

(9) <L-System> ::= <Axiom> ’;’ <RewriteRule> ’;’

(10) { <RewriteRule> ’;’ } Angle <Constant>

(11) ’;’ [ Sync ’;’ ] BranchAngle <Constant>

(12) <Axiom> ::= <Segment> [ ~ ] + <Segment> [ ~ ] + <Segment>

(13) <Segment> { [ ~ ] + <Segment> }

(14) <RewriteRule> ::= <Predecessor> -> <Successor> [ <Condition> ] |

(15) <Predecessor> -> <Successor> [ <Weight>

(16) <Constant> ] { -> <Successor> [ <Weight>

(17) <Constant> ] }

(18) <Successor> ::= { <Modifier> } <Segment>

(19) <Predecessor> ::= <Segment> { <Segment> } |

(20) <Segment> ’<’ <Segment> |

(21) <Segment> ’>’ <Segment> |

(22) <Segment> ’<’ <Segment> ’>’ <Segment>

(23) <Modifier> ::= { <Segment> } |

(24) + <Modifier> - |

(25) - <Modifier> + |

(26) & <Modifier> ^ |

(27) ^ <Modifier> & |

(28) \ <Modifier> / |

(29) / <Modifier> \ |

(30) ~ <Modifier> |

(31) <Modifier> [ <Successor> ] <Modifier>

(32) <Segment> ::= Edge | EdgeX | EdgeY | EdgeZ | Edge_i |

(33) Edge_i+1 | Edge_i-1

(34) <Condition> ::= If i ’<’ <Constant> |

(35) If i ’<’ <Constant> |

(36) If i ’=’ <Constant>

(37) <Constant> ::= 0 | 1 | 2 | ... }

Fig. 4 The BNF representation of the language for describing HEMLS that can
be understood by Genr8’s parser.
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This description merits some comments since there are a few features
that could not be captured by the BNF. The first three lines list all the non-
terminals (N) used in the HEMLS grammar. Next is the set of terminals (T)
and the start symbol (S). Lines 8-37 show the derivation rules (P) which
describe how to construct a rewrite system. The expansion of the start
symbol, <L-system>, gives the overall structure of a rewrite system with an
<Axiom> that describes the seed, one or more <RewriteRule> and finally
the parameters (the semicolons indicate end of line). Each <RewriteRule>

consists of a <Predecessor> and one or more <Successor>. Lines 20-22

show how context sensitivity can be introduced. The successor is a string
of turtle commands that are used to replace the predecessor. The turtle
commands are generated using the <Modifier> non-terminal. There are two
constraints on the grammar imposed by the geometric interpretation. First,
there must be an equal number of push and pop symbols. This constraint is
handled by the production rule on line 31. Second, when rewriting an edge,
the turtle must return to the position where the old edge ended. Thus, the
number of left turns must equal the number of right turns, etc. Lines 24-29
makes sure that this balance is preserved.

The <Segment> non-terminal is used to generate the Edge terminals.
A couple of things needs to be said about this terminal since it is not a
terminal in the strict sense. The conventional L-system notation for lines is
capital letters. To make it easier to parse, Genr8 uses a nomenclature where
edges are identified by the keyword Edge followed by a non negative integer
that defines the type (or ID), eg Edge0. All terminals starting with Edge

require a parameter specifying the ID. There are other versions of the Edge

terminal and they all require a type. The variations on the Edge terminal,
Edge i, Edge i+1 and Edge i-1 are used for time-varying HEMLS where
the subscript represents the age of the edge. The counter is initialized to 0
when the terminal is created and can be incremented by the rewrite rules.

4.7 Environment

In nature, the environment plays an important role in the growth of an
organism. The obvious way to alter the resulting surface in Genr8 is to
modify the rewrite system. In practice it is often easier and more intuitive
to use the alternative approach of changing the environment. One example
of environmental influence on growth is tropism, which can be defined as the
response of an organism to external stimuli. A simple example of tropism is
a tree that turns its branches towards the sun as it grows. We wish to mimic
this type of reactive influence of the environment in the growth of HEMLS
surfaces. Again, we proceed by adopting existing ideas from the L-systems
literature.

