
GENR8 - A Design Tool for Surface Generation

Martin Hemberg
Chalmers University of Technology

412 96 Gothenburg
Sweden

f96mahe@dd.chalmers.se

Una-May O’Reilly
Artificial Intelligence Lab
Massachusetts Inst of Tech

Cambridge, MA 02139
unamay@ai.mit.edu

Peter Nordin
Department of Physical Resource Theory

Chalmers University of Technology
412 96 Gothenburg

Sweden
nordin@fy.chalmers.se

Abstract

GENR8 is an architect’s design tool that
generates surfaces. It is powerful and in-
novative because it fuses expressively power-
ful universes of growth languages with evo-
lutionary search. Developed via the API
of Alias|Wavefront’s Maya, it combines 3D
map L-systems, that are extended to an ab-
stract physical environment, with Grammat-
ical Evolution. GENR8 addresses key issues
arising from exploiting evolutionary adaption
within a creative interactive tool framework.
EAs typically adapt ‘off-line’ but GENR8 is
designed to sensitively accommodate the na-
ture of the back and forth control exchange
between user and tool during on-line evolu-
tionary adaptation. It addresses how users
may interrupt, intervene and then resume an
EA tool. It also forgoes interactive subjec-
tive design evaluation for computationalized
multi-criteria evaluation that permits wider
search in shorter time spans.

1 INTRODUCTION

Evolutionary algorithms have traditionally been used
to solve optimization problems. However people have
tried to use them for creative purposes, for instance to
generate artificial life forms or as a design aid. Lately
they have been used for evolutionary art, helping the
artist to create new forms by exploring a wide range
of forms (Soddu, 2001). Bentley (Bentley, 2001) gives
an overview and a description of evolutionary design
projects.

The Emergent Design Group at MIT [2] unites archi-
tects from the School of Architecture and computer
scientists from the Artificial Intelligence Lab. The

architect members embrace a process of design that
stresses emergence. In this process the complex as-
pects of an architectural scenario are studied and ad-
dressed with a bottom up methodology. Primitive
level investigations pursue distinct realms such as mor-
phology (ie form, shape), material, structure, program
etc, and subsequently are integrated and non-linearly
combined to shape the architectural experience and
artifacts that respond to the scenario.

Creativity in form is one essential thread in the pro-
cess. The architects desire computational tools that
will stimulate their creativity and contribute to their
creative output. In particular, they are intrigued by
natural form and biological growth processes that un-
derlie its formation. They find an organic quality to
surfaces very compelling.

With this broad motivation in mind, we have designed
GENR8. It is a surface modeling tool that simulates
organic growth of surfaces in an environment. We
found map L-systems to be suitable model for this
kind of growth. However, we had to extend the map
L-system model to make it work in 3D, and we have
added environmental elements that influence and in-
teract with growth. To search the universe of possible
surfaces, GENR8 uses evolutionary computation. The
details of GENR8’s growth process and its evolution-
ary component will be described in Section 2.

Using Evolutionary Algorithms has two benefits; the
first is that the parallel population based search gives
us multiple solutions to the design problem. This is
a feature that was requested by the designers; they
do not want just one solution, but several alternatives
on the same theme. Evolutionary algorithms also ac-
commodate discovery within the extremely large uni-
verse of surfaces; it is selective and explorative yielding
adaptation and discovery.

Yet, EAs also have short-comings. The fitness evalua-
tion is a particularly tricky part for creative evolution-

ary systems. In GENR8 we forgo user inspection and
ranking for an automated solution. Fitness evaluation
will be discussed in Section 4.3.

Another issue with evolutionary design tool is con-
trol.Who has control, the tool or the user? The tradi-
tional way is to set up the evolutionary run, let it run
to completion and then give the user access to the fi-
nal output. However, architects desire more complete
control of the creative process. They want to be to
direct the system and hav it react to their changing
desires at any point in the design process. In section
4.2, we discuss how user tool control is negotiated and
implemented in GENR8.

If GENR8 is to have any practical value to a designer it
must fit into the architects’ tool box. Architects have
a wide range of tools that can be used for different
purposes and in different stages in the design process.
In Section 4.1 we elaborate upon how GENR8 fits a
niche within a more comprehensive design process.

2 GROWTH MODEL

Our goal is stated as a system that grows surfaces in
an organic fashion. We use map L-systems, an ex-
tension of the more familiar L-systems as a basis for
our growth model. To search the universe of possi-
ble grammars, we use the Grammatical Evolution EA.
The EA relies on a BNF representation of the map L-
systems, defining a universe of grammars. Grammati-
cal Evolution, employs a BNF to map of a fixed length
integer genome into an executable structure. GENR8
has two mapping processes, one that maps a genome
to a grammar and a another that interprets the gram-
mar and constructs a surface (phenotype). We will
start by describing the second step, the growth model.

