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Partitioning the Web: Shaping Online Consumer Choice 
 

Jolie M. Martin & Michael I. Norton 

Harvard University 

 

 

Imagine you want to spend the weekend with your partner in some city at a nice hotel, 

with reasonable prices, located near the water. Because you have not been to this city 

before, you decide to visit one of the many online websites that aggregate information 

about different hotels, allowing you to view ratings for each hotel’s various attributes, 

narrowing the options until you pick your eventual winner. This research explores the 

ways in which online vendors structure this search process by categorizing the attributes 

available for viewing, thereby impacting both the search process and, more importantly, 

consumers’ ultimate purchases. For instance, if you happened to visit a website that 

displayed the ratings given by prior guests to hotel value, we suggest you might be likely 

to overweight this criteria and underweight your other key criteria – proximity to the 

water. On the other hand, if the website showed ratings for location, you would be apt to 

give this criterion more weight, perhaps changing your decision from a cheap option far 

from the water to a more expensive option closer to the water. In both cases, though your 

underlying preference (a reasonably-priced hotel near the water) has not changed, the 

ways in which information is partitioned changes the search process and your stated 

preference: your ultimate selection of hotel. 

 

We first survey existing websites to demonstrate the wide variability of rating categories 

even within the same product category, highlighting the seemingly arbitrary way that 

attributes are partitioned by web designers for use by consumers. In order to demonstrate 

the impact of such partitioning on consumer choice, we present results from a series of 

laboratory studies that demonstrate the impact of partitioning on both explicitly stated 

attribute weightings and implicit attribute weightings in decisions between options. 

Across two domains – buying a car and finding a date – Studies 1 and 2 demonstrate that 

individuals report option attributes to be more or less important depending on the way 

that those attributes are partitioned. In Studies 3 and 4, we show that participants’ 

preferences for options – selecting a hotel or choosing a date – are impacted by how 

option attributes are partitioned. Note that in all four studies, the total information 

available was the same in that participants could see each options’ rating on each attribute, 

but it was the manner in which that information was partitioned that drove decisions.  

 

We conclude by describing the implications of these studies for the design of more 

effective information interfaces. In particular, online vendors can use knowledge about 

the impact of partitioning to help consumers make better choices – by partitioning 

information in ways that reflects consumers’ preferences – or make choices that are more 

closely aligned with the vendors’ interest – by partitioning information in ways that drive 

consumers toward some option that the vendor desires (for example, a hotel that is 

neither cheap nor near the water!). 
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Faceted Browsing, Dynamic Interfaces, and 
Exploratory Search: Experiences and Challenges 

 
Robert Capra, Gary Marchionini 

School of Information and Library Science 
University of North Carolina at Chapel Hill 

100 Manning Hall 
rcapra3@unc.edu, march@ils.unc.edu 

 
Introduction 
The Relation Browser (RB) is a graphical interface for exploring information spaces, developed by the 
Interaction Design Lab at the University of North Carolina at Chapel Hill for use in research on how to 
support users’ needs to understand and explore information.  In this abstract, we describe the Relation 
Browser, results of recent studies, and the design goals for the next-generation RB in current development.  
At the workshop, we will demonstrate the current RB and a prototype of our next-generation RB. 
 
Current Relation Browser (RB++) 
The Relation Browser is designed as a tool for understanding relationships between items in a collection 
and for exploring an information space (i.e., a set of documents).  It has been through a number of major 
design revisions [2,3].  The current version is called the RB++ (Figure 1).  Facets are central to the RB and 
are displayed at the top of the interface.  Results of queries are shown at the bottom of the screen in tabular 
format.  Blue bars and numbers to the left of each facet category indicate how many documents match that 
category.  Previews of queries can be issued by simply mousing over facet categories.  For example, 
mousing over the topic “inflation” will dynamically 
update the blue bars and number to reflect only 
documents that are in the inflation topic.  By clicking 
on a facet category and then pressing the “Search” 
button, results are retrieved and displayed in the 
lower part of the screen.  Results are tightly coupled 
with the facet categories and with search boxes 
displayed above each result field.  For example, 
typing “occupations” into the text box above the title 
field will not only narrow the results shown at the 
bottom of the screen, but will also update the blue 
bars and numbers shown at the top of the screen.  
The current RB allows searching the metadata fields 
in the result sets, but does not support full-text 
keyword searches.  Because of this, the current RB 
encourages a “facets first” strategy of exploration. 
 
The RB is designed as a generic interface that can accept and display data for many different types of 
collections.  RB instances have been developed for a variety of data sets including U.S. federal statistics 
(Bureau of Labor Statistics, Energy Information Administration, NSF Science and Engineering Indicators), 
classical music, the Open Video collection, a university movie database, the CIA World Factbook, and a 
database of roller coasters.  A new version of the RB, called RB07, is currently in development. 
 
Structure and Interaction Study 
In the summer of 2006, we conducted two studies to compare three different interface styles (handcrafted 
web site, simple facet interface, and the Relation Browser) for three different task types (simple lookup, 
complex lookup, and exploratory search) for the U.S. Bureau of Labor Statistics (BLS) web site data.  This 
data set was fairly large (over 67,000 documents) and semi-structured, providing a good test set for 
examining facet use for data that does not have a fully defined set of metadata on which to organize. 

Figure 1.  Relation Browser displaying BLS data 

7



The BLS web site uses a polyhierarchical structure with two levels of topics displayed on the home page.  
The design of the BLS site was handcrafted based on a series of needs assessments and user studies.  For 
the simple facet (SF) and Relation Browser (RB) interfaces, we created a facet set using a variety of semi-
automated techniques [1].  The results of the studies surprised us:  we found no significant differences 
among the three interfaces for measures of task completion time, accuracy, confidence, or mental effort.  
The semi-automated facet interfaces (SF & RB) performed just as well as the handcrafted BLS site and no 
significant two-way interactions between task type and interface were found.  These results indicate that 
facet sets generated using semi-automated methods can provide useful interfaces to large, semi-structured 
data sets. 
 
Perhaps even more interesting than the quantitative results are the qualitative data and observations we 
made during the study.  One of the common observations was that our participants (recruited from the UNC 
community, aged 18-35) often attempted to use a “keyword search first” strategy, even in the interfaces that 
did not directly support this.  The BLS web site provided a keyword search feature one click away from the 
home page, but the SF and RB did not (they both only allowed search on the metadata).  Related to this, a 
number of users expressed feelings of “not being in control” for the RB interface.  The current RB strongly 
emphasizes facets and encourages users to adopt a “facets first” strategy that may be at odds with users’ 
preference for using keyword search first.  Despite this conflict, many users appreciated and noted the 
benefits that facets provide.  Thus, we concluded that interfaces should support agile, user-controllable 
searching and browsing.  This has been a design goal for the next-generation of the Relation Browser, 
described in more detail in the next section. 
 
 
Next-Generation Relation Browser (RB07) 
One of the primary goals of the RB is to provide a tool for exploring data spaces – for gaining a better 
understanding of the documents and how they are related to each other.  Adding full-text search support 
while maintaining agile exploration is the challenge for our next-generation RB, called RB07. 
 
RB07 is currently in development and we will show a demonstration of the prototype at the workshop.  The 
new design includes flexible facet views so that the user can control how the facets and document counts 
are presented.  The initial two facet views are the traditional view as in the current RB++, and a 
representation of the facets as a dynamic tag cloud.  The new design also includes a choice of ways to view 
the results of a search.  A “grid view” that is similar to the current RB++ results table provides a way to see 
a concise summary of essential metadata about matching records.  A “list view” presents results in a format 
that is typical of search engines with a document title, matching text snippets, and a URL (if available).  
The new views for facets and results continue to be tightly coupled using an extensible architecture that can 
support additional “plug-ins” for displaying facets and results. 
 
Whereas the current RB++ is a pop-up applet that displays in a new window, the new RB07 is designed to 
be an embedded component of a web page, providing tighter integration with an existing web site if 
desired.  For the implementation of the new RB07, we considered Java and JavaScript as two well-
supported client-side languages.  JavaScript has easy-to-use access to its surrounding web page, which 
would have benefits for RB-website integration.  However, in the RB, the dynamic updating of the display 
based on each mouse movement over a facet category triggers a series of computations that are a function 
of the number of facets, categories, and documents.  After extensive testing with JavaScript, we found that 
it was not fast enough to support the dynamic updating aspects of the RB on current hardware for document 
collections larger than 5000 to 10000 documents.  Thus, we are developing the new RB07 as a Java applet. 
 
Support for full-text keyword searching is being implemented using the Apache Lucene search engine as 
packaged in the Apache SOLR search server.  Although SOLR provides some support for facets, we are not 
currently leveraging that support, but instead implement facets through the RB itself (this is in large part 
due to the need to do fast dynamic updates for the mouseovers).  Documents are linked between SOLR and 
the RB07 through a unique document identifier.  One of the interface design issues that arose during our 
development is how to provide clear distinctions between using keywords to search within a result set 
versus starting a new keyword search.  In our current design, new searches are started using a keyword 
textbox at the top of the display and refinement searches are issued through a textbox closer to the result 
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set.  We hope that the new RB07 will help address users expectations of how to explore document spaces, 
while still providing powerful interface components for seeing relationships in the collection and refining 
result sets. 
 
 
Future Questions 
While facets are widely regarded as being useful to information seeking, especially in large data sets with 
complete metadata that can be used as facets (such as shopping domains), a number of research questions 
still remain:  How are facets used during the information seeking process?  When, how, and why are facets 
helpful (i.e. facets first versus facets to refine)?  How is facet use affected by task type?  What role do 
facets play in exploring and gaining an understanding of the information space?  Do facets help users refind 
documents they have seen before, acting as waypoints? 
 
Understanding these issues will help us create better tools for information discovery and exploratory 
searching and we expect that user studies and other empirical investigations will lead to answers to these 
questions and guide future system designs. 
 
 
References 
 
[1] Capra, R., Marchionini, G., Oh, J. S., Stutzman, F., and Zhang, Y. (2007). Effects of structure and 
interaction style on distinct search tasks. In Proceedings of the 2007 Conference on Digital Libraries 
(Vancouver, BC, Canada, June 18 - 23, 2007). JCDL '07. 
 
[2] Marchionini, G. & Brunk, B. (2003).  Toward a General Relation Browser: A GUI for Information 
Architects.  Journal of Digital Information, 4(1), http://jodi.ecs.soton.ac.uk/Articles/v04/i01/Marchionini/ 
 
[3] Zhang, J., and Marchionini, G. (2004). Coupling Browse and Search in Highly Interactive User 
Interfaces: A Study of the Relation Browser++. Proceedings of the 4th ACM/IEEE Joint Conference on 
Digital Libraries (Tucson, AZ: June 7-11, 2004), 384. 
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INTRODUCTION  

It is well established that the omnipresent search box is 

insufficient for supporting many common information-

seeking tasks and strategies [1].  In order to provide a better 

interface, many commercial websites now use faceted 
browsing, which provides the ability to narrow a search 

result set by choosing to view only a particular slice of 

metadata [2].  For example, one can search for “televisions” 

and then narrow the results by clicking on facets such as 

“flat screen” or “$1500-$3000”.  This type of interface is 

particularly useful for exploratory search tasks where users 

may not know how to define a priori the best query to solve 

their task – whether because they don’t know in advance 

what information is available in a particular collection or 

they cannot anticipate which keywords would best describe 

their desired results. 

A number of interfaces have recently been introduced that 
aim to further expand support for exploratory search over 

various domains [3].  However, the facets exposed by these 

interfaces have been limited to explicitly assigned metadata 

and keywords extracted from text.  This limitation is 

acceptable if the search happens to be a conjunction of the 

available keywords or metadata, as in a search for a flat-

screen television that costs $1500-$3000.  But what if we 

are looking for something more abstract or subjective?  For 

example, we may want to find “historical events that are 

interesting in the present context” or “quotations that one 
might find controversial.”  The available metadata is 

unlikely to be useful for these tasks. 

Further, even when relevant facets do exist, the query may 

depend on a relationship between facets.  Consider a search 

for campaign proposals made by Hillary Clinton.  It would 

not be sufficient to look for documents that contain the 

terms “Hillary Clinton” and “proposals”, because the result 

set will contain many documents in which Clinton is not the 

person doing the proposing.  This type of query is 

particularly common in scientific, legal, and patent searches 

(e.g.: find molecules that target a particular cell; find 
inventions that burn solids for locomotion). Current 

interfaces make such search tasks awkward at best, since 

users need to scan through the list of matching articles for 

passages that might indicate relevance. 

To help users better answer these types of queries, we have 

developed a richer summarization of natural language text 

documents that takes into account the semantic information 

provided by English sentence structure.  Our system 

initially scans every sentence in the document collection to 

extract sets of terms (subject–verb–object) that indicate the 

Figure 1. The full system interface after clicking on “Clinton”.  Further refinement options are on the left.   

Sentences from the document collection that have a Clinton as their subject appear on the right. 
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presence of what we term an idea, such as “Clinton–

proposed–reforms.”  It then groups similar terms together 

under broader categories so that they can be more 

effectively summarized.  The system then dynamically 

aggregates all of the ideas in response to user input, 

allowing navigation through the corpus using the same 
interaction style as faceted browsing (figure 1).  This gives 

users (a) a view into the most common ideas in the result 

set (since they are presented with the list of concepts 

extracted from this set) and (b) an easy way to narrow in on 

concepts that look interesting.  We call this process idea 

navigation.  

IDEA NAVIGATION 

We demonstrate idea navigation by answering one of the 

questions above: What did Hillary Clinton propose in 

previous campaigns?  Our prototype system contains all 

~9000 articles published in October 2000 by a popular news 

source.  At that time, Clinton was running for the Senate.  

We first select “Clinton” in the Subject column, revealing a 

variety of narrow terms such as “Mr. Clinton” and 
“President Clinton” (figure 1).  We choose “Mrs. Clinton” 

to refine the results to sentences containing Mrs. Clinton as 

their subject.  Selecting the broad action “express” in the 

Verb column refines the result set to things that Mrs. 

Clinton said.  This results in 117 matching ideas, so we 

select the narrow verb “propose”.  We have now narrowed 

our result set down to five sentences, all of which provide 

answers to our query.  One is: “Mrs. Clinton, for example, 

has proposed federally financed scholarships for college 

students who commit to teaching.” 