In Genr8 there are two different environmental features, forces and
boundaries. These are easy and intuitive to use and by combining them
one may produce non-linear and unexpected outcomes. There are three
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different kinds of forces; attractors, repellors and gravity. The metaphor
underlying attractors and repellors is a magnet which forces the surface to
grow towards or away from it. When moving a vertex during the derivation
step, the new position is modified by the forces in the environment. For each
vertex a resultant force vector is calculated by summing the forces from all
environmental features. The default in Genr8 is to have the magnitude of the
force depend on the inverse square of the distance between the vertex and
the attractor/repellor. The resulting vector f is added to the displacement
vector r to find the new position of the vertex. Two adjacent vertices can
potentially move different distances and in different directions and thereby
distort the surface.

Boundaries are used to constrain the growth by preventing vertices to
move through them. Boundaries can be very powerful as they can be used
both as enclosures or as obstacles (as in the left panel of Figure 5). The
environment can have a profound impact on the growth due to the non-
linear interactions. It is almost impossible to predict the exact outcome
when there are more than two elements in the environment. This is clearly
seen in Figure 5 which shows two examples of the square rewrite system
from Table 2.

Fig. 5 The figure shows two examples of the square rewrite-system from the
example in Table 2 grown in two different environments. Left, the seed was placed
above the sphere and pulled down by gravity as it grew. The surface was prevented
from growing through the sphere and instead it drapes the sphere. Right, the
surface is pushed upwards by the two repellors beneath it. During the development
it was further deformed by the repellors (the five repellors are located to a single
point, but drawn as cylinders). The figure shows all derivation steps overlaid and
the shape of the seventh surface is far from the original flat square.

5 Evolutionary computation

Creating a rewrite system that grows interesting surfaces by hand is a very
hard task. This stems mainly from the difficulties of imagining what a given
rewrite system will look like after repeated iterations. The influence of the
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environment only serves to exacerbate this problem. There is also the addi-
tional complication of making sure that the rewrite system is syntactically
correct. It is with these concerns in mind that we have added a an EA to
Genr8. The EA will automatically create valid rewrite rules and the user
can exert high-level control over the process through the fitness function.
This has the benefit that the user does not have to know anything about
HEMLS or how the surfaces were created. It is merely required that the
user has a conceptual understanding of the nature of EAs and the growth
process.

5.1 Grammatical Evolution

There are many variants of the EA paradigm particularly in how they rep-
resent the genome or how they handle selection. The specific EA used in
Genr8 is called Grammatical Evolution (GE). It was introduced by Ryan
and O’Neill in 1997 [31] and it combines the strengths of genetic algorithms
(GAs) [29] and genetic programming (GP) [21]. What makes GP such a
powerful algorithm is that it allows us to evolve executable structures repre-
sented as trees directly. Unfortunately, the genetic operations often become
very complicated as one has to deal with subtrees which must be ensured to
be compatible when swapped. GAs on the other hand are very convenient
when applying the genetic operators since the genome is represented as an
array of integers. The drawback is that one is restricted to work with inte-
gers. GE uses the same representation of the genome as GAs. The significant
invention in GE is that it can be applied to any language whose grammar
can be represented in Backus-Naur Form. When interpreting a genome, the
genes are used to select production rules as the sentence is expanded (see
example in Section 5.2). The expansion of the genome via the BNF can be
viewed as a tree similar to those used in GP. When applying genetic oper-
ators to these structures there would be considerable overhead if we had to
ensure that the swapping of two subtrees results in a syntactically correct
outcome. Thus, GE provides a strict separation between the genetic opera-
tions and the language that we wish to use. The constraints of the language
are automatically and efficiently handled by the BNF representation of the
grammar.

