
The Web Page as a WYSIWYG End-User Customizable
Database-Backed Information Management Application

David R. Karger∗
karger@mit.edu

Scott Ostler
sbostler@gmail.com

Ryan Lee
ryan@voccs.com

MIT CSAIL
32 Vassar St.

Cambridge, MA 02139

ABSTRACT
Dido is an application (and application development envi-
ronment) in a web page. It is a single web page containing
rich structured data, an AJAXy interactive visualizer/editor
for that data, and a “metaeditor” for WYSIWYG editing of
the visualizer/editor. Historically, users have been limited
to the data schemas, visualizations, and interactions offered
by a small number of heavyweight applications. In contrast,
Dido encourages and enables the end user to edit (not code)
in his or her web browser a distinct ephemeral interaction
“wrapper” for each data collection that is specifically suited
to its intended use. Dido’s active document metaphor has
been explored before but we show how, given today’s web
infrastructure, it can be deployed in a small self-contained
HTML document without touching a web client or server.

ACM Classification: H5.2 [Information interfaces and pre-
sentation]: User Interfaces. - Graphical user interfaces.

General terms: Design, Documentation, Human Factors

Introduction
This note describes Dido, a Data-Interactive DOcument that
lets end users author (not program) web-page “applications”
specifically suited to their own information management
needs. Instead of forcing their data into a partially-suitable
application (the first author uses a music manager to run a
folk dancing session, shoving choreographer into the artist
field, dance type into genre, and difficulty into the com-
ments), or settling for a spreadsheet’s generic tabular inter-
face, users can wrap any data collection in a data- and task-
specific interface.

Dido is an active document [7] with a look and feel sim-
ilar to those delivered by typical content-management web
sites such as Flickr (photos), Amazon (products), CNET (re-
views), LinkedIn (people), and Epicurious (recipes). An ac-
tive document incorporates elements that sort, filter, or oth-

∗This work was supported by a grant from the National Science Foundation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
UIST’09, October 4-7, 2008, Victoria, BC, Canada.
Copyright 2009 ACM 978-1-60558-745-5/09/10...$10.00.

erwise manipulate the information being presented, updating
the document on the fly to reflect the manipulation. Data
edits in the document can change data stored on the server.

The active document is a pervasive and well-understood
metaphor on today’s web. But these documents’ dynamic
UIs, server-side databases, and AJAX connections are gen-
erally programmed by professionals. In contrast, Dido doc-
uments, including all their active elements, are authored by
end users in a WYSIWYG document-editing interface simi-
lar to those used for authoring static HTML documents.

Dido’s active document is not just an interface metaphor. The
data being managed, the UI for interacting with it, and the
“metaeditor” for authoring the interaction UI are all stored
in one HTML document. No deployment or installation
is needed—the document “just works” in any modern web
browser. Authors can share their active documents freely
without worrying who has the right application installed. The
in-document data store eliminates the server and encourages
users to treat the entire “application” as a document that can
be copied, edited, emailed, placed in a version control sys-
tem, or published to the web. With Dido, an application is
not a heavyweight object that owns data; rather, each data set
comes wrapped in a light and flexible application “skin.”

Obviously there are limits to the complexity of applications
typical users can author. We focus on so-called CRUD ap-
plications that let users (C)reate, (R)ead/Visualize, (U)pdate,
and (D)elete items. Contact managers, todo lists, recipe man-
agers, and photo albums fit this class. CRUD is the core of
widely deployed Content Management Systems such as Dru-
pal, Nuke, Sharepoint, Django, and Semantic Mediawiki.

This note combines two theses. First, that there is a common
set of CRUD interactions that can and should be stripped of
their programmer-oriented complexity and made part of the
common vocabulary of document authoring, allowing end-
users to customize or create their own task-specific “appli-
cations.” Second, that the ubiquitous web browser contains
all the machinery needed to support these commonplace data
management tasks, making them trivial to implement and
deploy in standard web documents. We elaborate on these
ideas and discuss their relation to previous work after a walk
through the Dido system.

Easy authoring and universal compatibility resolve the two

Figure 1: Visualizing data in Dido. Three disciplines
and four visible years have been selected as filters.

biggest concerns with active documents. So consider broad
adoption. Instead of publishing a user study as a (noninterac-
tive, opaque) PDF document referring to a (raw, mysterious)
data file, we could publish one active document containing
both text and data in a meaningful interactive visualization.
Had this paper been published as HTML, its static figures
could have been interactive demonstrations of Dido.

Walk-through
A user opens a Dido document in his or her browser, down-
loading it from a web site or opening a local copy. Figure 1
shows a typical example: a list of MIT Nobel prize winners,
grouped by discipline and sorted by last name. The user can
change the sort by clicking in the “sorted-by” description. A
line above allows the user to switch from the detailed List
currently selected to a grid of photo-only Thumbnails. On
the right are three different styles of facets used to filter the
list by year, discipline, and whether the prize was shared.