We chose to represent ideas as sets of three terms (subject–
verb–object) because this representation has been 

successfully used in question answering systems to help 

answer focused questions such as “Who did Hillary Clinton 

marry?” [4].  This representation is also the basic 

underpinning of the semantic web’s Resource Description 

Framework.  Numerous interfaces for searching such semi-

structured data have been built, including ESTER [5], 

which proactively displays refinement options that it 

considers relevant.  However, to our knowledge, our system 

is the first to present the ternary representation as a faceted 

browsing interface. 

EVALUATION 

To better understand the extent to which Idea Navigator is 

understandable and helpful for information seeking, we 
carried out a formative evaluation with 11 participants.  

Presumably due to the dominance of keyword search 

interfaces today, most subjects had a clear initial bias 

towards formulating queries as keywords in the provided 

search box, such as “roger clemens throw bat” or “offensive 

statement.”  Even so, subjects consistently and successfully 

used the idea navigation refinements to improve upon their 

search box results.  As the session progressed, they tended 

to use these refinements more and more.  Across all 

subjects and all tasks, a total of 100 idea navigation 

refinements were performed, versus only 61 searches.  This 

is strong evidence that users understood the new interface, 

expected it to be useful, and continued to use it. 

CONCLUSIONS AND FUTURE WORK 

In this paper, we demonstrate how document search 

interfaces could be enhanced by extending faceted 

browsing to the subject–verb–object representation of ideas.  

Our user study demonstrated that such an interface is 
understandable to first-time users and useful for solving 

realistic search tasks that are poorly supported by existing 

systems. 

Future work includes: increasing the number of sentence 

types that our system understands; trying different ways of 

grouping the idea components; improving the interface 

design; and exploring alternate idea representation schemes 

that better handle adjectives, prepositional phrases, or other 

natural language information.  We plan to integrate idea 

navigation into a full-featured search interface with a large 

health science document set, allowing us to perform a more 
extensive, comparative user study that examines user 

performance when various search components are 

available. 

Beyond this, we would like to further investigate the use of 

idea navigation as an interface for exploring facts, either 

automatically extracted from documents or entered 

manually as semantic web data.  Just as faceted browsing 

supports exploratory search in document collections, we 

posit that the techniques of idea navigation may well 

support the related task of exploratory question answering. 
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GK: A post-search information retrieval system

Joseph Barillari1

This abstract introduces GK, a
web-based software system for research
support. GK is designed to help users
store, organize, and navigate large
quantities of text, currently targeting
but by no means limited to biomedical
research.2

Motivation. Information retrieval
researchers have addressed with great
success the search problem: very
roughly speaking, the process of re-
trieving a small collection of relevant
documents from a collection many or-
ders of magnitude larger. GK ad-
dresses a different part of information
retrieval: the post-search problem. Af-
ter he or she collects several hundred to
a few tens of thousands of documents
that a search engine has indicated were
relevant, GK helps the user make sense
of them.

Use case. GK’s canonical use
case involves a biomedical researcher
(we’ll call her U.) investigating a new
field. PubMed, Google Scholar, and
ISI Web of Science3 will happily lo-
cate a few hundred relevant papers,
but what does U. do with them? She’d
like to find the most interesting parts
of the papers without reading every-
thing (since there are bound to be re-
dundancies and irrelevant pieces). U.
begins by dragging the papers into

her GK volume. (GK has a network
filesystem interface, so uploading data
is simple.) GK indexes the papers and
draws a map of the concepts4 men-
tioned therein. The map lets U. navi-
gate the documents horizontally: when
she encounters the gene fgfr2 in paper
A., the map shows her that paper B.
associates it with VEGF and paper C.
associates it with wnt. The map also
shows her the sentences from which it
inferred those associations and lets her
jump from A. directly to those parts of
documents B. and C.

As she reads, U. can highlight and
annotate the documents in her collec-
tion. She can highlight HTML doc-
uments directly within GK, or use
Adobe Acrobat to add annotations to
PDF files, which GK can read and in-
dex. She can then ask GK to draw an
editable outline that collects her high-
lights and annotations from all of the
documents in one place.

Design goals. GK is designed
to solve the three biggest post-search
problems: storage, organization, and
navigation.

Storage. Storage is mundane but
too-often ignored. An ideal system
would let a researcher access his or
her collection of documents from any
device at any location. GK pro-

1Harvard School of Engineering and Applied Sciences and the Harvard-MIT Division of
Health Science and Technology. (barillar@fas.harvard.edu)

2For simplicity’s sake, the examples below are all biomedical.
3Scientific search engines. PubMed is run by the National Institutes of Health and indexes

the biomedical literature. Google Scholar indexes scientific papers. ISI Web of Science is a
citation index: it lets the user search for papers that cite a particular paper.

4“Concepts” is defined loosely as “interesting n-grams.” Currently, GK identifies inter-
esting concepts using lists of known-interesting terms (for instance, gene names). In other
fields, it might use proper nouns (by examining capitalization patterns) or unlikely phrases
(c.f. Amazon.com).

1
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vides both a through-the-web and
network-filesystem-based access to a
user’s collection. The filesystem uses
the HTTP-based WebDAV protocol,
which is supported on all modern plat-
forms. It also supports transactions,
versioning, and arbitrary metadata.
The web interface provides access to
a search system that indexes both the
full text and the metadata of the user’s
documents. (For instance, if a doc-
ument is indexed in MEDLINE and
GK can find its DOI,5 GK will auto-
matically download its metadata from
PubMed and index it.)

Organization. In the physical
world, users highlight and annotate pa-
pers with pens and file them into fold-
ers. GK supports highlighting, annota-
tion, and filing. It also incorporates or-
ganizational techniques impossible in
the physical world: for instance, the
ability to place items in multiple fold-
ers (tagging), to search for documents
by the notes one has taken on them,
and to pull highlights and annotations
from a group of documents into an ed-
itable outline.6

Navigation. Navigation is by far
the most difficult and most important
post-search problem—given a set of
documents, all of which are relevant,
how does one help the user locate the
sections he or she would find most in-
teresting? GK’s key navigational fea-
ture is the automated drawing of con-
cept maps which show how how indi-
vidual fragments of documents relate
to one another. This granularity lets
users jump directly from a paragraph
of interest in one document directly to
a paragraph of interest in another. The
functions which detect concepts of in-
terest and infer interrelations between
them are under heavy development.

Direction. GK is under active de-
velopment, with a particular emphasis
on improving its navigational features.
While many IR systems have incorpo-
rated graph-based navigational tools,
few such tools have gained mass ap-
peal. A key aim for GK at present is
to determine if graphs and maps are
too cumbersome to be helpful, or if a
properly-designed mapping tool can be
genuinely useful.

5MEDLINE: the NIH’s index of the medical literature. PubMed: the web interface for
MEDLINE. DOI: Document Object Identifier, a numbering system used by many publishers.

6Support for sharing annotations between users is under development.

2
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A Knowledge-Based Search Engine 
Powered by Wikipedia

David Milne Ian H. Witten David M. Nichols
Department of Computer Science, University of Waikato

Private Bag 3105, Hamilton, New Zealand
+64 7 838 4021

{dnk2, ihw, dmn}@cs.waikato.ac.nz

Introduction
This  paper  describes  Koru: a  new  search  interface  that  offers 
effective  domainindependent  knowledgebased  information 
retrieval  [1].  Koru  exhibits  an  understanding  of  the  topics 
involved  in  both  queries  and  documents,  allowing  them  to  be 
matched  more  accurately.  It  helps  users  express  queries  more 
precisely  and  evolve  them interactively.  This  understanding  is 
mined  from  the  vast  investment  of  manual  effort  and  judgment 
that  is  Wikipedia.  This  open,  constantly  evolving  encyclopedia 
yields  manuallydefined  yet  inexpensive  structures  that  can  be 
specifically  tailored  to  expose  the  topics,  terminology  and 
semantics  of  individual  document  collections.  This  paper 
describes  a  brief  overview  of  Koru  and  the  knowledge  base  it 
extracts. A more detailed description and evaluation of the system 
can be found elsewhere [2].

Koru 
!"#$% &'% ()*%+,"#&%-"#.%/"#% ()*%0*-1"#02%$0/$#3&04% /*#0%/#"0.5%6%
delicate  spiral  of  expanding  fractal  shapes.  For  indigenous New 
Zealanders it symbolizes growth; expansion; evolution. Likewise, 
the Koru  topic browsing system aims  to provide an environment 
in which users can progressively work towards what they seek. 
Koru’s interface is illustrated in Figure 1. The uppermost area is a 

classic  search  box  in  which  the  user  has  entered  the  query 
american airlines security. Below are  three panels: query topics, 
query results, and the document tray. 
The  latter  two  panels  are  fairly  standard.  The  query  results list
documents  in  much  the  same  fashion  as  other  search  engines, 
while  the  document  tray  allows  the  reader  to  collect  multiple 
documents they wish to peruse. The first panel—query topics—is 
intended to display Koru’s interpretation of the query and provide
a base from which to evolve it. 
The  query  topics  listed  here—American Airlines,  Security, 
Security (finance),  Airline  and  Americas—are  identified 
automatically  by  checking  words  and  consecutive  sequences  of 
words in the query against articles in Wikipedia. Synonyms mined 
from  the  same  resource  are  listed  below  that  term. For  example, 
amongst  the  topic  Airline’s  synonyms  are  air carrier,  airline
company, and  scheduled air transport.  These  are  (a)  used 
internally to improve queries, and (b) presented to the user to help 
them understand  the  sense  of  the  topic.  The  user  can  also  learn 
more about a topic by clicking the adjacent Wikipedia link.
Query terms are often ambiguous and relate to multiple entries in 
Wikipedia.  By  security,  for  example,  the  user  could  also  mean 
property pledged as collateral  for a  loan. Each sense is included, 
and  ranked  according  to  the  likelihood  that  it  is  a  relevant, 
significant topic for this particular document collection. Only the 

Figure 1: Browsing Koru for topics and documents related to american airlines security
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topranked  topics  that  cover  all  the  query  terms  are  used  for 
retrieval (in the example, American Airlines and the first meaning 
of  security).  This  can  be  overridden  manually  using  the 
checkboxes to the left of each topic. 
Topics which are  recognized  in  the  query can be  investigated  in 
isolation  by using  them  to  browse Wikipedia  for other  topics  of 
interest.  In Figure 1 the user has chosen to expand topics related 
to  airline  (by  clicking  the  triangle  to  the  right),  and  can 
investigate  further  topics  of  interest  such  as  Singapore Airlines 
and British Airways. Any of these could be incorporated into the 
query  by  clicking  the  appropriate  checkbox.  As  with  alternate 
senses,  these  topics  are  ranked  according  to  their  expected 
relevance.
What the figure does not convey is that to avoid clutter not all the 
panels in Figure 1 are visible at any given time. Initially only the 
first two are shown. The user builds an effective query by adding 
and removing phrases and topics until the query and resulting list 
of  documents  satisfies  the  user’s  information  need.  Once  a 
suitable  query  is  formed,  the  user  must  determine  the  most 
relevant ones and judge whether they warrant further reading. At 
this point the panels slide across so that only the query results and 
document tray are visible.

Creating a Relevant Knowledge Base 
To  work  well,  Koru  relies  on  a  large  and  comprehensive 
knowledge  base.  From Wikipedia  we  derive  a  thesaurus  that  is 
specific  to  each  particular  document  collection.  Wikipedia  is 
particularly  attractive  for  this  work  because  it  represents  a  vast 
domainindependent  pool  of  manually  defined  terms,  concepts 
and  relations.  By  intersecting  this  with  individual  document 
collections,  we are  able  to  provide  thesauri  that  are  individually 
tailored to those who seek knowledge from the documents. 
The basic idea is to use Wikipedia’s articles as the building blocks 
of  a  knowledge  base  and  its  skeleton  structure  of  hyperlinks  to 
determine  which  blocks  we  need  and  how  these  should  fit 
together.  Each  article  describes  a  single  concept;  its  title  is  a 
succinct,  wellformed  phrase  that  resembles  a  term  in  a 
conventional  thesaurus—and  we  treat  it  as  such.  Concepts  are 
often  referred  to  by multiple  terms—  e.g.  in  Figure  1  airline is 
grouped with air carrier, and passenger aircraft—and Wikipedia 
handles  these using “redirects”: pseudoarticles  that exist only to 
connect  an  alternative  title  of  an  article  with  the  preferred  one. 
Related topics—british airways, qantas and air safety—are mined 
from the hyperlinks within Wikipedia’s article on airlines, and the 
categories in which it is placed. 
The danger in using Wikipedia’s structure is that because it is so 
huge  (~2 million  topics,  plus  a  further  2 million  synonyms)  the 
Koru user will become swamped with irrelevant topics and links. 
It  is  essential  to  identify  the  concepts  relevant  a  particular 
document  collection,  and  place  these  in  a  structure  that  allows 

navigation between related concepts. This process is described in 
detail in [2].

Evaluation
To  gain  insight  into  the  performance  of  Koru  for  document 
retrieval,  we  conducted  an  experiment  in  which  participants 
performed  tasks  for  which  the  relevant  documents  had  been 
identified manually.  These  tasks  were  specifically  selected  to 
encourage a high degree of interaction. To provide a baseline we 
created  another  version  that  provides  as  much  of  the  same 
functionality  as  possible  without  using  a  thesaurus,  and  whose 
interface is otherwise identical. Comparison of these two systems 
provided  concrete  evidence  of  the  effectiveness  of  Koru  and 
Wikipedia for assisting information retrieval.
Due  to  Wikipedia’s  use  of  contemporary  language  and 
exceptional  size,  Koru  was  able  to  recognize  and  expand  upon
almost all queries that were issued. This assistance was effective; 
as shown in Table 1, it resulted in significant improvements in F
measure. 
Koru’s design was also validated, in that it allowed users to apply 
the knowledge found in Wikipedia to their retrieval process easily, 
effectively  and  efficiently.  The  following  quote,  given  by  one 
participant at  the conclusion of  their  session, summarizes Koru’s 
performance best:

It feels like a more powerful searching method, and allows 
you to search for topics that you may not have thought of …
… it could use some improvements but the ability to 
graphically turn topics on/off is useful, and the way the 
system compresses synonymous terms together saves the user 
from having to search for the variations themselves. The 
ability to see a list of related terms also makes it easier to 
refine a search, where as with keyword searching you have to 
think up related terms yourself.