The BNF used by the EA is more restricted than the one that Genr8’s
parser can handle (Figure 4). This is because we want to facilitate the
search. The full BNF provides too many options and we have found that the
EA finds interesting results faster using the restricted BNF. An additional
reason for restricting the BNF for the EA is that some of the non-standard
features of the BNF would be quite complicated to implement with GE.
Despite the simplifications, the BNF in Figure 6 is still more complicated
than the ones mostly used in GE. For this reason, we had to extend the
standard GE in order to handle the more complicated features of the BNF.
Below we present our extensions and modifications of GE.
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(1) N = { <L-System>, <Axiom>, <RewriteRule>, <Predecessor>,

(2) <Successor>, <Modifier>, <AngleValue>, <BranchAngleValue> }

(3) T = { +, -, &, ^, \, /, ~, ’[’, ’]’, ’<’, ’>’, ->, Edge, ’;’,

(4) Angle, Sync, EdgeX, BranchAngle, 15, 30, 45, 60, 75 }

(5) S = { <L-System> }

(6) P = {

(7) <L-System> ::= <Axiom> ’;’ <RewriteRule> ’;’

(8) { <RewriteRule> ’;’ } Angle <AngleValue>

(9) ’;’ [ Sync ’;’ ] BranchAngle <BranchAngleValue>

(10) <Axiom> ::= Edge [ ~ ] + Edge [ ~ ] + Edge [ ~ ] + Edge

(11) { [ ~ ] + Edge }

(12) <RewriteRule> ::= <Predecessor> -> <Successor>

(13) <Successor> ::= { <Modifier> } <Segment>

(14) <Predecessor> ::= Edge { Edge } |

(15) Edge ’<’ Edge |

(16) Edge ’>’ Edge |

(17) Edge ’<’ Edge ’>’ Edge

(18) <Modifier> ::= { Edge } |

(19) + <Modifier> - |

(20) - <Modifier> + |

(21) & <Modifier> ^ |

(22) ^ <Modifier> & |

(23) \ <Modifier> / |

(24) / <Modifier> \ |

(25) ~ <Modifier> |

(26) Edge ’[’ ’[’ + EdgeX ’]’ - EdgeX ’]’ Edge |

(27) Edge ’[’ ’[’ + + EdgeX ’]’ - - EdgeX ’]’ Edge |

(28) <AngleValue> ::= 30 | 45

(29) <BranchAngleValue> ::= 15 | 30 | 45 | 60 | 75

Fig. 6 The BNF for HEMLS used by the EA. It is more restricted than the
one in Figure 4 to speed up the search. There are fewer non-terminals in the
restricted BNF. The <Segment> non-terminal is no longer used since we are no
longer using the option of time-dependent rewrite-rules. Furthermore, we have
removed the timed and probabilistic extensions and we have restricted the choice
of angle values.

In BNF notation, the symbols { ... } indicate that the string appearing
between them can be repeated zero or more times (the symbols [. . .] have
a similar function in that the string can be used once or not at all). This
feature is used extensively in Genr8, for instance it allows us to have an
arbitrary number of rewrite rules (line 6 in Figure 6). Because of the impor-
tance of genetic inheritance and the propagation of genetic characteristics
in an EA, it is important that this optional quality is consistent through all
decodings of the genotype (i.e. from one generation to the next or for mul-
tiple copies of a genotype in the population). Moreover, we want a scheme
where there is no fixed upper limit on the number of times the string is
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used. The best way to achieve this consistency is to use the genotype itself
to determine how many times a string should be expanded. In Genr8 this
is accomplished with a simple algorithm that works as follows:

1. When a { is encountered, a counter is initialized to zero.
2. Read a gene from the genome and if gene mod ( counter + 2 ) <=

counter do not write any more of the optional symbols.
3. Write the string of optional symbols (until the }).
4. Increase the counter and go back to step 2.

The above scheme is deterministic for identical sequences of genes and there
is no fixed upper limit on the number of expansions although the probability
of adding to the expansion decreases with the number of strings expanded.
The constant 2 in the second step above can be adjusted to change the
expected number of times we will go through the loop.