2.1 HEMBERG EXTENDED MAP
L-SYSTEMS

L-systems were invented by biologist Aristid Linden-
mayer in 1968 and they were first used to simulate
the growth of plants. A description of L-systems can
be found in (Prusinkiewicz 1989). One powerful as-
pect of L-systems is that it is a recursive growth model
which means that the rules can be very succinctly ex-
pressed.

Map L-systems were originally invented as a model
for cellular development. It is basically a method for
rewriting planar graphs with cycles. An example can
be found in Figure 1.

With a suitable graphical interpretation, the graphs
can be used in a biological context to represent cel-

Figure 1: An example of a simple map L-system

lular structures. Whereas an L-system generates an
arboreal structure, a map L-system generates graphs
that can be interpreted as surfaces.

The original map L-system model is only defined for
2D and in order to make it work in 3D, we have made
some additions to the model. We call them Hemberg
Extended Map L-systems (HEMLS).

2.2 ENVIRONMENT

GENR8 has a very powerful environment that has
great impact on the development of a surface. In the
general case it is impossible to predict what a certain
grammar will result in, unless you know what the en-
vironment looks like.

Figure 2: A surface grown in an empty environment

2.3 Forces

The GENR8 environment models forces. There are
three types of forces; attractors, repellors and grav-
ity, the user may place attractors and repellors in the
surrounding space. Attractors and repellors work like
magnets, and can be used to control the direction of
the growth. They are situated in space and their ef-
fect depends on the relative location of the surface. In
figure 3 the surface is generated by the same grammar
as in Figure 2, but the five repellors shapes the final
result.

Figure 3: A surface grown in an environment with five
repellors.

Gravity is a uniform force that has the same effect
on all parts of the surface, regardless of its position
(unlike attractors and repellors). The effect of gravity
can be seen in figure 4, where we once again have the
same grammar as in Figure 2.

Figure 4: This surface is pulled downwards by gravity,
but it is blocked by the sphere.

2.4 Boundaries

The user may draw arbitrary surfaces and volumes
that act as boundaries. The walls can affect the grow-
ing surface in three different ways yielding different
results. The effect of boundaries is illustrated in Fig-
ure 4 and 5.

Figure 5: Surface inside a bounding box. The repellor
in the upper left corner pushes the surface into the
corner of the bounding box.

3 EVOLUTIONARY COMPONENT

To tell what kind of surface a HEMLS grammar will
produce is a very hard task. Constructing grammars
by hand is tedious and difficult and we can not expect
a person without considerable expertise to accomplish
this. In order to make HEMLS useful for designers
who are interested in creating surfaces, we use an EA
to generate and evaluate grammars.

3.1 GRAMMATICAL EVOLUTION

GENR8 employs an EA invented by O’Neill and Ryan
(Ryan and O’Neill, 1998) called Grammatical Evolu-
tion (GE). GE is based on standard GA. It uses stan-
dard genetic operations on a fixed length vector of in-
tegers. These integers are then used to generate an
executable structure from a BNF-specification of the
language. This introduces an additional mapping that
does not exist in traditional GAs.

Grammatical evolution provides genetic degeneracy.
That is, there are multiple gene encodings that map to
one decoding.With the first step of its two step genetic
mapping process (BNF to Map L-system to scaffold),
it allows GENR8 to provide users with different uni-
verses of HEMLS.

3.2 BNF GRAMMAR FOR HEMLS

To exploit GE, GENR8 operates with a Backus-Naur
Form(BNF) definition of HEMLS. The BNF presented
here is the most general that the system is able to
parse.

A grammar is represented by a tuple {N, T, S, P},
where N is a set of non-terminals, T is a set of terminals,
S is a start-symbol (it has to be a member of N) and P
is a set of production rules that maps the elements of
N to T. We have:

N = { L-System, Axiom, RewriteRule, Operator,
Predecessor, Successor, Modifier,
Condition, Segment, Constant }

T = { +, -, &, ^, \, /, ~, [,], <, >, ->,
Edge, i, If, Weight, Angle, Sync,
BranchAngle }

S = { <L-System> }

The production rules are defined as

<L-System> ::= <Axiom> <RewriteRule>
{ <RewriteRule> } Angle
Constant [Sync]
[BranchAngle]

<Axiom> ::= <Segment> [~] + <Segment> [~]
+ <Segment> { [~] + <Segment> }

<RewriteRule> ::= <Predecessor> ->
<Successor> [<Condition>]
[Weight Constant]
{ <Successor> [<Condition>
] [Weight Constant] }