Unfortunately  we  found  that  the  interactive  browsing  facilities 
offered by Koru are significantly flawed. More work is required to 
identify related topics that are of interest given the context of the 
user’s task at hand, and to allow users to explore them efficiently. 
Koru  currently  provides  topic  recognition  and  automatic 
expansion  that  helps  users  express  their  information needs more 
easily  and  consistently,  but  only  as  a  onestep  process  of 
improvement—which  can  only  take  queries  so  far.  Our  goal  in 
future  is  to  improve  Koru’s  interactive  query  expansion  and 
exploratory  searching  facilities  until  it  provides  this  ability  to 
unfurl queries, and thus lives up to its name. 
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Baseline Koru

Recall 43.4% 51.5%

Precision 10.2% 11.6%

F-measure 13.2% 17.3%

Table 1: performance of tasks
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Abstract 
Many Eyes (http://www.many-eyes.com) is a public 
web site that provides "visualization as a service," 
allowing users to upload data sets, visualize them, and 
comment on each other's visualizations. Among the 
visualization techniques offered by the site are two 
aimed at unstructured text: a “tag cloud” view and a 
“word tree,” a type of visual concordance view. Both 
techniques have seen heavy usage. Our talk will break 
into two parts. First, we will introduce and 
demonstrate the two text visualization techniques. 
Second, we will describe the patterns of usage we 
have observed, particularly around political speeches 
and testimony and artistic expression.  

 

Visualizations 
The first text visualization introduced on Many Eyes 
was a tag cloud, that is, a simple display in which 
word frequencies in a text are indicated by font size. 
Tag clouds have become a familiar presence on many 
web sites. The Many Eyes tag cloud, however, 
includes distinctive features such as instant letter-by-
letter search and a two-word-phrase view. Figure 1 
(next page) is an example of a tag cloud on Many 
Eyes, showing the recent controversial speech by 
Iran’s president at Columbia University. 

Our second text visualization, dubbed a “word tree,” 
is a new kind of visual concordance. When a user 
types in a word or phrase, the visualization displays a 
tree structure showing all the different contexts in 
which the word has been used. (From a computer 
scientist’s perspective, it shows a subtree of the suffix 
tree of the sequence of words in the text.)  Figure 2 
shows an example, applied to Martin Luther King’s 
famous “I have a dream” speech. Users can navigate 

the word tree by typing or by clicking on branches of 
the tree to zoom, and can see a view of either leading 
or trailing context for a word. 

 

Usage 
What sorts of analyses have users been creating with 
these visualizations? Probably the most common 
application is to political texts. The words of George 
Bush, Gordon Brown, and Nicholas Sarkozy have all 
come under scrutiny, as has testimony from Alberto 
Gonzales and Bill Clinton. In many cases, the 
visualizations are used by amateur pundits to make 
political points on blogs. We have also seen 
professionals who use these tools to bolster their 
arguments, ranging from a well-known journalism 
professor to employees of a respected foundation that 
aims for political transparency. 

A second common use case involves personal artistic 
expression. Several users have created miniature art 
projects based on tag clouds. One user made a sort of 
visual poem based on the contents of their freezer. 
Another has created a series of “litmashes” in which 
he concatenates two novels and visualizes the results. 
A third began with a political objective—analyzing 
grants to artists—and ended up with a commission to 
create an art project based on his tag cloud. 

We’ll conclude our talk with a discussion of the 
implications of these examples. The usage we have 
seen on our site, as well as the activity on hundreds of 
blogs that refer to our site, indicates an intense 
amateur interest in text analysis. We believe this 
interest points to new directions for visualization, and 
also suggests there may be unexplored ways in which 
other types of textual data mining and information 
retrieval may be used by citizen activists and artists. 
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ABSTRACT
Traditional information retrieval has focused on the task of
finding information or documents in a largely unknown space
such as the Web or a library collection. In this paper we
propose that the space of Personal Information Management
(PIM) holds a great number of problems and untapped po-
tential for research at the intersection of HCI and IR. In
this position paper we focus on the problem of information
scraps, or unstructured notes and thoughts, as a particularly
interesting space for future research in HCI and IR.

INTRODUCTION
Information retrieval has traditionally assumed a user goal
of finding information or documents within a search space
whose contents may not be known a priori to the user, such
as the Web. The user’s challenge is to specify an accurate
information query (e.g., “What is the capital of Uruguay?”)
and the system’s challenge is to return the most relevant an-
swers or documents.

Contrast this situation with Personal Information Manage-
ment (PIM). Here, the user’s challenge is instead to organize,
find and manipulate his or her own information, of which the
user has intimate knowledge. Though users are still perform-
ing information retrieval or search tasks, the tasks’ nature
may change dramatically. In PIM, users may bring much
more highly contextual queries (“When is that meeting with
Kerry that I set up while I was at lunch on Friday?”), and
have personally authored much of the information they are
attempting to retrieve. Further, the user’s task does not finish
with the retrieval of the document or datum; it often contin-
ues through cycles of editing and reorganization.

PIM embeds many IR tasks that users deal with on a daily
basis, yet these tasks have been largely overlooked by the
IR community. We believe that PIM as an area of research
has much to gain from information retrieval techniques and
that IR, in turn, may benefit from focusing some of its ef-
fort on PIM tasks. In this paper, we outline our research
on information scraps [1], detailing how this PIM problem
interacts closely with information retrieval, and how taking
a traditional IR approach might overly decontextualize the
problem.

INFORMATION SCRAPS

Figure 1. Information Scraps collected in our investigation of existing
practice.

Despite the number of personal information management
tools available today, a striking amount of our data remains
out of their reach: the content is instead scribbled on Post-it
notes, scrawled on corners of sheets of paper, buried inside
the bodies of e-mail messages sent to ourselves, and typed
haphazardly into text files (Figure 1). This scattered data
contains our great ideas, sketches, notes, reminders, driving
directions, and even our poetry. We refer to these pieces of
personal information as information scraps.

We conducted a study consisting of 27 semi-structured in-
terviews and artifact examinations of participants’ physical
and digital information scraps, at 5 different organizations
[1]. Here, we summarize one piece of the study in support
of our argument, focusing on general uses our participants
found for information scraps.

1
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Roles that Information Scraps Play
We consolidated a list of common information scrap roles
from participants’ responses regarding how and why they
chose to store information of various types in scraps.

Temporary Storage. Information scraps’ small, discardable
presence enabled their common use as temporary storage.
One participant kept Post-it notes on her laptop palm rest
for just this purpose, recording visitors’ names and contact
information, later to be disposed of.

Archiving. Many information scraps were intended to reli-
ably hold on to important personal information for long peri-
ods of time. Participants commonly used information scraps
to archive notes from meetings and passwords.

Work-in-progress. Our participants shared with us many work-
in-progress scraps, such as half-written emails, ideas for busi-
ness plans, brainstorms, and interface designs. “Before I put
anything in the computer, I like to put it on the whiteboard
first,” one participant explained of her newsletter layout de-
sign process.

Reminding. Many participants took advantage of informa-
tion scraps’ visibility and mobility by placing them in the
way of their future movements to create reminders for them-
selves. Participants used techniques such as colored Post-its
or unread or unfiled e-mails, reminding them to take action
later.

Unusual Data Types. Taking advantage of information scraps’
freeform nature, participants managed unique data types that
might have otherwise remained unorganized. For example,
one participant created an information scrap system to man-
age a library-style checkout for his privately owned con-
struction tools, and one participant maintained a complex
document of contact information annotated with private notes
on clients.

Information Scraps, PIM and IR
Information scraps present a challenging information retrieval
task. It is appropriate to consider IR with respect to scraps’
lifecycle because of the sheer number of scraps our partici-
pants compiled, in tension with the need to re-find specific
scraps later. However, information scraps do not easily lend
themselves to traditional IR approaches. Scraps are often
recorded incompletely, written tersely, or intentionally left
ambiguous – making it more difficult for IR algorithms to
parse the content. Conversely, the user may recall the con-
tent via a completely different set of cues than the content
itself: for example, context surrounding note creation (“I
wrote it while in the elevator.”) or gestalt meaning (“My
notes from that meeting about funding.”).

Depending on the role an information scrap is playing, its
information retrieval needs may further vary. For exam-
ple, work-in-progress scraps may often contain very little
explicit information to index – for example, consider a note-
book page full of rough interface sketches. It is also ques-
tionable whether traditional IR metrics and tasks are even

Figure 2. Jourknow, our prototype information scrap management
tool.

appropriate for information scraps. Reminder scraps, for ex-
ample, are intended to proactively remind rather than be in-
dexed, searched or visualized later, and temporary storage
scraps’s relevance to the user decreases quickly as the scraps
age.

JOURKNOW: A NEW INFORMATION SCRAP TOOL
In parallel with our ethnographic study, we have been de-
signing an information scrap management tool (Figure 2)
[2]. We briefly mention Jourknow, our information scrap
client, which focuses on the following ideas:

Structure Extraction. In order to elevate ambiguous or un-
structured text to searchable, sortable data, we can assist in
the conversion of the raw scrap rich in implicit structure to
data with explicit metadata structure. Thus, “mtg. w/ Karger
@ 5” becomes reified as a calendar event in the user’s calen-
dar application and searchable as such.

Context Association. We can further assist in information
scrap retrieval tasks by allowing the user to query by the
situation surrounding the note capture. Jourknow automat-
ically captures and associates information surrounding the
user’s situation. This data includes day and time, location
hints (e.g., wifi ssid), events scheduled on the calendar, and
activity traces including web pages, active applications, peo-
ple the user communicated with, and pictures of the desktop
and the user. Users may then use a faceted browsing inter-
face to search for notes fulfilling specific criteria.

Mobility. We are constructing a mobile version of the Jour-
know client to run on users’ cellular phones. The mobile
version of the client is intended to support users when away

2
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from the computer, tailored to the information capture needs
when mobile and affordances the cell phone offers.

We recently completed a weeklong deployment evaluation
of the Jourknow client to help determine its strengths and
weaknesses in information scrap management.

CONCLUSION
In this position paper we have raised the information re-
trieval problem as it affects and is affected by personal in-
formation management. We examined information scraps as
a particularly interesting case of personal information in this
respect, considering features which might bear on IR tasks.
We have seen that importing traditional IR goals and met-
rics into the space of information scraps fails to account for
many of the distinct qualities of scraps’ encoding and usual
retrieval cues. We report on our efforts to bridge this gap
via our prototype system Jourknow, which attempts to make
easier the capture and retrieval of information scraps.
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Codifier : A Programmer-Centric Search User Interface 
Andrew Begel 

Microsoft Research 
Redmond, WA 98052 

andrew.begel@microsoft.com 

Search tools have transformed knowledge discovery 
by exposing information from previously hidden re-
positories to the workers who need it. Search engines 
like Google and Live.com provide search capabilities 
via a simple one-line text query box, and present re-
sults in a paged HTML list. When the repository be-
ing searched contains structured information with 
extractable metadata (e.g. program source code), it 
can be advantageous to index the metadata and use it 
to enable queries that are more task-centric and suita-
ble for an domain-specific audience.  

Codifier is a programmer-centric search user inter-
face that enables software developers to ask domain-
specific questions related to programming languages 
and software. For example, developers might ask 

 Where is this API or data structure defined? 
 Where is this API used? 
 Where is this variable assigned a value? 

 I know this function writes data to the disk, but I 
forget exactly what its name is. 

 Even if I spell it wrong, I still want to find IPer-
sistentItemsChangedSink. 

 Find all functions where Open() is called with 
Init(). 

 Show me all calls to this method, so I can refac-
tor it by hand. 

We index C, C++, C# and VBScript program source 
code using a modified compiler to extract and store 
lexical and syntactic metadata into a SQL Server 
2005 or Windows Desktop Search database. The Co-
difier user interface, presented in Figure 1, enables 
software developers to search in this database for 
symbols found anywhere in the indexed source code 
(not just their definitions). Searches supported by 
metadata can be quite powerful. In additional to 
source code symbols, we can search for language-
specific connectors (e.g. foo::bar,  foo.bar, 

F igure 1: Codifier search user interface showing a search for the symbol COM. 
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foo>bar), synonyms, homophones, abbreviations, 
concept keywords (e.g. searching for COM finds 
COMString,  ComException,  ICOMPointer), 
kind and usage of symbols (e.g. searching for defini-
tions of methods named WriteString (kind:method 
usage:def WriteString), newly instantiated objects of 
class IEnumString (kind:class usage:use IEnum-
String), assignments to local variables named 
firstTimeThroughLoop (kind:localvar 
usage:assign firstTimeThroughLoop)), lexical scop-
ing (e.g. searching for calls to method Open() in 
classes named MemoryAccess), and keywords for 
searching by programming language, source control 
information and file path. 

Filtering, sorting and refinement capabilities are im-
portant for winnowing the thousands of answers re-
sulting from a search over a large source code base. 
For example, Microsoft Windows 2003 Server con-
tains several hundred million symbols in its source 
code – when searching  for  code,  the  “right”  result 
may be one out of thousands, or may be all of them. 
Codifier provides support for filtering results based 
on the lexical, syntactic, and file path scope of the 
result. In addition, by presenting the results in a grid, 
with one row per symbol found, the UI enables sort-
ing based on any of the metadata values. Refinement 
of queries is supported by metadata facet. A top 10 
list of results is shown for each facet. When the user 
clicks on one of them, an additional filtering term is 
added to the query, which is then re-executed. 

Codifier stores one symbol per row when using SQL 
Server 2005. Using as-of-yet unoptimized schema, 
each symbol’s metadata is stored in about 2,300 bytes 
of space on disk, so even the largest bodies of source 
code we index fit into less than 500 GB. Indexing 
time is about 2 million symbols per hour. When using 
the less scalable Windows Desktop Search 3.0, Co-
difier stores all metadata for the symbols in each file 
in the inverted index, enabling metadata-based 
searches, but requiring reanalysis and extraction of 
metadata when each search result is retrieved. Index-
ing time with WDS is about 80,000 files per hour. 