The reader may recall that the Edge terminal requires an additional
integer parameter. When the expansion of the rewrite system results in an
Edge, we use a scheme similar to the one for multiple terminals to select the
ID for the Edge. The system has counter, max ID that keeps track of the
total number of edge IDs used so far. When an Edgesymbol is encountered,
the ID is determined by the value of the next gene and max ID, through
the relationship ID = geneValue mod ( max ID + 1 ). As for the optional
number of symbols, this scheme enable the system to introduce new edge
types at a marginally decreasing rate.

Another heuristic is introduced by the EdgeX terminals. If a production
contains an EdgeX terminal all those terminals will get the same ID in a
manner that is akin to variable binding in PROLOG. This is used in lines
26-27 where it is ensured that the branches will always come as pairs with
the same ID. This makes it more likely that the branches will join in the
rewrite system. Joining branches is crucial since they provide the internal
structure of the surface. If the branches do not join, the surface will simply
consist of a perimeter, making it very uninteresting.

When the ID of the predecessors is chosen randomly, it is likely that the
rewrite system will include edge types without an explicitly defined rewrite
rule. This is often undesired since these edges will not be modified during
the growth process. To overcome this issue, we have introduced a repair
mechanism in the Genr8 EA. When the rewrite system has been expanded,
the algorithms checks to make sure that all edge types have an explicit
rewrite rule. If not, the rewrite system is extended by the addition of new
rewrite rules.

One problem of using GE to map the genome to a rewrite system is that
the expansions tend to get very long. This is not a problem that is inherent
to GE, but an effect of the HEMLS grammar. In particular, it is caused by
the productions for the <Modifier> non-terminal (lines 18-27 in Figure 6)
where seven of the ten productions contain a new <Modifier>. To combat
this hefty expansion, Genr8 includes a new mechanism for restricting the
length of the expanded grammars. The expanded rewrite system can be
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viewed as a tree where the leaves are terminals and the internal nodes are
non-terminals (see Figure 7). We can keep track of the depth of the tree
during the expansion to measure how large the tree is. When the expansion
reaches a specified limit max depth, the expansions are brought to a halt.
This is achieved by changing the way productionas are chosen. Instead of
choosing from all the production rules, only the subset of rules that do not
contain any non-terminals are used For the <Modifier> it means that only
lines 17 and 26-27 will be used. This scheme allows the user to control the
size of the rewrite systems generated by the EA while at the same time
making sure that the genome will be consistently mapped.

Because of the use of GE and BNF notation, it is powerful yet simple to
enable the EA to evolve additional classes of rewrite rule sets. For example,
we have implemented two additional grammars in Genr8 that are minor
variations of the one in Figure 6. The first of these grammars allows the
EA to evolve probabilistic rewrite rules. The second grammar is more con-
strained than the default grammar and generates symmetrically balanced
surfaces. It ensures that there will always be at least one axis of symmetry
if the surface is undistorted by the environment. To achieve this, the seed is
enforced to be symmetric and two new terminals, EdgeY and EdgeZ analo-
gous to EdgeX are introduced. The grammar enforces operations prescribed
by the rewrite rules to preserve the symmetry.

5.2 Example expansion

To illustrate the mapping of a genome to a rewrite system, we shall give a
brief example, showing part of the expansion procedure. The genome that
we shall be mapping starts with

212, 187, 632, 832, 800,517, 338, 39, 878,185, 954, 863, ....

To expand a rewrite system, we begin with the start symbol <L-system>.
There is only one production rule, so the gene value (212) is irrelevant in
this case. The rewrite system is expanded to

<Axiom> ’;’ <RewriteRule> ’;’{ <RewriteRule> ’;’ }[ Sync ’;’ ]