<Successor> ::= { <Modifier> } <Segment>

<Predecessor> ::= <Segment> |
<Segment> ‘‘<’’ <Segment> |
<Segment> ‘‘>’’ <Segment> |
<Segment> ‘‘<’’ <Segment>
‘‘>’’ <Segment>

<Modifier> ::= { <Segment> } |
<Modifier> ‘‘[‘‘ <Successor>
‘‘]’’ <Modifier> |
<Operator> <Modifier>

<Operator> ::= + |
- |
& |
^ |

\ |
/ |
~

<Segment> ::= EdgeX |
EdgeX_i |
EdgeX_i+1 |
EdgeX_i-1 |

<Condition> ::= If i < Constant |
If i > Constant |
If i = Constant

<Constant> ::= 0 | 1 | 2 | 3 | ...

The terminals Angle, Sync and BranchAngle control
parameters for the growth that has been genotypically
encoded rather than user-defined.

Since we start from a valid grammar and use the
Grammatical Evolution technique, we are certain that
we will always have a valid grammar. Combined with
the model for generating surfaces we can be quite sure
that we will have a valid result.

It is also possible to have probabilistic RewriteRule,
which means that there are several possible Successor
to a Predecessor and the choice is random (according
to some predefined distribution).

For the GE we use 4 BNFs that are slightly more re-
stricted than the BNF described above. The reason for
this is to narrow down the search space and obtain in-
teresting results faster. These BNFs will generate dif-
ferent universe of surfaces, giving the user greater con-
trol and flexibility. Apart from the default BNF there
is one that creates symmetric surfaces, one that gen-
erates grammars with probabilistic rewrite rules and
one that produces reversible grammars. The reversible
grammars is a subset that we can map back to a geno-
type; this is useful if we want to let the EA explore
variations of the grammar. A grammar generated by
the default BNF may look like this:

Edge1 + Edge1 + Edge2 + Edge2 + Edge2 + Edge3
Edge1 > Edge1 -> & [[- - Edge1] + + Edge1

] ^ Edge3
Edge2 > Edge2 -> [[- - Edge0] + + Edge0]

Edge2
Edge1 < Edge2 -> ~ [[- - Edge3] + + Edge3

] Edge0
Edge3 -> + [[- - Edge3] + + Edge3] -

Edge1
Edge0 > Edge0 -> / Edge3 Edge3 \ Edge2
Angle 45
BranchAngle 75

The resulting surface can be seen in Figure 6.

Figure 6: A surface that was evolved by the system
from a population size of 15 after 20 generations.

3.3 MAPPING

The EA in GENR8 has a two step mapping from geno-
type to phenotype. First the genotype is mapped to an
executable structure, a grammar. Then the grammar
is interpreted and a surface is grown.

3.3.1 Genotype to grammar

Commencing from a start symbol, S, we read the
genome to determine what production rule should be
used. Standard to Ryan and O’Neil, the genevalues
dictates the corresponding production rule. In the
cases where a terminal or non-terminal in the produc-
tion rule is optional or may occur multiple times, we
use the genes to make the choice. In the case of mul-
tiple occurrences we use a method that is similar to
an exponential probability distribution, so that there
is no fixed upper limit to the number of occurrences
of the terminal (or non-terminal). For instance, if we
have a sequence of genes:

617 666 800 8

And we are about to expand the following expression:

{ <Segment> }

The brackets surrounding the non-terminal indicate
that we are going to have an optional number of
<Segment>. We use the genes to determine how many;
by testing 617 mod 2 = 1. This is greater than the cur-
rent number of expansions from this node, so we add a
Edge node. Next we test 666 mod 3 = 0, which is less
than the number of expansions, so we stop expanding
this node. We continue by expanding the <Segment>
terminal. We have four productions to choose from

and the choice is made by taking 800 mod 4 = 0. Fi-
nally we determine the type of the Edge by taking 8
mod 4 = 0, where the modulo is the current number
of edge types (in this example arbitrarily chosen to be
3) plus one. Thus we end up with Edge0, when the
expansion is finished.

3.3.2 Grammar to phenotype

For the second step of the mapping, from gram-
mar to surface, we use a variant of turtle graphics (
Prusinkiewcz 1989). The grammar is interpreted as
instructions for how the turtle should move and draw
lines.