Other search engines such as Google Code Search, 
Krugle.com, and Koders.com have been targeted at 
program source code, but these index minimal meta-
data, and mostly function by restricting the scope of  

full-text search to source code files. Numerous IDEs 
such as Visual Studio and Eclipse support symbolic 
searches with full metadata support, but have limita-
tions as well. Eclipse has a GUI-based interface to 
metadata specification which can be onerous to enter, 
and both IDEs limit searches to a single managed 
project at a time. The Source Insight IDE supports a 
larger search scope using heuristically-evaluated me-
tadata, but does not support synonyms, homophones, 
concept keywords or lexical scoping in queries or 
results. Various research projects such as GENOA 
[4], SCRUPLE [7], TAWK [1], and a project by 
Clarke, Cox and Sim [3], have emphasized the back-
end techniques of indexing code and left their front 
ends to technical pattern-matching languages. Strath-
cona [6] searches for code by example, alleviating the 
query language problem. Sourcerer [2] and Assieme 
[5] search for links within public code (and Assieme 
links in web-based descriptions) to enable program-
mers to learn how to use new APIs. We have made 
Codifier’s query language straightforward, like a typ-
ical web search engine, and concentrate mainly on 
improving the usability of the UI for understanding 
and manipulating search results.  

Codifier will be demoed at the workshop and com-
ments and feedback will be gratefully appreciated.  

[1] Atkinson, D. C. and Griswold, W. 2006. Effective pattern 
matching of source code using abstract syntax patterns. Softw. 
Pract. Exper. 36, 4 (Apr 2006), 413-447.  
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Authority facets: Judging trust in unfamiliar content 

Peter Bell 
Endeca
 
How do people judge trust in content that has no provenance, like the stamp of an editorial 
process or audit trail? Most digital content lacks the authority of traditional publication models, 
and in content created through social collaboration, like the Wikipedia, it even lacks a clear 
single author. Nevertheless, informal content is widely consumed, albeit with healthy skepticism.  
 
Trust and authority are not binary — present or absent. In fact, trust in a source varies depending 
on a user’s task. For example, a financial analyst might: 
 

! Trust numbers reported in The Economist enough to prepare a report that will be filed 
with the SEC.  

! Disagree with the editorial opinion of an Economist blog on tax law reforms, but will 
follow links to sources provided by the author to research more. 

! Might not trust an anonymous posting on an Economist message board, yet finds a tip 
worthy of emailing the author for further due diligence.  

 
In each case, content with widely varying degrees of authority proved to be helpful, given proper 
context. 
 
People judge trust for themselves constantly, and rely on nuanced evidence to do so. In a faceted 
navigation system it is possible to supply readers with abundant evidence to determine trust for 
themselves through “authority facets.” Just as facets help users filter and browse content by 
subject or attributes, authority facets can add rich information about the trustworthiness of 
content by an author for a given task. Examples include facets on skills, ratings, certifications, 
affiliations, and social network ties.  
  
There are at least two approaches to implementing authority facets: 
 

! Content is tagged with authority facets and users can navigate based on those tags. 
Example: at an ecommerce site with user-generated product reviews, users can navigate 
to camera reviews written just by novices, intermediates, or experts. A review stating a 
camera is “heavy” might be judged to carry different meanings coming from novice vs. 
expert authors.  

! Facets themselves can have authority facets, and users can filter the values in a facet by 
its authority facets. Example: the author facet in a university Wiki is associated with its 
own facets, like department, seniority, and certifications. A student searching for 
comments in a blog might narrow the author facet to find just authors that are on faculty, 
and then use that subset to filter blog comments.  

  
Authority facets are just beginning to emerge in faceted navigation systems, and show promise 
as a way to enrich content so users can determine its suitability for a given task. This brief survey 
of examples will show how authority facets are being used today and suggest future directions.
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Mapping the Design Space of Faceted Search Interfaces 
 

Bill Kules 
School of Library and Information Science 

The Catholic University of America 
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Introduction 
Faceted search, guided search, and categorized overviews are becoming accepted techniques to support complex 
information seeking tasks like exploratory search. There are a growing number of applications that use these 
techniques for library catalogs, web search, shopping, image collections, and other domains (Antelman, Lynema, & 
Pace, 2006; Hearst et al., 2002; Tunkelang, 2006; Yee, Swearingen, Li, & Hearst, 2003). Design guidelines for the 
application of these techniques are starting to emerge (Hearst, 2006; Kules & Shneiderman, to appear), but there is 
no systematic description of the design space for faceted search interfaces. An understanding of the design space 
will aid designers by alerting them to design options and decisions they should address. It will aid researchers by 
suggesting a framework for guidelines as well as additional areas of study. In particular, it may help understand the 
actions, tactics and strategems (Bates, 1990) supported by faceted search interfaces. 
 
The objective of this paper is to begin identifying and structuring a set of dimensions of the design space for 
categorized overviews of search results. This paper proposes a set of dimensions for the design space of faceted 
search interfaces and two structures for meaningfully organizing them. These dimensions and the organizing 
structures emerged from analysis of recent literature and applications from several domains.  
 
Method 
We began with design dimensions extracted from Hearst (2006), Smith & Kules (2006), and Kules (2006). Hearst 
(2006) makes detailed design recommendations for hierarchical faceted search interfaces. Kules (2006) identifies a 
set of ten dimensions and their corresponding design options for categorized overviews. Smith & Kules (2006) 
proposes 14 dimensions in three areas (organization, display, and interaction). We extend those 14 dimensions by 
analyzing additional interfaces from different domains: mSpace (schraefel et al., 2005), the Relation Browser 
(Marchionini & Brunk, 2003), and several commercial shopping interfaces.  
 
This analysis yielded 28 dimensions. By considering the three primary conceptual elements (the facets, the 
categories within the facets, and the individual search result items), we structure the interactions by examining how 
an action on each element can affect that element and the other two. Actions include, but are not limited to, clicking 
on, dragging, and “hovering” over an interface element. For example, clicking on a category in a faceted search 
interface often affects the items (by narrowing the set of results to that category) and the categories displayed (by 
displaying the subcategories). Structuring the design dimensions in this manner yields two tables. Table 1 contains  
 
Table 1. Design dimensions related to the organization and display of facets, categories, and items.  
 Organization Display 
Facet • Ordering 

• Grouping 
• Semantics/relationship represented 

• Location & layout 
• Method for determining which facets are displayed (e.g., 

predetermined, user-selected) 
• Form of display (textual or graphical) 
• Display of facets with 0 or 1 non-empty categories (e.g., no 

change, shrink or hide facet) 
Category • Ordering 

• Breadth & depth 
• Labels & terms 
• Categorization method (e.g., use 

existing metadata, extract or infer 
categories, automated clustering) 

• Visible levels of hierarchy 
• Method of determining which categories to display (e.g. all, 

most common, show/hide empty categories, provision of 
keyword search/filter on category name) 

• Sorting/grouping of displayed categories 
• Display of an “Uncategorized” pseudo-category for 

uncategorized items 
Item • Ordering • Method of determining which items to display (e.g. display N 

per page, display a sample for each visible category) 
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design dimensions related to the organization and display of facets, categories, and items. Table 2 structures the  
interaction dimensions into a 3x3 array. The rows represent the element being acted upon and the columns represent 
the element being affected. The empty cells suggest areas for additional study. One remaining dimension does not fit 
in these structures: Breadcrumbs (how they are ordered; the effect of removing an element of the breadcrumb list). 
 
Conclusion 
The organization and dimensions described here are a work in progress, intended to stimulate discussion. This is one 
step in developing an understanding of the design space, starting with the current literature and a sample of 
applications targeted at desktop-based web browsers. Additional actions, interactions, and dimensions will certainly 
emerge from the study of other applications and non-desktop devices (e.g. PDAs). 
 
Table 2. Design dimensions related to the interaction of facets, categories, and items. The rows contain the 
elements being acted upon by the user and the columns contain the elements being affected. 
 Affected element 
 

 
Facet Category Item 

Facet • Selection (simultaneous 
or sequential) 

  

Category • Effect of category 
selection on other facets 
(e.g., display 
subcategories as a new 
pseudo-facet) 

• Effect of category selection on 
display of other categories 
within facet (e.g. are multiple 
selections supported) 

• Previews of subcategories 

• Narrowing, broadening 
• Sorting/grouping items (e.g., 

group by children of most 
recently selected category) 

• Previews 

El
em
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Item • Highlight related facet  • Highlight category 
membership 

• Find related items (e.g. 
“More like this” 
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Introduction 

The dominant paradigm of search today is heavily biased towards textual interfaces. Users enter textual 

queries, and navigate to potentially relevant content guided by short textual snippets offering summaries 

of retrieved information. This interaction paradigm is not only quite successful in practice but also 

provides an opportunity for improved techniques that are potentially even easier and effective. Our work 

focuses on that part of the interactive retrieval process where users are offered textual cues to guide them 

towards relevant content. By using images in lieu of text, we believe we can provide a user experience 

that is not only more effective, but also more efficient. 

 

Images as supportive elements. 

A study reported in (Coltheart, 1999) observed that a person can get the gist of an image in 110ms or less 

while in the same time she can only read less than 1 word, or skim 2 words. This was the basis for 

previous research (Xue et al, 2006) in the web domain that showed that using images in conjunction with 

text improves user experience and satisfaction. Usually, web documents have images included in them, 

making the task of finding appropriate supportive images easier. We are interested in extending this idea 

to collections where documents do not have associated images. We believe that this is important as vast 

amounts of information in historical archives, corporate intranets, scanned books etc. do not have images 

associated with them.  

 

Our proposed approach is to build on standard information retrieval techniques and available resources 

like image search APIs to bring the same advantages of image-supported search to the collections we are 

interested in. We envision a procedure starting with retrieval of a set of documents from the collection in 

response to a user’s query. The next step is to cluster the retrieved documents. Once the clusters are 

created we propose to create concise textual summaries representing each cluster, and using those 

summaries as queries for image search using an image search API. Alternately, we propose to search the 

web for documents similar to the cluster centroids, and use the images associated with them as supportive 

images for the user to work with. 

 

We hypothesize that such image-supported search will not only improve precision, but also recall since 

the user can quickly sift though the images summarizing the ranked list, indirectly accessing documents 

further down.  
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ABSTRACT 
This paper summarizes two MITRE efforts to address the 
speech search challenge. We first describe Audio Hot Spot-
ting (AHS) and then Cross Language Automated Speech 
Recognition (CLASR). 
 

HUMAN LANGUAGE TECHNOLOGY AT MITRE 
MITRE has engaged in a highly diverse HLT program over 
multiple decades. This has resulted in operational systems 
of integrated capabilities such as the DARPA MITRE Text 
and Audio Processing System (MiTAP) and the Translin-
gual Instant Messaging (TrIM).  MITRE has made a num-
ber of its contributions available via open source including:  
 

- DARPA Galaxy Communicator architecture   
(~800 downloads at communicator.sourceforge.net) 

- Midiki MITRE dialog manager toolkit  
(200+ downloads at midiki.sourceforge.net)  

- Callisto annotation tool framework   
(~900 downloads at callisto.mitre.org) 

 
We have also been active in facilitating the community to 
advance a number of key standards such as TIMEX2 (Ferro 
et al 2005), TimeML (timeml.org, Pustejovsky, et al. 2005), 
and more recently an effort to create SpatialML (2007). We 
have been awarded a patent for our effort in Broadcast 
News Navigation (US Patent 6,961,954 ; Maybury et al 
1997) and have patents submitted for Personalcasting and 
Audio Hot Spotting and have advocated advanced Question 
Answering (Maybury 2004).   
 
AUDIO HOT SPOTTING 
The Audio Hot Spotting project (Hu et al. 2004) aims to 
support natural querying of audio and video, including 
meetings, news broadcasts, telephone conversations, and 
tactical communications/surveillance.  As Figure 1 illus-
trates, the architecture of AHS integrates a variety of tech-
nologies including speaker ID, language ID, non speech 
audio detection, keyword spotting, transcription, prosodic 
feature and speech rate detection (e.g., for speaker emo-
tional detection), and cross language search.  
 

 
Figure 1. AHS Architecture 

 
An important innovation of AHS is the combination of 
word-based speech recognition with phoneme-based audio 
retrieval for mutual compensation for keyword queries.  
Phoneme-based audio retrieval is fast, more robust to spell-
ing variations and audio quality, and may have more false 
positives for short-word queries.  In addition, phoneme-
based engines can retrieve proper names or words not in the 
dictionary (e.g., “Shengzhen”) but, unfortunately, produces 
no transcripts for downstream processes.  In contrast, word-
based retrieval is more precise for single-word queries in 
good quality audio and provides transcripts for automatic 
downstream processes.  Of course it has its limitations too.  
For example, it may miss hits for phrasal queries, out-of-
vocabulary words, and in noisy audio and is slower in pre-
processing.   
 
Figure 2 illustrates the user interface for speech search, and 
includes a speaker and keyword search facility against both 
video and audio collections.  The user can also search by 
non speech audio (e.g., clapping, laughter). A recent exten-
sion enables a user to query in English, have this query 
translated to a foreign language (e.g., Spanish, Arabic), use 
this query to retrieve hot spots in a transcription of the tar-
get media, which is then retrieved and translated into the 
query language.   
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Figure 2. AHS Search Interface 

 
CROSS LANGUAGE ASR (CLASR) 
Access to foreign language spoken discourse is challeng-
ing.  Building systems to do so is even more difficult when 
no written resources for that language exist.  The Cross 
Language Automated Speech Recognition (CLASR) effort 
investigates a new approach for spoken language transla-
tion of languages that lack significant written resources.  
This effort is exploring the hypothesis that recent advances 
in both speech recognition and machine translation enable a 
fresh approach. 
 
In particular, CLASR aims to build a process that goes 
from audio in a foreign language to text in English, ad-
dressing languages that do not have the right quantity and 
type of language resources for the current approaches.  Cur-
rent approaches to this challenge go from source language 
acoustics to source language written form, then from the 
source language written form to the English written form.  
Typically they use 1-best ASR output although some use n-
best, but in all cases they output written form. CLASR sim-
plifies this process and folds the translation model and 
acoustic model into one cross-language acoustic model.   
 