Angle <AngleValue> ’;’ BranchAngle <BranchAngleValue>

Next, the axiom is expanded and again, there is only one production avail-
able. We proceed to determine the type of the first Edge in the <Axiom>.
When the EA is initialized, there are two edge types (with IDs 0 and 1),
so the type of the edge is determined by 632 mod 3 = 2 (thus introducing
a new edge type). There are two more Edge terminals and their types are
determined by 832 mod 4 = 0 and 800 mod 4 = 0. The next four symbols
are { ’+’ ’Edge’ } indicating that the sequence ’+’ ’Edge’ should oc-
cur zero or more times. A counter to keep track of how many times the
string has featured is initialized to zero. The counter is used to determine
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whether or not another string should be expanded. The test for adding an-
other string is gene mod (counter + X) > (counter + Y) where X and Y

are parameters that can be adjusted to determine the expected number of
expansions. In Genr8, X = 0 and Y = 2 which gives 517 mod 2 = 1 > 0,
ie another ’+’ and Edgeshould be added. The type of the Edge is set to 338

mod 4 = 2 and testing for further expansions we find that 39 mod 3 = 0

< 1. This yields a rewrite system of the form:

Edge2 + Edge0 + Edge0 + Edge2

<RewriteRule> ’;’

{ <RewriteRule> ’;’ }

[ Sync ’;’ ]

Angle <AngleValue> ’;’

BranchAngle <BranchAngleValue> ’;’

Fig. 7 An example of how the expansion of the genome via the BNF can be
viewed as a tree (from Section 5.2). Internal nodes are non-terminals and the
rewrite system can be obtained by reading the terminals at the leaves.

The expansion of the rewrite systems can be graphically viewed as a tree
as shown in Figure 7. So far we have expanded the axiom of the rewrite
system and we see that it corresponds to a square with two types of Edges.

5.3 Fitness Evaluation

A crucial part of an EA is the fitness evaluation which guides the search
towards better solutions. In design, there is no general way of algorithmi-
cally defining a ’good’ surface. Coming up with a useful fitness evaluation
scheme for design applications is still an open research question [34] [40].
The most common approach is that of Interactive Evolutionary Computa-
tion (IEC) where the user acts as fitness function and evaluate every design
[40]. The main drawback of IEC is that the search space is restricted since
it is tedious for the user to evaluate surfaces [37]. Another difficulty stems
from the user being inconsistent in his or her evaluations [9]. An alternative
approach is to try to use an artificial neural network or some other learning
algorithm to learn the user’s preferences. This implies mapping the complex
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high-dimensional tastes of the user to a low dimensional representation. Un-
fortunately, this scheme usually does not work very well in practice [34].

In Genr8 we use a fitness evaluation scheme that gives the user high level
control of the evolutionary search. In practice this is achieved by a multi-
parametric fitness function. Each parameter represents a specific feature of
the surface. The user may set target values for each parameter as well as
weights to determine the importance of each criteria. The total fitness is
Ftot =

∑
wiFi, where i runs over the six different criteria and the weight wi

is a positive real number indicating the relative importance of each criterion.
The user can modify both the target values Fi and the weights at any point
during the run, providing for a high degree of flexibility.

– Size. Measures the size of the surface in the x and ydirections. It is
defined as Fsize = maxi,j |xi − xj |+ maxi,j |yi − yj |.

– Smoothness. A local measure of the variation in the z−direction. The
smoothness is defined as

Fsmooth =
1

2

N∑

i=0

Ni∑

j=0

|zi − zj |,

where zi is the coordinate value for node i, N is the total number of
nodes and Ni the number of neighbors for node i.

– Soft boundaries. If this criterion is used, the surface is allowed to grow
through boundaries. However, it occurs a fitness penalty for each node
which is on the wrong side of the boundary.

– Subdivisions. This measure is defined as the number of vertices divided
by the number of edges. Thus, it will be 1 for a surface which does not
have any internal structures (such as the top left one in Figure 3) and
lower for surfaces with many internal vertices and edges.

– Symmetry. This metric is a rough way of assesing the degree of symme-
try of the surface. It is defined as Fsym = (sym(x) + sym(y))/2, where
the function sym(x) returns the ratio of the number nodes at either
side of the line parallel to the x-axis running through the centre of the
surface.