This kind of interactive document is typical of today’s content-
bearing web sites. It presents a collection of items (Nobelists)
with properties (name, Nobel-year, or discipline) that have
values for each item. Examples include photos on Flickr
(creator and date), books on Amazon (genre and price), and
recipes on Epicurious.com (cuisine and ingredients). These
sites use their items’ properties to fill templates showing indi-
vidual items, to compute aggregate views of item collections,
and to support sorting and filtering via faceted navigation [9].

The Dido visualization uses our Exhibit framework [5] which
abstracts interactions commonly found on today’s web sites.
A lens is a template for rendering an item—an HTML frag-
ment with slots to be filled by the values of specified proper-
ties. A facet is a widget that filters items based on the value
of some property. A view shows the entire (filtered) collec-
tion in some way: for example a map view plots items on a
map using the coordinates specified in some property, while
a list view shows the items in (sortable) order using lenses.
Exhibit offers several views—lists, thumbnails, maps, time-
lines, scatter plots, and pivot tables—and several filtering
facets—lists, sliders, tag clouds, and numeric ranges.

Exhibits are described by a data file holding the items and
an HTML file with special tags added where Exhibit widgets
should appear. Exhibit’s Javascript fetches the data file, then
interprets the Exhibit tags to provide data interaction when
the page is viewed. The explicit properties-and-values data
model means each widget can be configured without pro-
gramming, by specifying which properties play which roles
in the widget, much as one specifies which columns of a
spreadsheet should be used as data for a particular chart. For
example, the Map view specifies which properties contain
the latitude and longitude needed to plot each item, while the
list view specifies the initial sorting property.

Exhibit has been adopted by several hundred users, includ-
ing a few newspapers, to publish interactive visualizations
such as a Vegan guide to Glasgow restaurants, caves in Italy,
a history of classical music composers, a list of cases at
the European Court of Human Rights, conference proceed-
ings and programs, and many others (a list can be found at
http://simile.mit.edu/wiki/Exhibit/Examples).
This suggests that Exhibit’s interaction vocabulary suffices
for some data presentation tasks. Exhibit suffers from two
limitations, however. First, it offers read-only visualization
of data stored on the author’s web site; the reader is a passive
consumer. Second, the author is expected to be comfortable
editing both the raw data file and raw Exhibit XML tags.

Dido packages Exhibit’s data and presentation vocabulary
into a single file and delivers it to the reader with an editing
framework that helps the reader become the (WYSIWYG)
author as well. If the user clicks the “Edit Data” button on
the top right, the editable values of any items being shown
are highlighted. The user can click on any such value; it will
convert to a text box for editing. Clicking outside the textbox
completes the edit and returns the textbox to its original for-
mat. There are also buttons for creating and deleting whole
items. The user can continue to filter and otherwise interact
with the data while it is in editable form.

This form of direct editing is simple to implement because of
Exhibit’s lens-based architecture. Since items are rendered
via HTML lens templates that specify how content should
fill in the blanks, we invert those templates to infer the edit
target “blank” from a user’s click.

A user can change the visualization by clicking “edit display”
on the top right. This shifts Dido to meta-editing mode. We
invoke a WYSIWYG editor on the entire Exhibit. Individual
data items are no longer editable; rather, the page is. The
author can click anywhere in the document to add static con-
tent, or use the editor toolbar to change the layout (adding
tables, marking paragraphs, etc.) and the formatting (choos-
ing fonts and sizes, etc.).

Beyond the static layout, the user can modify the interaction.
In meta-editing mode the user double clicks views and facets
to open configuration dialog boxes that specify the wiring be-
tween widgets and data. For example, in the list-view dialog,
users can specify the property used for the default sort of the
items in the list. In the timeline view, they can specify the
properties whose values define the start and end times mark-
ing each item’s interval on the timeline. Richer expressions

Figure 2: Editing the Visualization to add a timeline

are possible as described in our previous paper on Exhibit [5].
Previews of the views and facets are shown in place.

The lens templates, which were invisible in data manipula-
tion view, become visible and editable. The user can double
click one to configure its global properties, such as which
type of item that lens can be used to display. The user can
change the layout of the lens through standard WYSIWYG
editing, or can double click on the content elements (fill-in-
the-blanks) to configure which properties of an item should
be rendered at various places in the lens. By adding new
properties to the lens, the user implicitly extends the schema.

The editor toolbar has been extended with buttons to create
new Exhibit elements: facets, views, and lenses in the main
body, and content elements in the lenses.