While CLASR aims to address low resource languages, 
experiments are being performed on well-known languages 
(Spanish and Mandarin) to compare the new single stage 
approach to the traditional two stage pipe-line system, i.e., 
ASR+MT.  In particular, CLASR uses an open source tool-
kit for ASR (HTK from Cambridge University) and a de-
velopment kit for MT (GIZA++ and PHARAOH (JHU, 
MIT)).  Our Spanish experiments are based on 30 hours of 
broadcast news audio using audio from Central America 
and transcripts in Spanish which have been translated into 
English.  Initial results with Spanish with no additional 
language model have been promising as assessed by BLEU 
(BiLingual Evaluation Understudy), i.e., the portion of  
4-word sequences in MT output that are found in reference 
translations with a range from 0 (poor) to 100 (good). The 
very first single-stage score, an initial foothold as we begin 
hill climbing, was a BLEU score of 8.  By contrast, the 2-
stage ASR+MT scores achieved a word error rate of 45 and 

and a BLEU score of 13.  Our recent system Spanish-
English MT system has a BLEU score of 21, outperforming 
the two stage baseline.  
In summary, this approach is analogous to the results re-
ported in this workshop by Olsson (2007) in which a single, 
integrated model outperforms a sequence of transcription 
and retrieval. Notably, CLASR’s combined approach 
shows promise both performance-wise as well as in terms 
of its limited requirement for language resources.  
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Mobile devices store a rich set of structured information. The 

phone book application contains names, phone numbers, 
addresses and affiliations of personal contacts. The calendar 
application contains entries for meetings with participants, 
meeting location and time. Logs of dialed received calls are stored 
on the device as well as sent and received messages and emails. 

Unfortunately, users can only access this information using 
specially designed applications that manage different subsets of 
this information. There are several significant problems with this 
situation. 

The applications that manage data on a mobile device only 
provide a fixed and limited set of ways to access the information. 
The contacts in the phone book have affiliations with 
organizations, professions, titles, home and office addresses, and 
other attributes. However the only way you can access this 
information with current applications is using contact’s name. 
There is no direct way to find answers for many reasonable 
questions like: Who do you know at Nokia? What is the office 
address of your lawyer? Who is the sales manager at AT&T store 
in Burlington? Although the information about your meeting 
includes subject, location and participants, the only way for you 
to access the meeting information is browsing it chronologically. 
There is no direct way to find answers for many reasonable 
questions like: When is your next meeting at MIT? Where do you 
meet John next week? Are you free on Wednesday afternoon in 
October? 

Although data sets owned by different applications are 
semantically related, there is no simple way to make these 
relations explicit. You receive calls, exchange messages and have 
meetings with people in your address book. Places that you visit 
often correspond to addresses of people and organizations listed 
as your contacts and may appear as meeting places on your 
calendar. For an intuitive interaction with information the 
semantic relations between different data items need to be 
explicitly represented.  

Clearly we need a better way to manage the information. But 
is this enough? Having a rich semantic repository that integrates 
all information into a semantic network is a significant step 
forward compared to arbitrarily partitioned, disconnected subsets 
of information, but it does not solve the essential problem of user 
interaction with complex information sets. It is the language 
barrier. The richer the information set we are dealing with, the 
richer language we need to interact with this information set. It 
seems plausible that the only general solution to this problem 
would involve some form of natural language based access to 
information. 

Natural language interfaces to databases is not a new idea. 
Besides some inherent limitations of natural language interaction 
with a machine, a major factor for limited success of this 

technology was the fact that NLI were not easily portable between 
different databases. This is due to significant dependencies on 
data organization and content that had to be introduced in the 
language system component in order to generate database specific 
semantic representation of natural language request. 

Let us assume the user asks the system about contacts in 
some organization and geographical location: 

Who do I know at IBM Ulm? 
Who are my contacts at IBM in Ulm? 
What are the names of my contacts at IBM in Ulm?1 

The operational semantics of these questions can be 
adequately represented with a database query. Let us consider 
how this request would need to be posed to an RDF [2] 
repository. SPARQL [3] query corresponding to our example 
question over our extended PIM ontology looks as follows: 

SELECT DISTINCT ?person ?givenName ?familyName 
FROM <http://localhost/pim.rdf> 
WHERE {?person a pim:Person; pim:givenName 

?givenName; pim:familyName ?familyName; pim:affiliation 
?affiliation; pim:address ?person_address. 

?affiliation pim:organization ?organization. 
?organization pim:address ?organization_address; 

pim:name “IBM”. 
{?person_address pim:locality “Ulm”} UNION 
{?organization_address pim:locality “Ulm”}} 

Unfortunately in order for a language system to generate 
such semantic representation from the original questions, the 
language system must contain a large amount of information 
about the structure of the database and its content. Such 
information includes the facts that IBM is a name of an 
organization and Ulm is a name of a city, cities can be related to 
organization through their addresses, organizations are related to 
people through their affiliations, people are related to cities 
through their home and office addresses, and all these 
relationships and objects are represented by the specific structures 
and entities of the database. 

Entering such information into a language system is a 
tedious and costly process that is not only domain dependent but 
also is sensitive to specific choices of database organization. 
However if it were possible to automate the integration of 
language system with a data repository the natural language 
interface proposition would become very attractive. 

We are attempting to do exactly that, exploring the rules for 
design of semantic repositories that can be interpreted as a 

                                                                 
1 The name of the organization and the city were selected for 

shortness and carry no other information 
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grammar and a model for semantic interpretation of natural 
language requests concerned with access to information in the 
repository.  

We have designed and implemented the Natural Query (NQ) 
language and engine [1] that accepts database independent 
semantic representation of natural language requests and using 
heuristics produces operational interpretation the natural language 
question over a given semantic repository. NQ requires attaching 
basic linguistic information to structural elements of semantic 
repository and imposes certain rules on the design of its ontology. 

NQ relies on language tags being attached to database 
elements such as classes and properties. Multiple tags can be 
attached to a single element and a single tag can be attached to 
multiple elements. Language tags could correspond to the names 
of semantic categories used by the language system(s) or include 
them in their semantic class. Given a form like the one in our 
example, 

contact.name: ? 
organization: IBM 
city: Ulm 

NQ interprets it as:  

find the attributes tagged as “name” of an instance of the 
class tagged as “contact” related through properties tagged as 
“organization” and “city” to values “IBM” and “Ulm” 
respectively 

While a formal query defines a connected subgraph, the 
database independent meaning representation only identifies some 
nodes and edges of this subgraph. Identified fragment might be 
disconnected. In the example above it identifies “Person” and  
“Organization” classes as well as “Ulm” value of “locality” 
property (by reference to its language tag “city”) and “IBM” as a 
value of “name” property of an instance of “Organization” class. 
This leads to an important idea: that the knowledge embedded in 
the formal queries that know the database organization can be also 
extracted from the natural language meaning representation and 
the data repository itself. For a given set of elements identified by 
a meaning representation of natural language request it is possible 
to identify the query subgraph by searching the database. In other 

words, a program could find paths connecting the nodes known 
from the meaning representation, such as “Person”, “name”, 
“Organization”, “City”, “Ulm”, and “IBM”. 

Therefore, while traditional approaches to semantic analysis 
of natural language questions over databases rely on hand crafted 
code or data for representing the information about the 
organization of the database, NQ extracts such knowledge from 
the data repository by using graph search. Given a question “Who 
are my contacts at IBM in Ulm?”, NQ finds paths connecting the 
nodes known from the database independent meaning 
representation, such as “Person”, “name”, “Organization”, 
“City”, “Ulm”, and “IBM”.   

NQ may find multiple subgraphs that connect all given 
elements. In such cases we apply heuristic ranking of these 
subgraphs in order to determine the most relevant ones. So far we 
experimented with several ranking mechanisms all of which are 
variations on path length (weight) between the elements specified 
by the meaning representation. In all our experiments the results 
retrieved by the system in response to natural language questions 
correspond well with intuition of human subjects. 

We are currently working on integrating NQ with the Galaxy 
natural language system [3] and exploring the potential of our 
approach to provide mobile users natural language access to 
semantic repositories and on and off the mobile device. 
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When people communicate with each other, their conversation relies on many ba-
sic, unspoken assumptions, and they often learn the basis behind these assumptions
long before they can write at all, much less write the text found in corpora. These
assumptions underlie all forms of human communication, from teaching, to giving
directions, to ordering dinner at a restaurant.

A user who interacts with a computer interface, however, can become frustrated
because the computer does not understand their goals and motivations. For human-
computer interaction to become as fluent as communication between humans, com-
puters need to be able to understand the user’s basic, unspoken assumptions. These
assumptions form the body of knowledge known as “common sense”.

Grice’s theory of pragmatics states that when communicating, people tend not
to provide information which is obvious or extraneous. If someone says “I bought
groceries”, he is unlikely to add that he used money to do so, unless the context
made this fact surprising or questionable. Thus, it is difficult to collect common
sense knowledge automatically from the Internet or a lexical resource.

Since 2000, the Open Mind Common Sense project has been collecting common
sense information from volunteers on the Internet. This information is converted,
using automatic NLP techniques, to a semantic network called ConceptNet. Over
the years ConceptNet has grown to contain over 250,000 predicates in English and
has recently been expanding to include many new languages.

Using principal component analysis on the graph structure of ConceptNet yields
AnalogySpace, a vector space representation of common sense knowledge. This rep-
resentation reveals large-scale patterns in the data, while smoothing over noise, and
predicts new knowledge that the database should contain. The inferred knowledge,
which a user survey shows is often correct, is used as part of a feedback loop that
shows contributors what the system is learning, and guides them to contribute useful
new knowledge.

1

We feel that information retrieval would benefit from our work in several ways.
First, interfaces used in IR could benefit from the ”sanity checking” features that
adding common sense to a system provides. In the past, this has been used in speech
recognition, predictive text entry, and other UI applications. Secondly, we would like
to explore a representation similar to AnalogySpace, or even built on it, for other
types of complex data such as those found in IR. We feel that AnalogySpace and
principal component analysis shows great potential in reasoning which can extend
to other areas.

2
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Finding information and organizing information so that it can be found are two key aspects of any 

company's knowledge management and knowledge delivery strategy.  This talk will describe what I 

have learned from years of thinking about these problems and from a project I led at Sun 

Microsystems Laboratories that addressed these problems by combining the respective strengths of 

humans and computers in a knowledge-based system to help people find information.  It explored a 

new search technology aimed at addressing problems that hinder human search effectiveness, and it 

developed techniques that provide a user with the necessary information to quickly decide whether a 

document has the information being sought.  Unlike many previous attempts to improve search 

effectiveness, this system demonstrated a substantial improvement in human search productivity. 

 

The system combines a technique for automatically constructing a semantic conceptual index of the 

material to be searched with a new passage retrieval algorithm that finds specific passages of text that 

are likely to contain the information sought.  The first technique can supplement or replace expensive 

manual indexing of material, and it provides a semantically oriented conceptual structure that can be 

intuitively browsed by information seekers. The information in this conceptual index can also be used 

by the passage retrieval algorithm for find passages that are relevant to a request but use different, 

semantically related terms than those used in the query. 

 

The system makes use of linguistic and world knowledge and exploits sophisticated knowledge 

representation techniques.  It combines linguistic knowledge and natural language processing with 

knowledge representation techniques to automatically construct an intuitive conceptual taxonomy of 

all the words and phrases found in the material, augmented with additional semantically related terms, 

and organized by generality.  More general terms occur higher in the taxonomy, while more specific 

terms are linked below more general terms that "subsume" them.  This provides useful information for 

the search algorithm, which automatically includes any terms that are subsumed by the requested 

query terms, and it is also an intuitive structure for human browsing.  The system provides an 

integrated framework for combining searching and browsing and allows a user to switch easily 

between the two perspectives. 

 

Why is searching so difficult? 

 

For years I have been asking myself this question, beginning when I took a course in information 

retrieval as a graduate student and was appalled to discover what information retrieval systems 

actually did.  I expected the system to understand what I was asking about and find documents that 

were about that.  I discovered that all these systems did was count occurrences of words and push the  

numbers through a simple equation to compute a ranking.  Since then, I have been trying to develop 

systems that come closer to my original assumption.  It turns out that this involves a lot of linguistic 

and cognitive science insights and the use of some real knowledge (in addition to good algorithms and 

human factors). 

 

One of the problems that makes searching difficult is that people often ask for information using 

different terminology from that used in the material that they need to find.  To be successful a search 

engine needs to use knowledge to make connections between what the user asks for and what they 

need to find.  Two sources of such connections are morphological and semantic relationships. These 
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are addressed by automatically constructed  conceptual taxonomy mentioned above.  Another problem 

is that of finding out whether a retrieved document actually has the information that you are seeking.  

This is addressed by the specific passage retrieval algorithm and features provided in the human 

interface to the system.  Both techniques will be described, together with some examples and some 

experimental results. 
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Abstract 
Personalized information retrieval systems [1] seek to adapt search results to long term interests of an individual 

users represented in a user profile (also known as user model). One of the problems of these systems is how to 

“fuse” query-based and profile-based document rankings in search result presentation. The traditional solution to 

this problem, which is applied in several adaptive search systems, is to select a fixed mediation point ! between 0 

and 1 and to produce a personalized rank by fusing query- and profile-based rankings with coefficients ! and (1-!). 

By manipulating !, the system designers can give more priority to documents similar to the query or documents 

similar to the profile. This paper presents a more flexible approach to “fusing” query- and profile-based rankings. 

The idea of this approach is to allow the analysts to dynamically decide whether they are interested in documents 

which are closer to the query or documents which are closer to the user profile – with the ability to navigate on a 

continuum between the query to the user profile and back again. 

The core component of our approach is the relevance-based visualization originally implemented in VIBE [2]. 

VIBE is known as an excellent tool for visual query results analysis. VIBE supports POI (Point of Interest)-based 

browsing. POIs represent key concepts or keywords and are displayed as user-draggable icons on the screen. The 

documents are placed according to their similarities to the POIs. Users can drag and move POIs anywhere they want 

and the locations of the documents are dynamically updated depending on their similarities to the POIs. It allows the 

user to explore the connection between search results and query terms, for example, enabling the user to pick a 

subset of results that is more relevant to a specific query term or group of terms.  

In our project we applied relevance-based visualization to help the user to mediate between the query terms and 

terms from the user profile. Our key idea is to use both query terms and profile terms as POIs. The application of 

the user profile makes the relevance-based visualization adaptive. The results of the visualization are different for 

different users who have submitted the same query and even different over time for the same user, if the interests of 

the user represented in the user profile evolve. Our poster presents our implementation of VIBE for adaptive 

relevance-based visualization, stresses several features that are critical for this type of visualization, and shares some 

evaluation results. This work is a part of our broader agenda on using adaptive visualization to increase the 

interactivity and expressiveness of personalized information access systems. The rest of the position paper presents 

the idea of our approach using a practical example. 