– Undulation. This measure is a global measure of the variation in the
z-direction. It is defined as Fund = maxi,j |zi − zj |.
It is important to point out that in most situations there are many dif-

ferent ways to attain a given fitness value. That is, the fitness function is
degenerate in mapping the surfaces to a single fitness value. Consequently,
there are many different surfaces which are equally good solutions for agiven
set of fitness criteria. This is usually advantageous since it makes it easier
to maintain a diverse population. Moreover, some of the criteria are more
or less in conflict with each other. This means that the EA must negotiate
a trade-off between the different criteria. These situations lead to the most
interesting outcomes and also help increasing the variation in the popula-
tion.
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6 Genr8’s Surfaces

It is important to emphasize that Genr8’s pre-defined HEMLS are power-
ful by themselves. There has been a number of successful projects based
only on these, such as the one illustrated in Figure 8. There are numerous
parameters in Genr8 that affect the growth, the environment and the EA.
Although they have default values which yield interesting results, there is a
lot of scope for exploring the parameter space.

Fig. 8 An example of a surface grown using the square rewrite system from the
“Butterfly machines” project by Steve Fuchs at the Southern Californian Institute
of Architecture. The environment contains five attractors, one repellor and gravity.

We end this paper with a short presentation of two projects that have
used Genr8. In a project by Michel da Costa Goncalves, the environmental
setup consists of four cubes as shown in Figure 9. The first step was to
calibrate the parameters and the lengths of the boundary cubes in such
a way that the surface will fill the bounded space. A number of repellors
as well as a gravity component were also introduced in order to provide
a conceptual setup for the sketching of a house. Next, two surfaces were
evolved in this environment as illustrated in Figure 9. The resulting surfaces
were exported to Rhino where transformed, lofted and smoothed. The final
outcome is shown in Figure 10.

A second project is a pneumatic strawberry bar designed by Achim
Menges of the Architectural Association, London, UK [32]. Recognizing the
difficulties of incorporating material analysis in Genr8, he worked with in-
flatable structures which allowed him to consider the Genr8 surface as a
membrane. To analyze the performance of the strawberry bar, he called a
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Fig. 9 The environment set up by Michel da Costa Goncalves for his Genr8
project consisting of three cubes, repellors (not shown) and gravity. The prelimi-
nary experiments were used to callibrate the parameters so that the surface would
fill the bounded space.

Fig. 10 The surfaces evolved in the environment in Figure 9 were exported from
Maya and post-processed to form a set of lofted wire frames.

specific external software package for this type of structures during evolu-
tion. The actual bar is not one surface, but three as shown in Figure 11.
Menges set up an iterative scheme whereby he would evolve a population
inside a bounding box for a number of generations. Then he would use one
of the evolved surfaces as boundary for the subsequent evolution, thereby
gradually refining the evolved surface. Genr8’s high-level fitness function
allowed Menges to perform much longer runs involving hundreds of individ-
uals over thousands of generations.

7 Conclusions

Architects have long strived to express aesthetically pleasing organic form
within the character of their buildings. Due to their recognition of nature’s
means, they have embraced both growth processes as a means of deriving
such form and evolutionary process as a means of exploring and creating
ideal form. Genr8 is a creative design tool for architects which provides them
with a growth model for surfaces and means of evolutionary discovery. To
meet the ambitions of architects, at Genr8’s technical core is the combina-
tion of HEMLS and an evolutionary algorithm. HEMLS are an extension
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Fig. 11 Top, a screenshot from the process of creating the pneumatic strawberry
bar. It shows the three different surfaces that are being connected to form the
final structure. Bottom, a rendered image of the final strawberry bar.

of map L-systems that generate (or grow) 3D surfaces interactively within
a bounded environment that contains attractors and repellers. HEMLS are
described using context-free grammars that themselves can be described in
Backus-Naur Form. Genr8’s EA uses the BNF description in tandem with
Grammatical Evolution to evolve rewrite systems in lieu of hand written
ones. The EA’s fitness function is a weighted combination of specific sur-
face features.
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