Once the user is satisfied with their changes, they can return
to the standard view by clicking “Done Editing” at the top. If
they click the adjacent “Save” button, the browser will open a
dialog to get permission from the user and will then save the
document to a file with its modified data and visualization.

Implementation
Dido incorporates Javascript from several systems. We mod-
ified Exhibit (http://www.simile-widgets.org) to support data
editing and to load and store its data (as a JSON block) and
presentation (as an HTML block) in the same document.
We incorporated TinyMCE (http://tinymce.moxiecode.com),
a WYSIWYG HTML editor, and augmented it with buttons
and dialogs for editing Exhibit widgets. Dido’s file-save code
comes from TiddlyWiki (http://www.tiddlywiki.org/), whose
developers have ensured that it works on most browsers even
though there is no standard file API. The dialogue interac-
tions used to configure widgets, and many additional pro-
cessing steps, are simplified by our use of the jQuery DOM
manipulation and UI libraries (http://jquery.com/).

Because so much of Dido’s functionality is built into modern
web browsers, Dido is small. We wrote 4000 lines of HTML
and Javascript and bundled them with 2Mb of Javascript from
the robust open source libraries just described.

Discussion
Dido is an Active Document [7, 1], a document that incor-
porates interactive behaviors typical of applications. Terry
and Baker [7] assert that “such applications may be easier
to build than their traditional counterparts because they can
take advantage of the capabilities of a document editor. In
addition, they may be easier for users to learn because of
the user’s familiarity.” Active-document ideas appeared in
products such as Interleaf Active Documents [3] and Apple’s
Hypercard [2]. But an adopter of these tools had to learn a
new metaphor and work in a new system. And since most
computers did not have these tools, he could not count on
others’ being able to read the active documents he produced.

The passage of time has changed this situation. Today ev-
ery HTML/Javascript web page is an active document. Users
navigating today’s web expect the documents they view to of-
fer sorting, filtering, multiway visualization and even editing
of their contents. And universally deployed web browsers
offer all the machinery necessary to support these interac-
tions. The boundary between document and application has
blurred. Thus, it is time to reconsider active documents.

A key question is how active documents can be authored.
Early systems [7, 2, 3] all exposed scripting languages in
which authors were expected to program behaviors for the
active document elements. Javascript is the latest such lan-
guage. Dido shows that a broad class of behaviors can be
defined without scripting by surfacing an explicit property-
values data model and binding UI widgets to its properties.

The web currently exhibits substantial uniformity in inter-
faces for content interaction. While it may be disrupted by
the introduction of richer interface technologies such as Flash
or Silverlight, there is a present opportunity to capture this
uniformity in a visual vocabulary that can be authored by
end users. The HTML 5 standards body has proposed an API
for an in-page property-value data model [4]; Dido suggests
we could define HTML-standard tags describing interactions
with that data (sorting, faceting, etc.), just as we currently
have tags for tables and pictures.

Dido reconsiders what “applications” are. Historically, they
have been large complex objects developed by profession-
als. Each followed a specific schema. Installing one was a
significant operation. Many were available only to certain
users. In contrast, a Dido application is light. There is no
installation—it arrives attached to its data set, ready to use in
any browser. It can be seen as nothing more than a simple
skinning of the data, like a cascading style sheet. Because
they are so easy to create, there could be as many different
visualizations as there are data sets, with each tuned to a sin-
gle use. Dido applications are simply HTML documents that
can be tossed into a user’s file space. If a user sees a content
presentation he likes, he can download it and insert his own
data. There is no need to decide whether to upgrade a Dido
application—a user can keep both versions. He can make
copies freely, put them in version control systems, and gen-
erally treat them with the sloppiness typical of documents,
rather than the care typical of applications.

Dido is scoped to CRUD applications. Some applications

offer much more complex operations over their data—an ac-
counting program reconciles checks, while a project-planner
computes critical paths. But even they are mostly CRUD.
Dido might “link to” certain richer computations: since an
mms: url launches a media player and a mailto: url an
email program, Dido could perhaps be used to make a media
manager with email-sending capability.

For the researcher, the tiny amount of code forming Dido
shows just how simple it is to create an end-user-authorable
active document framework in today’s web environment.
There is now an opportunity, at very little cost, to explore a
variety of active document frameworks different from Dido,
and discover which ones are most effective for end users.
Unlike typical web applications’, all of Dido’s code can be
found in its documents, which streamlines its creative reuse
in research and open-source settings.

To explore its limits, we pushed hard on the idea of “all in
one document.” But there are many middle grounds. Dido’s
metaeditor, visualization and data are distinct elements that
could be unbundled in various combinations. The metaeditor
could load or save separate visualization/data bundles. A vi-
sualization could read/write its data from/to a different file or
some cloud store such as a Google spreadsheet. Whole Dido
documents could also be managed in the cloud—the active
document is still an effective interface-editing metaphor.