Figure 1 shows an example of applying VIBE to the query and profile fusion problem. The circles colored in pink 

and green are POIs representing two different sets of terms: query terms (pink) and profile terms (green).  In this 

example a user entered a query “NUCLEAR WEAPON” and the system retrieved relevant articles with high 

similarity scores (which will be discussed in detail in Section 3). White squares represent these retrieved documents 

and users can examine their titles and summaries by hovering the mouse cursor over the square icons. We extracted 

10 profile terms and displayed the top 5 of them as green circles on the screen. The rest of the profile terms are 

disabled temporarily and docked in a white box at the corner of the screen (4 in this case because one term, 

NUCLEAR, overlapped the query). Users are able to freely move both query and profile terms and explore which 

document is related to which POI (or term). 

This example clearly demonstrates the difference between the traditional search result (query-based ranked list), 

an adaptively re-ranked result (profile-based ranked list) and our flexible approach exploiting VIBE. Originally, the 

search engine results contain the top 5 articles on Iranian nuclear weapon development. The ranked list sorts the 

documents by their relevance score and users typically examine the top ones first. This result is appropriate if the 

user in this example was most interested in recent events in Iran. However, let’s consider a user who is interested in 

Korean affairs including North Korean nuclear weapon development. Over the weeks of using the system, this user 
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has been accumulating terms like KOREA, NUCLEAR, JAPAN, and NORTH in her profile of interests. Proponents 

of adaptive search and filtering systems would argue that this user would be most interested to see information about 

North Korean, not Iranian nuclear programs and would prefer to see news ranked according to her profile with North 

Korean news emerging on the top of the list. Unfortunately, in a realistic context it is hard to decide what is the real 

need of the user because of a lack of information. Her interests may have remained the same (i.e., she does prefer 

news on North Korean nuclear developments) or may have switched to a different direction (i.e., she is interested in 

seeing up-to-date news about other programs).  

 

 
Figure 1. VIBE Visualization for Query and Profile-based Ranking Fusion 

 

 “Fusing” query-based ranking and profile-based ranking is a more reliable way to assist the user in an 

ambiguous context. VIBE allows users interactively explore the query terms, profile terms, and the retrieved 

documents simultaneously.  The users are able to understand the relationships among these three components and 

discover relevant information more easily. The example above clearly shows the benefits of our approach. By 

examining the locations of the articles using VIBE, it is surprising that a lot of articles are placed closer to a profile 

term (KOREA) than the query terms (NUCLEAR and WEAPON). This result is very interesting because the 

documents visualized here are exactly the same set of articles displayed in the query-based ranked list retrieved by a 

conventional search engine, where the top 5, most important articles were about Iranian nuclear weapon 

development. Our approach can provide users with the flexibility to intuitively discern which documents are more 

related to the query or the profile terms by just glancing at the picture. We don’t have to choose either of the two: 

query or user profile-based ranked list. We can merely show the relatedness of each document to each of the 

concepts and let users visually explore to understand what the situation really is. 
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Characterization of Diagrams and Retrieval Strategies for Them 

 
Robert Futrelle 
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There are a few hundred million diagrams available on the web, by rough estimate.  They cover 

every imaginable topic.  But quality retrieval of the "diagram you want" is close to impossible, 

because virtually all current methods rely entirely on the accompanying or referring text to 

characterize diagram content.  Our lab has worked on a variety of aspects of diagrams and their 

internal content for a number of years, with one of the major goals being how to build IR 

systems for them.  We have published diagram-related papers on machine learning for 

classification, constraint-grammar-based parsing, ambiguity, summarization, text-diagram 

interrelations, ontologies, and vectorization of diagram images. Much of our work has been 

focused on the diagrams that typically appear in papers from the biomedical research literature.  

This talk will range over the portions of our research most relevant to IR, arguing that many of 

the topics we have studied need to be kept in mind in building future systems for diagram 

analysis, representation, interaction, and retrieval. 
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ABSTRACT 
 
A novel method for the evaluation of Interactive IR systems 
is presented. It is based on Human Computation, the 
engagement of people in helping computers solve hard 
problems. The Phetch image-describing game is proposed as 
a paradigmatic example for the novel method. Research 
challenges for the new approach are outlined. 

 
Index Terms— Interactive IR and HCIR evaluation, 

Web-based games. 
 

1. INTRODUCTION 
  

There are currently two main approaches to evaluation of IR 
systems - the TREC conference approach and the HCI 
approach, and neither is optimal across the wide range of 
systems that exist today. In particular, evaluation paradigms 
for Interactive IR systems are interesting to investigate, 
since on the one hand the TREC evaluation method cannot 
be applied here [7,8] while on the other hand HCI methods 
tend to be hard to generalize.  

In this paper, we consider the relative value of the two 
primary approaches to this problem and propose and discuss 
a novel approach to evaluating IR and Interactive IR 
systems that uses Human Computation [1]. This approach 
extends TREC evaluation metrics so that it can be 
applicable to interactive systems, and it improves upon HCI 
methods by reducing their subjectivity.  

 
2. EXISTING IR EVALUATION METHODS 

 
The first approach for IR systems evaluation, taken by 
TREC [http://trec.nist.gov] is based on a batch evaluation. 
The queries and corpus to be used are decided upon a priori 
and the entire corpus is relevance-ranked by hand for each 
of the queries. Each IR system is then queried using a batch 
process with the pre-compiled queries over the given 
corpus. The resulting relevance-ranked set of documents is 
then compared to the pre-annotated “gold standard” and 
scores such as precision and recall are computed [10,13]. 
The batch process approach is arguably a successful 

measure of goodness for the effectiveness of the IR system 
itself [10,11].  

However, evaluating an IR system using a batch 
process may fail to capture the intended use of systems that 
are designed to support other information discovery 
processes [13]. This is especially true in regards to 
evaluating Interactive IR systems. On the one hand, classic 
IR evaluation relies on a one click paradigm where queries 
are first composed in full and then sent to the systems to 
compute a static set of answers [10,13]. On the other hand, 
Interactive IR systems are often designed to enable a user to 
iteratively formalize the query. Since the query as a whole is 
not known a priori, there is no way to assess the relevance 
of documents in the corpus in advance and therefore there is 
no way to compose a gold standard with which to compare 
results returned from different systems. Thus, alternative 
methods must be used in order to evaluate such systems [7, 
8]. 

The second approach to evaluation of IR systems, used 
primarily within the HCI community, focuses on task level 
evaluations rather than evaluating the results for individual 
queries. Such evaluations often employ a mix of objective 
and subjective metrics such as completion time, user 
satisfaction and perceived user success [8,14]. Since the 
metrics used by HCI are partially subjective and since the 
tasks performed during the evaluation are highly correlated 
with the specific system and the specific corpus used [8,14], 
it is hard to compare different systems and the results of 
these evaluations are rarely accepted by the greater IR 
community. 

Furthermore, HCI evaluations that are set up as user 
studies are often stymied by the lack of willing participants, 
the need to compensate participants and the difficulties of 
recruiting participants from outside the specific university 
or company where the study is conducted. These hardships 
can result in lack of data or lack of a sufficiently varied 
participant population, both of which make it difficult to 
make statistically significant claims. 

 
3. HUMAN COMPUTATION EVALUATION OF IR  
 
In this paper, we propose a new approach to evaluation of 
IR and Interactive IR systems. The goal of this line of 
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thought is to design a system that will allow users to 
perform search tasks in a natural way, while assessing the 
quality of the system as well as the success and satisfaction 
of the users in the background. This approach is not 
intended to achieve a mapping to the classical evaluation 
scores used by TREC (unlike [11] which claim to 
successfully do so, or [7,13] which claim that there is no 
correlation between user success and TREC metrics). 
Rather, we seek a new scoring system that will be able to 
compare different user-systems combinations.  

Moreover, to overcome the hardships of recruiting 
individuals for participation in user studies, we propose to 
incorporate the concept of Human Computation [1] into the 
design of our system. Human Computation engages people 
to aid computers in completing tasks which are either too 
hard or too expensive for computers to do on their own. 
Most Human Computation systems are designed as games 
[1,2,3,4,5,6] which people enjoy playing, or as verification 
systems which act as gateways to information that people 
want to access [http://www.captcha.net/, 
http://recaptcha.net/]. However, a Human Computation 
system is more than a game: it is cleverly designed such that 
as a side effect of game play or everyday tasks such as 
logging in to an email account, useful information can be 
collected.  

 
4. AN EXAMPLE EVALUATION USING A GAME 

 
As an example of the Human Computation evaluation 
paradigm, we will investigate in more detail the possible use 
of the online game Phetch [4] that can be hooked up to 
different IR systems [3]. Phetch requires players to perform 
search tasks in order to advance in the game. In Phetch, a 
describer generates a text description of an image and 
multiple seekers race to identify the described image out of 
a large collection of similar images. People play the game 
because it is fun, and as a side effect of game play the set of 
IR systems supporting the game may be evaluated. Since the 
game is interactive in nature, this type of evaluation is 
suited for IR as well as Interactive IR systems. 

There are several advantages for using a game like 
Phetch for evaluation. First and foremost, since the game 
involves users performing search tasks while trying to fulfill 
an information need, it naturally lends itself to evaluation of 
not only IR systems but also of Interactive IR systems. 

Second, the search task itself within the game is done in 
a natural way. Players are presented with an item (in this 
case, an image) that they need to find, and they are expected 
to devise their own ways in which to find it. This type of 
search task is very similar to search tasks that users of IR 
systems perform in real life scenarios and therefore would 
eliminate the need to come up with a contrived simulated 
work task situation for the purpose of the evaluation [9].  

Third, a game like Phetch outputs a clean scoring 
number for players in the game. This score encapsulates the 

success of the player both as a seeker who searches for 
images as well as a describer who describes images for 
others to find. It depends on the randomly chosen image as 
the goal of the search, on the speed in which the player 
processes visual and language information, on the 
opponents she played against and even on the speed of her 
internet connection. However, an average scoring over 
many players, many images and many game sessions could 
potentially serve as a form of measure of goodness for the 
combination of a generic user with the specific IR system 
that was hooked onto the game. This scoring could later be 
incorporated with other metrics from HCI user studies or 
batch processes performed against all or part of the IR 
system to produce a more accurate metric. Repeating the 
same setting of game play with the same corpus using other 
IR systems would produce similar scoring which could then 
be compared with the first, resulting in an overall 
comparison between the two IR systems and the ways in 
which they allow users to interact with them. 

In this way, a Human Computation system could 
potentially bridge between the two different approaches to 
IR evaluation. It could provide a clean score to aid the 
current ways of comparing different IR systems while also 
taking into account user interaction with the system as well 
as the performance of the system itself. 

From our experience with Phetch we learned that it can 
be employed as a possible Human Computation evaluation 
tool, but an interesting problem is how to apply the concepts 
from Phetch to non-image domains, in particular text 
documents. 

 
5. CHALLENGES AND OPEN QUESTIONS 

 
Using Human Computation for evaluation of IR systems 
requires further research. In particular, this paradigm should 
be correlated with accepted figures of merit of IR systems 
that are used by TREC and HCI methods, such as accuracy, 
precision, recall, success and satisfaction of users. 
Additional work may be required for interfacing a Human 
Computation game with other types of IR systems. For 
example, in systems that support faceted metadata browsing 
such as Flamenco [14] and Endeca’s [www.endeca.com] 
Guided Navigation, the corpus should be pre-processed to 
organize flat tags hierarchically, for which many automatic 
and semi-automatic methods are available [12]. It is clear 
that when applying different IR interfaces to the same 
corpus, the quality of data preprocessing to tailor it to the 
specific interface could dramatically impact the results of 
the evaluation. Dealing with preprocessing could potentially 
be achieved in a manner similar to the one taken by TREC, 
where competing teams are required to submit a system that 
interfaces with the Game. The corpus would be known 
ahead of time, so each team could do their best effort on 
data preprocessing. Assuming no a priori knowledge of the 
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corpus may also lead to interesting results, but is not 
currently under consideration. 
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Abstract 
 
Investigative analysts who work with collections of text documents connect embedded 
threads of evidence in order to formulate hypotheses about plans and activities of 
potential interest. As the number of documents and the corresponding number of 
concepts and entities within the documents grow larger, sense-making processes become 
more and more difficult for the analysts. We have developed a visual analytic system 
called Jigsaw that represents documents and their entities visually in order to help 
analysts examine reports more efficiently and develop theories about potential actions 
more quickly. 
 
The Jigsaw system provides multiple coordinated views that show connections between 
entities (like people, places, organizations, dates, etc.) across documents. A connection 
between two entities is defined as a co-occurrence in at least one document. 
 
To allow Jigsaw to handle large datasets, the system does not show the entire dataset at 
once but uses an incremental query-based approach to show a subset of the dataset. The 
query window allows analysts to search for entities and also provides a text search within 
the documents. Jigsaw’s query approach is different from traditional search engines. 
Getting a list of ranked documents as a result of a query would not be sufficient for 
analysts’ tasks because their activities go beyond just looking for a set of documents. 
Analysts also care about understanding what is inside of a document and how those 
entities are connected to entities in other documents. To support that task Jigsaw acts as a 
visual index on the document collection: the query results, consisting of entities and 
documents, are sent to multiple views that show different perspectives on the connections 
between those elements. The analysts can interact with the views, apply filters, or expand 
the context to gain more insight about the document collection. This exploration then 
spurs further queries and retrieves other documents and entities. While acting as a visual 
index, Jigsaw guides the analysts to related documents and facilitates the information 
retrieval process. 
 

Jigsaw presents documents and entities resulting from queries through six different types 
of views. Therefore, the availability of significant screen space is very beneficial. The 
Text View shows document text, allowing analysts to validate connections, providing 
their context, and giving access to information that is not extracted as an entity. The List 
and Graph Views display connections between entities and allow analysts to explore the 
connection network. The Scatter Plot View highlights pairwise relationships between any 
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two entity types. The Time Line and Calendar Views organize entities and reports by date 
to ease the search for time patterns. 
 