4 GENR8 AS A TOOL

Evolutionary Algorithms can be useful in a design soft-
ware. They offer powerful search within the universe
of possible designs. Designers have a plethora of soft-
ware tools at their disposal. The tools have differ-
ent strengths and it is neccesary that the designs are
portable between the different tools. However, this is
not enough to make it a useful tool. The EA com-
ponent has to be integrated into the rest of the tool
seamlessly so that it can be used in an intuitive way.

To make the GENR8 easily accessible for designers it
has been implemented as a plug-in to an existing de-
sign tool. In this way it is easier to become familiar
with it and, from a developing point of view, we get a
lot of functionality for free. After consulting the de-
signers in the Emergent Design Group, the choice of
host software was Alias|Wavefront Maya. Many de-
signers use this software and it has good support for
writing plug-ins.

The EA component of GENR8 can be seen as a tool
within a tool within a tool. At the top level, Maya is
just one of many 3D-modeling software tools available
to designers. GENR8 is just one of the many tools
available when using Maya. Finally EAs is the tool
used by GENR8 to create novel surfaces.

4.1 INTEGRATION INTO MAYA

The integration with Maya is seamless. GENR8 is
implemented as a MEL-command (Maya Embedded
scripting Language) and one uses it in the same way
as any other feature in Maya. However, MEL is based
on a command line interface and to make life easier for
the designer, we have implemented a GUI.

From the GUI (and the command-line), you can set
all the parameters for a run. The GUI is more user-
friendly since it prevents the user from entering invalid

combinations. To make life even easier for the user,
there are help files in HTML-format readily available.

Boundaries are set up using ordinary Maya surfaces.
The user can draw arbitrary convex surfaces (concave
surfaces usually work fine, but there are no guarantees)
and they will be treated as walls by GENR8. Attrac-
tors and repellors can be placed using special-purpose
commands.

The user may draw a curve and that curve will be used
as a starting point for the growth (this will override the
genotypically encoded Axiom which always is a regular
polygon).

The surfaces are drawn in separate layers which makes
it easy to toggle the visibility. This is very useful when
inspecting the population. If the user wants to study
an individual closer, there is a feature that allows one
to re-grow that member and thus study it in closer
detail. It is also possible to save both the grammar,
the genome and the actual Maya surface.

4.2 INTERRUPTION, INTERVENTION
AND RESUMPTION

The traditional way to use EAs in design tools is to
have the user set up a run and then wait for the output.
This can be very frustrating to a designer since it may
alienate him or her from the process. We do not want
to create a black box that just spits out a finished
design; instead we are trying to make a tool that is
cooperates the designer.

Our goal is to allow the designer to take an active role
in the evolutionary process and to have a sense of con-
trol. An analogy that might be helpful is that of a
car on cruise control. The car goes forward by itself
but the driver is still in control of the steering and
may hit the brakes, regaining full control. We have la-
beled this idea interruption, intervention and resump-
tion (IIR). The user should be able to interrupt the EA
at any time; an interesting design may be spotted or
the whole process may need to be rescued. Next, the
user should be able to intervene by changing parame-
ters (eg mutation rate) and the environment (eg add
an attractor). Finally it should be possible to resume
the process from where it was interrupted.

The user can choose to view the entire population, or
just one individual during the run. Relevant statistics
and data are displayed in another window.

The user can guide evolution by setting the fitness val-
ues by hand. This will have effect in the ensuing tour-
nament, but the next time the individual is evaluated
it will still get a bad fitness value. Indirectly, the user

can affect fitness by changing the environment and
thus affecting the growth of a surface, possibly lead-
ing to a totally different result. The fitness function
has several parameters (rewarding different features of
the surface) and changing these parameters will alter
the ranking of the individuals. Finally, one can make
copies of an individual and insert those copies into the
population.

It is also possible to insert another population (that
has previously been saved to a file) into the existing
population. This enables one to insert new genetic
material in a controlled way.

In order to give the user even greater control, we have
added a feature that maps a grammar back to a geno-
type. Thus a user can construct a grammar by hand
or modify an evolved grammar and give that as input
to the system. This user-defined genotype can be in-
serted in to the population as the starting point for
further runs. The drawback with this feature is that
the mapping from grammar to surface (phenotype) is
very complex and it requires great expertise to antici-
pate what a particular grammar will result in.

4.3 DESIGN EVALUATION

A key issue for EAs is the fitness evaluation. For cre-
ative design this is obviously a very hard task, since
it involves aestethic criterion rather than an objective
goal function.

The most common approach is to determine fitness
either by using a mathematical function to evaluate
the design (and thus we are once again back to opti-
mization) or fitness is directly determined by the user.
Since it is obviously very hard to capture the nature
of the outcome of a creative design process in a math-
ematical function, this approach has some severe lim-
itations. If the user acts as fitness function, creativity
is unhampered; but on the other hand, it is tedious
and time consuming to evaluate every step of the evo-
lutionary process.