Despite the popularity of the cloud, placing all content in one
local document does offer benefits. A server adds complex-
ity and a point of failure to the system, and demands connec-
tivity. While cloud applications are accessible everywhere,
there is no guarantee that their data can easily be extracted
and combined with data from other web applications. Dido’s
data moves in its pages to wherever it is needed, and is easy
to extract and combine [5, 6]. Another important benefit of
all-in-one-file is that Dido can be used by an individual to
manage sensitive data that could not safely be stored in the
cloud. Dido data can be shared on a private web server or
emailed on a secured channel. In contrast, many organiza-
tions have data they are unwilling to risk placing on a pub-
licly accessible cloud application where it might leak. On the
other hand, some functionality must reach outside the docu-
ment: Dido’s map view invokes Google Maps’ web service,
as a world map is too large to fit in the document.

Dido is only a proof of concept and can be enhanced. For ex-
ample, all data editing at present happens through text fields.
There are better widgets for editing specific data, such as a
checkbox to set a boolean value or a dropdown menu to se-
lect from among a fixed set of possibilities. Such widgets are
commonplace in web forms, and could be added to Dido by
adapting TinyMCE’s WYSIWYG form editor. There are op-
portunities to blur the data-editing and presentation-editing
modes: a facet could be inserted while editing data, and
changing the format of a displayed item could map to a for-
mat change on the underlying lens. Dido (through Exhibit)
already supports copying its contained data to the clipboard
for use in other applications; we plan to add a correspond-
ing data-paste, and to extend it to allow copy/paste of Ex-
hibit widgets or whole visualizations. Users could then cre-
ate mashups by pasting two Dido documents into one.

Several present-day tools are related to Dido. Space pre-
cludes more than a brief mention. ManyEyes [8] is a data
visualization web site. It focuses on letting users upload
(not manage) data sets and create visualizations on the web.
TiddlyWiki is an entire wiki implemented via Javascript
inside one web page; the wiki is persisted by saving the
file. Its contents are text, not structured data. Filemaker
(http://www.filemaker.com/) is a data management desktop
application for end-users; Dabble DB (http://dabbledb.com/)
is a similar system on the web. Like Dido, these systems
let end users create data sets and configure interactions with
them. However, they offer a traditional application rather
than an active document metaphor. Like early active doc-
ument systems’, Filemaker’s limited deployment makes it
harder for people to share information. ManyEyes’ and Dab-
ble DB’s web presence means anyone can access them; this
has pros and cons we have already discussed.

Conclusion
Instead of warping their data to fit rigid applications, users
should warp applications to fit their data and tasks. The evo-
lution of the web has made the active document a timely
candidate for supporting this goal. Dido shows how to ad-
dress two major challenges for active documents, authoring
and deployability. A properties/values data model supports
WYSIWYG authoring of CRUD interactions, and placing
the entire framework in a web page makes deployment triv-
ial. While it draws on old ideas, Dido shows how today’s
Web infrastructure can be used to make end-user customiza-
tion via active documents a commonplace approach to data
and application management.

http://projects.csail.mit.edu/exhibit/Dido/ of-
fers a download of Dido.

REFERENCES
1. Eric A. Bier. Embeddedbuttons: supporting buttons in docu-

ments. ACM Trans. Inf. Syst., 10(4):381–407, 1992.
2. Apple Computer. Hypercard software & user’s manual, 1987–

1998.
3. Paul M. English and Raman Tenneti. Interleaf active docu-

ments. Electronic Publishing, 7(2):75–87, June 1994.
4. Ian Hickson. Web storage. Technical re-

port, World Wide Web Consortium, April 2009.
http://www.w3.org/TR/webstorage/.

5. David Huynh, Robert Miller, and David R. Karger. Exhibit:
Lightweight structured data publishing. In WWW 2007, pages
737–746, May 2007.

6. David Huynh, Robert Miller, and David R. Karger. Potluck:
Data mash-up tool for casual users. In 6th International Se-
mantic Web Conference (ISWC), November 2007. to appear.

7. Douglas B. Terry and Donald G. Baker. Active tioga
documents: an exploration of two paradigms. Elec-
tronic Publishing—Origination, Dissemination, and Design,
3(2):105–122, 1990.

8. Fernanda B. Viegas, Martin Wattenberg, Frank van Ham, Jesse
Kriss, and Matthew M. McKeon. Manyeyes: a site for visu-
alization at internet scale. IEEE Trans. Vis. Comput. Graph.,
13(6):1121–1128, 2007.

9. Ping Yee, Kirsten Swearingen, Kevin Li, and Marti Hearst.
Faceted metadata for image search and browsing. In Proc. ACM
CHI Conference on Human Factors in Computing, 2003.