Figure 1 shows three different views after querying for “Faron Gardner” and exploring 
the query result. The Text View shows documents related to the query in three tabs. 
Entities within those documents are color coded accordingly to their type. The List View 
shows people and organizations connected to Gardner, with a darker shade of orange 
indicating a stronger connection. The Graph View displays the documents in which 
Gardner is mentioned, as well as the entities within these documents. Thus, it is easy to 
see which entities are mentioned in multiple documents. 
 

 
Figure 1: The Text View, List View, and Graph View showing different perspectives after querying 
for “Faron Gardner” and exploring the query result. 
 
Jigsaw’s views are coordinated using an event mechanism: interactions with one view 
(selecting, adding, removing, or expanding entities) are transformed into events that are 
then broadcast to all other views. Thus, the views of the system stay consistent and 
provide different perspectives on the same data. 
 
For a detailed description of the system, we refer the reader to an article1 about Jigsaw in 
the VAST '07 proceedings and to a video on the project website2 that shows interaction 
with the system. 
 
                                                 
1 J. Stasko, C. Görg, Z. Liu, and K. Singhal. Supporting Investigative Analysis through Interactive 
Visualization. In IEEE Symposium on Visual Analytics Science and Technology, October 2007. 
2 Jigsaw project. http://www.gvu.gatech.edu/ii/jigsaw/. 
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INTRODUCTION 

Providing the ability for someone to be able to see what’s 

around the corner is a hallmark of good HCIR.  A great 
example of this is when there are various refinements that a 

user could make to refine a set, and next to each refinement 

is a count which tells the user how many results would be 

left in the set if they choose that particular refinement.   

EXAMPLE: 

 

The refinement count next to “Projection TVs” tells me that 

if I chose that option, my next set would contain only 20 

items.  This kind of look-ahead is very useful and easy to 

understand. But how can I give a similar ability for a user to 
see what’s under the covers when it comes to learning about 

what people are saying about a product?  Right now, there 

are a plethora of sites that use user-reviews and user-ratings 

to help people evaluate a product.  

 

These reviews are very helpful, but the problem starts when 

a user is confronted with a number of reviews that is too 

numerous to read in a timely manor.  Often there are several 

reviews, from as few as 20 to more than 70, associated with 

a single product on sites like CircuitCity.com.  If you were 

to look at a set of televisions say, all 151 plasma TVs, 

you’d see 363 reviews covering the first 10 products alone!  

Even if you get down to one product, but see that the 
product has more than 100 reviews it wouldn’t be 

reasonable to expect most users to read them all. They’ll 

typically read the most favorable reviews (why should I buy 

it?) and the least favorable ones (what’s wrong with it?)   If 

you can winnow the set of reviews down by some method, 

perhaps by looking only at reviews from people who 

consider themselves professional users, or people who are 

in a particular age range, then the remaining reviews, which 

would normally be unread, would become more useful.  

The problem is that you can’t examine the reviews before 

you start reading by any method that will give you a sense 
of what the reviews are talking about, in general, and you 

can’t read the reviews across multiple products to see what 

people are talking about within a certain category to 

compare 2 arbitrary categories against each other (e.g., 

what are people saying about large, Panasonic plasma TVs 

compared to large Sony TVs? Or what are people saying 

about large, Panasonic TVs compared to small, Panasonic 

TVs?)  

PROPOSED SOLUTION 

Here is a proposed technique that could be used to provide 

some deep look ahead that would give the user an 

understanding of what people are saying, in aggregate, 

about an arbitrary collection of items.  

Applying certain technologies, it’s easy to automatically go 
through an unstructured document and extract terminology, 

such as a set of terms associated with reviews of consumer 

products, like “banding” and “exceptional picture quality”.   

It is also possible to cluster those phrases so that they form 

logical groupings.  For example, when clustering 

technology is used to sort through all the text returned from 

a query on Wikipedia for the term Apple, we see that term-

based clusters are formed in which one cluster has words 

like, core, juice production, etc. and a different cluster has 

words like, iPod, Computer and Steve Jobs.    

If we can take the same technology and apply it to the 

unstructured text of a set of user reviews, we could again 
extract all the terms in the set of reviews, form clusters, and 

present those to the user so that they could use a cluster to 

further filter the set of reviews.  However, this isn’t that 

useful because it would require the user to attempt to 

understand the meaning about each cluster and then 
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determine if choosing that cluster would help them get to a 

set of reviews that were talking about a particular topic. 

Also, when terms and phrases are presented without 

context, the user doesn’t know the valence of a particular 

idea, i.e., “contrast ratio” could be used in the phrase 

“phenomenal contrast ratio” as well as “the worst contrast 

ratio of all the TVs on the market.” 

A more useful interaction would be for the system to 

automatically extract the terms, and perhaps when the user 

rolls over a dimension refinement (e.g., “ 33” – 42” (8)) 

they would be presented with a short set of snippets which 

talked about the various hot topics in that set.  It’s almost as 

if we were able to get people in a room, with some arbitrary 

set of televisions (in this case, say the 8 available 

televisions which are between 33” and 42” inches) and see 

what they were talking about the most – to understand what 

thoughts would resonate in the head of a person listening to 

the reviewers in that room.  

This solution would primarily be used when the domain is 

somewhat specific (televisions, compared to all of 

consumer-electronics) and where a user would normally get 

stuck as to what they can do to advance their ability to dive 

deeper.   When I need to choose a television, I can easily 

get myself into a position where I’m not sure what to do 

next.  In the below example, the split between LCD and 

Plasma TVs is almost even, the price range is heavily 

centered around the $1500-3000 zone, ad the brands all 

have just a few televisions to choose from.  

 

So if I don’t care if I get an LCD or Plasma TV, if I know 

that it will cost me between $1500 and $3000 and I am not 

brand loyal, then I have to start looking at all my results for 

other things that will help me further refine my set.  It’s at 

this point that I could really use a way to look more deeply 

at the results, and take advantage of all the unstructured 

information from things like user-reviews or other 

collections of information. 

To accomplish this, we could take all the terms from all the 

reviews in the result set (say, 8 televisions, which have a 

total of 250 reviews among them), cluster the all the terms 

from all the reviews and then apply the terms found in each 

cluster as a set of search-terms against the whole corpus of 

250 reviews from those 8 products.  We’d then rank the 

results (presumably with the top result as the one which is 

most about the terms in a particular cluster) and present the 

user with a snippet that contains the searched-terms from 

the top ranked review.  

Using the reviews to generate terms, then clusters from the 

terms:  

 

We could then present the snippets in a readable form, 

which also indicated to the user the set from which the 

snippets came by presenting them when the user rolled over 

a dimension value:  

   

This allows people to be able to make judgments about 

what the information in the reviews indicates about an 

arbitrary set and compare that to any other set (or example 

comparing 2 different manufacturers) without having to 

click through and read all – or any of the reviews.  Even 

better, is that the user won’t see the three or four most 

common phrases, which in a set of televisions might be 

very similar.  

However, problems with this technique might occur when 

people don’t have the ability to directly compare the 

snippets against each other because the clusters are 

inherently about different things, i.e., while one set of 

snippets of reviews may talk about price and picture 

quality, another set may focus on ease-of-set-up and 

viewing angle.  That difference could lead a user to think 

that one TV is a better value, while the other is easier-to-

use, which may in fact, not be accurate. 
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Visual Concept Explorer (VCE) is a visualization system developed to explore potentials 

of visual mapping and information retrieval. Implemented as a client-server application, 

VCE contains a Java-based server that interacts with a very large ontology, the National 

Library of Medicine’s UMLS Knowledge Source (UMLS, 2007) and a live search engine, 

the free PUBMED search engine available on the Web. Its visual interface is 

implemented in FLASH with various mapping and interactive functions. Figure 1 is a 

sample interface screen for searching the keyword “cognition.”  VCE is available for 

testing at: http://cluster.cis.drexel.edu/vce/ 

 

      
           Figure 1.  A screen dump of the VCE interface.  

 

 

Visual Concept Mapping  

The first function of VCE is to create dynamic visual concept maps for user’s queries. 

When a user’s query term is received, VCE first checks the UMLS ontology to see if the 

term is a standardized term that can be mapped to a unique concept ID. If it is not, the 

term will be sent to the PUBMED search engine to retrieve documents. The top 20 

controlled vocabulary terms (MESH terms) from the top 200 retrieved documents will be 

presented to the user.  The user then can select a term that best matches his or her query 

for concept mapping. In the example in Figure 1, the user’s query term is “cognition” 

which is a concept term in UMLS.  VCE first identifies 24 terms that co-occur most often 
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with the term “cognition” and then map the 25 terms based on some mapping algorithms. 

The display shown in figure 1 is generated by Pathfinder Associative Networks (PFNET) 

(Schvaneveldt, 1990).  The map clearly shows that the concept “cognition” is most 

closely related to “brain,” “intelligence,” “vocabulary,” “Models, psychological”, etc., 

and the term “brain” is connected to “language,” “emotion,” and “electroence 

phalography,” etc.  Such a concept map helps the user explore semantic relationships of 

terms and navigate through the concept relationships to find the best term to represent his 

or her information needs. The map is interactive. The user can explore any of the terms 

shown on the map by double-clicking on it. The clicked term will become the new “focus 

center” and a new concept map will be generated for the term.  The user can also select 

different mapping models to see concept maps in different styles.  Another mapping 

model currently implemented is the Kohonen’s self-organizing feature map algorithm 

(Kohonen 1997). Other mapping algorithms can be easily added to the system as needed.   

 
Visual Search Interface  

VCE is also a search interface for the PUBMED search engine. The user can use the 

visual display to develop their search strategies while exploring the term relationships 

shown on the display. Right-clicking on any of the terms would allow the user to add the 

term to search boxes on the right-hand side of the screen.  Each time a term is added to 

the search boxes, a search will run automatically against the PUBMED search engine (or 

other search engines that the user chooses) and the number of hits will be shown or 

updated on the screen. The search is executed using a Boolean query constructed from 

the terms in the search boxes – terms in the same box are ORed and terms in different 

boxes are ANDed together. In this way, the search process becomes a natural result of the 

user’s interaction and exploration of concept semantics. VCE assists the user in at least 

three aspects of searching: (1) converting free-text query terms to controlled vocabulary 

terms, (2) constructing Boolean queries through choosing-and-clicking from dynamic 

concept maps, and (3) providing immediate feedback of query results. In the example 

shown, the user starts with the term “cognition” and constructs a query “Emotions AND 

Cognition Disorder AND Child Development,” yielding 16 results.  The query can 

represent user’s information needs much better.  

 

The VCE prototype will be demonstrated during the conference and viewers are invited 

to explore various mapping and interactive functions implemented in VCE.    
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ABSTRACT
While much research effort has been expended on innova-
tive user interfaces for information retrieval (IR), deployed
IR user interfaces have adopted few innovations. Rather
than design another novel user interface tool that users never
adopt, we decided that our first step would be to better un-
derstand the nature of an adopted tool. In that vein, we
are in the process of studying the potential and the actual
performance of find-similar, which is a widely adopted tool
that allows a user to request documents similar to a given
document. Find-similar is a compelling IR interface tool for
the very reason that users appear to have adopted it and
that it has the potential to provide to users the power long
known to be available via relevance feedback. Our hope is
that by better understanding find-similar, we’ll be able to
take that understanding and apply it to other user interface
tools that will both be powerful and be adopted by users.

1. INTRODUCTION
Find-similar allows a user to request a list of documents

similar to a given document. As such, find-similar provides
a way for users to navigate from one document to another
and browse by document similarity. This feature is typically
instantiated as a button or link next to each result in the
list of search results. For example, the Excite search engine
labeled its find-similar link “More Like This: Click here for
a list of documents like this one.”

Find-similar can be an important and valuable tool for im-
proving IR systems. Spink et al. [6, 7] analyzed samples of
Excite’s query logs and reported that between 5 and 9.7 per-
cent of the queries came from the use of the “more like this”
find-similar feature. Lin et al. [2] have reported that for the
US National Library of Medicine’s search engine, PubMed,
18.5% of non-trivial search sessions involve clicks on articles
suggested by PubMed’s find-similar, which PubMed refers
to as related articles [3].

While relevance feedback is well known to be a powerful
technique for improving retrieval performance, it has seen
little adoption by popular search systems. We’ve shown that
find-similar has the potential to match the performance of
relevance feedback [4]. Earlier work by Wilbur and Coffee [8]
found that certain browsing patterns could improve over the
original query’s ranking.

HCIR’07 Workshop on Human-Computer Interaction and Infor-
mation Retrieval, October 23, 2007, Cambridge, Massachusetts.

2. DOCUMENT NETWORKS
Find-similar can be studied and understood in graph the-

oretic terms. Each document or web page is a node in a
graph. When find-similar is applied to a document, find-
similar provides the user with links to the similar documents
and these links are effectively added to the document. For a
web page, these automatically created links join the already
existing links on the page. If the added links are good, users
should be able to use the links to navigate to other relevant
documents. These links make documents in the graph closer
to each other, which is good, but these links also increase
the amount of time that a user needs to spend examining
the page, which is bad.

In a broad sense, find-similar aims to add links to doc-
uments such that the time for a user to get from relevant
document to relevant document is minimized. These added
links can represent many different types of similarity. The
most studied form of similarity is content-based, which typ-
ically involves comparison of the terms in each document.
The web’s hyperlinks are another form of similarity; a simi-
larity defined by the authors of the web pages. Find-similar
could add links to documents from a similar time period or
documents written by the same author, for example.

We’ve proposed a pair of metrics that can be used to mea-
sure the navigability of documents [5] and preliminary ex-
periments show that existing web hyperlinks are ill-suited
for navigation from relevant document to relevant document
compared to links produced by a content similarity measure.

Different types of content similarity measures create dif-
ferent document networks. Using simulated browsing be-
haviors, we have found that a query-biased document-to-
document similarity consistently outperforms a baseline “reg-
ular” similarity. Figure 1 shows an example of how query-
biased similarity can result in a better clustering of rele-
vant documents. We intend to study query-biased similar-
ity using our navigability metrics and obtain a better un-
derstanding of the more navigable networks produced by
query-biased similarity.

3. USER BEHAVIOR
While understanding of the find-similar document net-

works is important to understanding find-similar and max-
imizing its performance, we also want to better understand
how people use find-similar.