Traditional Interactive Evolutionary Computation
(IEC) (Takagi 2001) often runs into problems with hu-
man fatigue. Since the user has to evaluate the entire
population between each generation. This limits the
population size and the number of generations in prac-
tical use. To circumvent this problem , IEC tends to
focus on getting faster convergence. GENR8 instead
allows the user to express his or her preferences by
setting the parameters for the fitness function.

As mentioned above, the fitness function is a linear
combination of five independent fitness criteria that
each evaluates different features of the design. These

criterion are size, smoothness, soft boundaries, subdi-
visions and symmetry.

The size criteria simply measures the extent of the
surface in the x and y directions (it is assumed that
the normal is oriented principally in the z direction).
Smoothness is a measure of how rugged the surface
is (in the z direction), both locally and globally. Soft
boundaries is actually a fourth wall behaviour, the sur-
face may grow through the boundary, but it incurs a
fitness penalty as is does so. Subdivisions measure of
how finely the surface is subdivided. The symmetry
obviously is measure of how symmetric the surface is
with respect to the x and y axises.

The concept of a fitness function with multiple compo-
nents serves the designer well. It is easy to emphasize
the features that one is most interested in and it gives
the system some of the human abilty to be respon-
sive to several criteria at the same time. The differ-
ent (independent) parameters can be used to express
multi-level, non-linear and possibly conflicting goals of
a designer. Recall, the weight and parameters of any
criterion can be changes at any time during a run.

Figure 7: A randomized starting individual.

Figure 7 shows the best individual in a (randomized)
starting population of size 50. When the parameters
of the fitness function have their default values. If we
then change the parameters to increase the number
of subdivisions, after 5 generations, we get the result
shown in Figure 8. If we wish to then make the surface
more rugged rather than flat, we change the smooth-
ness criteria. The result can be seen in Figure 9.

5 FUTURE WORK

GENR8 creates surfaces in 3D space and it would cer-
tainly be interesting to be able to view and evaluate
the surfaces in a 3D environment rather than on a
2D monitor. Thus we would like to extend GENR8

Figure 8: A subdivided surface.

Figure 9: A rugged surface.

through the use of some Virtual Reality technology.

Right now, GENR8 creates surfaces, we would like to
extend it so that we can grow solid designs as well.
In the next incarnation we could use a solid modeller
instead of Maya (it can only model surfaces). Solid
modeling permits one to analyze the structural and
material properties of the designs and incorporate this
in the fitness evaluation. This could, for instance, be
done using some finite element method.

Another interesting feature would be a machine learn-
ing system that observes the users behaviour and de-
duces the users preferences. This would lead to even
more efficient and personalized fitness evaluation.

6 CONCLUSION

GENR8 makes EAs appear well suited for creative
design by teaming them up with a powerful growth
model. But it does so by placing strong emphasis on
the user’s perspective and adapting the EA to acco-
modate this.

7 ACKNOWLEDGEMENTS

The authors would like to thank Simon Greenwold,
Peter Testa, Devyn Weiser and Janet Fan of the
Emergent Design Group for their help with developing
GENR8.

References

[1] Peter Bentley, Aspects of Evolutionary Design by
Computers,
www.cs.ucl.ac.uk/staff/P.Bentley/wc3paper.html,
2001.

[2] Emergent Design Group, web.mit.edu/arch/edg/

[3] Przemyslaw Prusinkiewicz, Lindenmayer sys-
tems, fractals and plants, Springer-Verlag, New
York, 1989.

[4] Conor Ryan, Michael O’Neill, Grammatical Evo-
lution: A Steady State approach, Proceedings of
the Second International Workshop on Frontiers
in Evolutionary Algorithms 1998, pp. 419-423.

[5] Tomoya Sato, Masafumi Hagiwara, IDSET: In-
teractive Design System Using Evolutionary Tech-
niques, Computer-Aided Design 33, 2001, 367-
377.

[6] Celestino Soddu, Generative Art,
www.celestinosoddu.com, 2001.

[7] Hideyuki Takagi, Interactive Evolutionary Com-
putation: Fusion of the Capabilities of EC Opti-
mization and Human Evaluation, Paper draft for
proceedings of the IEEE that will appear in 2001
summer.

[8] Peter Testa, Una-May O’Reilly, Simon Green-
wold, Agency GP: The Architecture of Emer-
gent Organizations, Eternity, Infinity and Virtual-
ity, ACADIA 2000 Annual Meeting Proceedings,
Washington DC, in press.