In a study by Huggett and Lanir [1], users found more
relevant documents using an interface that provided find-
similar over an interface without find-similar. Huggett and
Lanir’s study used small newswire collections of 2000 doc-
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(a) (b)

Figure 1: Simplified depictions of the relevant document networks for TREC topic 337, “viral hepatitis.” The
network on the left (a) uses regular similarity while the network on the right (b) uses query-biased similarity,
which better clusters relevant documents. The documents are closer in figure (b) because they are higher
ranked in each other’s ranked lists. Links are drawn between two documents when one of the pair is close to
the other. The actual relevant document network is a weighted, directed graph [5].

uments and limited test subjects to two minutes for each
search. We would like to examine find-similar’s usage on
much larger TREC collections and on the web. As Huggett
and Lanir did, we will also compare our find-similar im-
plementations to IR systems allowing query reformulation
and one of our measures of performance will be the rate at
which relevant documents are found. We hypothesize that
users adopt IR interface features that provide better rates of
information discovery as opposed to tools that may improve
ranking performance but overall slow the rate of finding rel-
evant documents.

We also want to learn about how users navigate the doc-
ument networks formed by find-similar and what forms of
user interface support are needed to maximize performance.
For example, how far away from the original query will users
navigate? Do users apply find-similar to documents that are
non-relevant but which they think might lead them to rele-
vant documents? How is find-similar usage interleaved with
query reformulation? We intend to answer these and other
questions as part of a planned user study.

4. CONCLUSION
Find-similar provides a chance for us to study a user in-

terface feature that has been adopted by search engines and
shown to be frequently used by users. To date, we’ve shown
that find-similar has the potential to match a traditionally
styled multiple item relevance and that different forms of
similarity offer different levels of inherent navigability. Our
next steps include a closer examination of similarity func-
tions such as query-biased similarity and actual user stud-
ies. As much as possible, we hope to learn what has allowed
find-similar to become a useful tool for search when so many
other user interface features have failed to succeed and be
adopted outside of the laboratory.

5. ACKNOWLEDGMENTS
This work was supported in part by the Center for In-

telligent Information Retrieval and in part by the Defense
Advanced Research Projects Agency (DARPA) under con-

tract number HR0011-06-C-0023. Any opinions, findings
and conclusions or recommendations expressed in this ma-
terial are the authors’ and do not necessarily reflect those of
the sponsor.

6. REFERENCES
[1] M. Huggett and J. Lanir. Static reformulation: a user

study of static hypertext for query-based reformulation.
In JCDL ’07: Proceedings of the 2007 conference on
Digital libraries, pages 319–328. ACM Press, 2007.

[2] J. Lin, M. DiCuccio, V. Grigoryan, and W. J. Wilbur.
Exploring the effectiveness of related article search in
pubmed. Technical Report LAMP-TR-145/CS-TR-
4877/UMIACS-TR-2007-36/HCIL-2007-10, College of
Information Studies, University of Maryland, College
Park, July 2007.

[3] Pubmed, www.pubmed.gov. “Related articles”:
www.nlm.nih.gov/bsd/pubmed_tutorial/m5002.html.

[4] M. D. Smucker and J. Allan. Find-similar: Similarity
browsing as a search tool. In SIGIR ’06, pages 461–468.
ACM Press, 2006.

[5] M. D. Smucker and J. Allan. Measuring the
navigability of document networks. In SIGIR ’07 Web
Information-Seeking and Interaction Workshop, 2007.

[6] A. Spink, B. J. Jansen, and H. C. Ozmultu. Use of
query reformulation and relevance feedback by excite
users. Internet Research: Electronic Networking
Applications and Policy, 10(4):317–328, 2000.

[7] A. Spink, D. Wolfram, B. J. Jansen, and T. Saracevic.
Searching the web: The public and their queries.
JASIST, 52(3):226–234, 2001.

[8] W. J. Wilbur and L. Coffee. The effectiveness of
document neighboring in search enhancement. IPM,
30(2):253–266, 1994.

51



Integrating the “Deep Web” With the “Shallow Web” 
 

Michael Stonebraker 

MIT 

 

 

Public web integration services such as Google and Yahoo provide access to the “shallow web”, 

i.e. those sites that are reachable by a text-oriented crawler.  Although this service is very useful, 

it misses large portion of the information available on the web.  Specifically, it misses the “deep 

web”, which is data available behind form-oriented user interfaces.  Examples of deep web sites 

include all airline sites, 411.com, weather.com, and most retail sites.  These all require one to 

issue a query through a form-oriented interface to an underlying data base.  Obviously, current 

crawlers are incapable of accessing the deep web.  In this paper, we propose a methodology for 

integrating the deep web with the shallow web. 

 

Our proposal builds on a research prototype, Morpheus, which we have built over the last two 

years at MIT and the University of Florida.  Morpheus is focused on enterprise data integration 

and database schema heterogeneity.  For example, a multinational corporation would have 

employees in several countries, each with a local salary.  Hence, the French employee data base 

would record French salaries in Euros, after taxes, and including a lunch allowance.  In contrast, 

the US employee data base would contain salary records, gross in dollars with no lunch 

allowance.  Obviously, retrieving the two collections of salaries will produce garbage.  Hence, a 

global schema must be defined and the local schemas must be mapped to this global schema.   

 

There are many approaches to this issue of schema integration, including forcing standardization, 

using description languages such as Owl, and performing automatic translation based on some 

sort of logic description of the source and the target objects.  Our point of view is that a 

transform, written in some programming notation, is generally required to convert between 

enterprise data elements, which we call data types.  The objective of Morpheus is to facilitate 

building and reusing such transforms. 

 

As such, Morpheus is a software system that contains a metadata repository about transforms and 

data types, a sophisticated browser that allows a human to find objects of interest in the repository 

and a high level transform construction tool (TCT) that allows a human to build transforms from 

scratch as well as  “morph” existing ones into a form that meets his needs.  Morpheus is built on 

top of Postgres; hence transforms are Postgres user-defined functions.  As such, transforms can be 

called by running Postgres queries on input data stored in Postgres, producing output data in other 

Postgres tables.  As a result of this architecture, web services can be “wrapped” to convert them 

to user-defined functions, allowing Morpheus to interact with remote data and services. 

 

We are working on several Morpheus extensions, which will allow Morpheus to perform the 

desired integration of the shallow and deep web: 

 

1) We are building a crawler that will explore the public web, looking for Javascript forms.  

We plan to semi-automatically wrap each such site to turn it into a Morpheus transform 

and register it in the Morpheus repository.  Human involvement is required to ascertain 

how (if at all) the new transform is related to existing Morpheus objects. 

 

This will extend Morpheus to know about the subset of the deep web that is behind 

Javascript forms 
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2) It is straightforward to model our metadata tables as RDF objects.  Hence, we can build a 

mapping layer that will support Sparkl access to our Postgres repository.   

 

This will support Sparkl access to the deep web through Morpheus. 

 

3) We will build a GUI that will support a simple query interface and convert it to Sparkl.  

Using this interface, an end user could, for example, type professor(“Mike Stonebraker”) 

 

4) We will build a run time system that performs the following actions.  It will decide which 

of the Javascript wrappers to invoke, run them, converts the result into RDF and load the 

result into a temporary Postgres table, modeling RDF objects in a table in a 

straightforward manner.  Any returned object can be “enriched” by passing it through any 

local Morpheus transforms that would convert the object to another Morpheus data type.  

Furthermore, it will submit the same query to Google, pass the top X results through a 

natural language parser to find “subject-verb-object” triples, and load the results into the 

same Postgres table.  

 

5) The result is a collection of RDF objects from the shallow and deep web that deal with 

the query: professor(“Mike Stonebraker”) 

 

6) A graph of the result of 5) will be presented to the user, perhaps through Haystack or 

some other means.  The user can browse this representation.  Alternately he can refine the 

result using Sparkl directly. 

 

Jointly with researchers at the University of Florida, we are building out this prototype.  Research 

support is available to one or more interested MIT students. 
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Multimodal Question Answering for Mobile Devices

Tom Yeh
Vision Interface Group

INTRODUCTION
In recent years, community-based question answering
(QA) services, such as Yahoo Answers! and Naver, have
enjoyed growing popularity. These services operate web
sites to invite anyone to post open-ended questions for
free. The questions can be on a variety of topics ranging
from car buying tips to dating advice. They are viewed
by millions of users in an online community, some of
whom may happen to possess the right expertise to give
satisfactory answers to them. Users frequent these sites
to seek answers about topics they know little of; at the
same time, they often volunteer answers about other
topics they happen to be familiar with. It is in the
spirit of such reciprocity that people are willing to con-
tribute their expertise and knowledge for the benefits of
the whole, without seeking any form of monetary com-
pensation.

Over time, these community-based question answering
services have accumulated a considerable amount of hu-
man knowledge, which can be readily tapped into with
an intelligent search engine. In Yahoo Answers!, when
a user asks a question, a search engine can quickly lists
previously asked questions that are relevant to the new
question. The automatic search mechanism allows the
user to receive immediate feedback instead of having to
wait for some human expert to answer it. If nothing
the search engine provides is satisfactory, the question
can still be left as as an open question for the whole
community to solve.

However, these QA services have some fundamental lim-
itations that can be improved upon. The first limitation
is that conventional QA services provide only a single
input modality—text. Sometimes we may find it dif-
ficult to phrase a question about an unfamiliar object
identifiable only by its distinct visual features. For ex-
ample, we may see an exotic bird outside of a window
and want to know about it. Not knowing how to name
the bird, our only resort is to actually describe the bird
in our question based on its appearance, such as a red-
feathered, large-beak, round-eye bird. The second limi-
tation is that most QA services were designed primarily
for the desktop platform. Yet, we often encounter new
and interesting things around us that arouse our curios-
ity and instill questions in our mind. Thus, there is a
need to support situated and pervasive question answer-
ing from a mobile platform, so that we can ask questions

as soon as we become curious about something.

Therefore, in this paper, we propose a multi-modal ques-
tion answering system designed for mobile users. As a
solution to the limitation of text-only QA, we introduce
an additional modality—photo—to be used directly as
part of a multi-modal query that includes both visual
and textual cues. Using our system, whenever some-
thing in the environment catches a user’s attention, the
user can learn about it immediately, simply by taking
a photo of and asking any question about it.

Unlike conventional question answering services, ours
is multi-modal (photo and question) rather than text-
only, mobile rather than desktop-centric. Unlike location-
based information services such as those based on GPS
or RFID, ours is active (users decide when and what
to inquire) rather than passive (users receive whatever
the system decides to show based on the location cue).
Moreover, the idea of using photos directly as queries
to an information retrieval system has been explored by
various works such as a system that recognizes flowers
[Flower] and another system that recognizes fish [Fish]
based on photos taken by camera phones. Unlike these
photo-based information services, ours is open-ended
(users can ask about any topic) instead of domain spe-
cific.

SYSTEM ARCHITECTURE
This section gives a high-level overview of the architec-
ture of our multi-modal information retrieval system.
The architecture we propose consists of five major com-
ponents described as follows:

Mobile User Interface To let users issue multi-modal
queries from mobile devices, we need to design an in-
terface for users to take photos and enter questions
that can be embedded in the queries. This interface
also allows users to submit queries to a server and to
view relevant questions and answers returned by the
server.

Expert Community To answer multi-modal queries
users submitted, we rely on a community of experts
willing to share their knowledge and expertise with
others. The success of existing community-based ques-
tion answering services ,such as Yahoo Answers! and
Naver, has demonstrated that an incentive model based
on reciprocity and reputation is sufficient for solicit-
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Figure 1. A typical usage scenario (left) and our pro-
posed system architecture (right) of a multi-modal ques-
tion answering system.

ing altruistic behaviors from community users. It is
quite likely the same model that has made these ser-
vices so successful can be extended to our case.

Multi-modal Query Database To store multi-modal
queries ever submitted so that they can be looked up
in the future, we need to build a suitable database.
Also must be stored in this database are the answers
provided by the community users. In effect, this
database represents the collective multi-modal knowl-
edge contributed by the community over time. When
a multi-modal query is submitted, it will be matched
against the queries stored in this database to look up
relevant information, before the expert community is
consulted.

Photo-matching Engine To check whether someone
else has taken a relevant photo in the past, we need a
photo-matching engine that can match a new photo
against the photos in the database to identify those
that are visually similar. Because people can take
photos of the same object or scene in various ways,
the photo-matching engine needs to provides robust-
ness to image variations due to scale, translation, ro-
tation, and occlusion.

Question-matching Engine To check whether some-
one else has asked a relevant question in the past, we
need a question-matching engine that can match a
new question against the questions in the database
to identify those that are semantically related.

ALGORITHM
This section describes an algorithm that takes a multi-
modal query and lookups relevant queries in a database.
The basic idea of the algorithm is to use the photo-
matching engine to retrieve a list of candidate photos
similar to the photo in the query, and use the question-
matching engine to re-rank the candidate photos based
on the similarities between the question in the query
and the question corresponding to each candidate photo.

Formally, let x : 〈p, q〉 denote a multi-modal query that
consists of a photo p and a question q. Let Xn =
{x1 . . . xn} denote a multimodal database that has seen
n queries. The operation of the photo-matching engine
can be denoted as:

f i : 〈p, P 〉 → p̄,

whose job is to find finds the i-th most similar photo
p̄ ∈ P of a photo p. Similarly, the operation of the
question-matching engine can be denoted as

g i : 〈q, Q〉 → q̄,

whose job is to find the i-th most similar question q̄ ∈ Q
of a question q.

Given a new multi-modal query xn+1 : 〈p∗, q∗〉, the al-
gorithm to find the k most relevant multi-modal queries
proceeds in three steps:

First, we find a set of candidate photos Cp that consists
of the k photos most similar to the query photo p∗:

Cp = {pi|pi ← f i(p
∗, Pn) , i = 1 . . . k} (1)

where Pn is the set of n photos already in the database
Xn.

Next, we find a set of candidate questions Cq that con-
sists of the questions submitted together with the can-
didate photos in the same multi-modal queries:

Cq = {qi|〈qi, pi〉 ∈ Xn , i = 1 . . . k} (2)

Finally, as results, we return a set of relevant multi-
modal queries R, ranked by similarity to the new ques-
tion:

R = {〈pj , qi〉|〈pj , g i(q∗, Cq)〉 ∈ Xn , i = 1 . . . k} (3)
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