
A Language for Automatically Enforcing Privacy Policies

Jean Yang Kuat Yessenov Armando Solar-Lezama
MIT CSAIL

{jeanyang, kuat, asolar} @csail.mit.edu

Abstract
It is becoming increasingly important for applications to protect
sensitive data. With current techniques, the programmer bears the
burden of ensuring that the application’s behavior adheres to poli-
cies about where sensitive values may flow. Unfortunately, privacy
policies are difficult to manage because their global nature requires
coordinated reasoning and enforcement. To address this problem,
we describe a programming model that makes the system respon-
sible for ensuring adherence to privacy policies. The programming
model has two components: 1) core programs describing functional-
ity independent of privacy concerns and 2) declarative, decentralized
policies controlling how sensitive values are disclosed. Each sen-
sitive value encapsulates multiple views; policies describe which
views are allowed based on the output context. The system is respon-
sible for automatically ensuring that outputs are consistent with the
policies. We have implemented this programming model in a new
functional constraint language named Jeeves. In Jeeves, sensitive
values are introduced as symbolic variables and policies correspond
to constraints that are resolved at output channels. We have imple-
mented Jeeves as a Scala library using an SMT solver as a model
finder. In this paper we describe the dynamic and static semantics
of Jeeves and the properties about policy enforcement that the se-
mantics guarantees. We also describe our experience implementing
a conference management system and a social network.

Categories and Subject Descriptors D.3.3 [PROGRAMMING
LANGUAGES]: Language Constructs and Features

General Terms Languages, security

Keywords Language design, run-time system, privacy, security

1. Introduction
As users share more personal data online, it becomes increasingly
important for applications to protect confidentiality. This places the
burden on programmers to ensure compliance even when both the
application and the policies may be evolving rapidly.

This work was funded in part by the U.S. Government under the DARPA
UHPC and NSF Graduate Research Fellowship programs. The views and
conclusions contained herein are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied,
of the U.S. Government.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
POPL’12, January 25–27, 2012, Philadelphia, PA, USA.
Copyright c© 2012 ACM 978-1-4503-1083-3/12/01. . . $10.00

Ensuring compliance with privacy policies requires reasoning
globally about both the flow of information and the interaction of
different policies affecting this information. A number of tools have
been developed to check code against privacy policies statically [4,
19] and dynamically [27]. While these checking tools can help avoid
data leaks, the programmer is still responsible for implementing
applications that display enough information to satisfy the user’s
needs without violating privacy policies. The programming model
that we propose goes beyond checking to simplify the process of
writing the code that preserves confidentiality.

The main contribution of this paper is a new programming model
that makes the system responsible for automatically producing out-
puts consistent with programmer-specified policies. This automation
makes it easier for programmers to enforce policies specifying how
each sensitive value should be displayed in a given context. The pro-
gramming model has two components: a core program representing
policy-agnostic functionality and privacy policies controlling the
disclosure of sensitive values. This separation of policies from core
functionality allows the programmer to express policies explicitly in
association with sensitive data rather than implicitly across the code
base. The declarative nature of policies allows the system to ensure
compliance even when these policies interact in non-trivial ways.

We have implemented this programming model in a new func-
tional constraint language named Jeeves. Jeeves introduces three
main concepts: sensitive values, policies, and contexts. Sensitive
values are introduced as pairs 〈v⊥|v>〉`, where v⊥ is the low-
confidentiality value, v> is the high-confidentiality value, and ` is a
level variable that can take on the values { ⊥, > } and determines
which view of the value should be shown. Policies correspond to
constraints on the values of level variables. The language of policies
is a decidable logic of quantifier-free arithmetic constraints, boolean
constraints, and equality constraints over records and record fields. A
policy may refer to a context value characterizing the output channel
and containing relevant information about how the data is viewed.

For example, in a small social networking application we imple-
mented as a case study, we included a policy that allows users to
restrict the disclosure of their location to users in their geographic
vicinity. Because the location is a sensitive value, a function such as
print that tries to output a value derived from a location will need
to be passed a context containing the location of the user to whom
this value is about to be displayed. Using this context, the runtime
system can then derive an output that is consistent with the policy.

We formally specify Jeeves to show that the high-confidentiality
component of a sensitive value can only affect program output if
the policies allow it. We define Jeeves in terms of λJ, a constraint
functional language that describes the propagation and enforcement
of policies in Jeeves. λJ is different from existing constraint func-
tional languages [9, 10, 15, 18, 25] in the restrictions it places on
the logical model and its use of default logic to provide determin-
ism in program behavior. These restrictions make it possible for λJ
to have an efficient execution model without sacrificing too much
expressiveness. There is a straightforward translation from Jeeves

Level ::= ⊥ | > levels
Exp ::= υ | Exp1 (op) Exp2 expressions

| if Exp1 then Expt else Exp f
| Exp1 Exp2
| 〈Exp⊥ | Exp>〉(`)
| level ` in Exp
| policy ` : Expp then Level in Exp

Stmt ::= let x : τ = Exp
| print {Expc} Exp

Figure 1: Jeeves syntax.

to λJ: Jeeves level variables for sensitive values are logic variables,
policies are assertions, and all values depending on logic variables
are evaluated symbolically. The symbolic evaluation and constraint
propagation in λJ allow Jeeves to automatically enforce policies
about information flow.

We implemented Jeeves as a domain-specific language embed-
ded in Scala [20] using the Z3 SMT solver [17] to resolve constraints
as a way to demonstrate the feasibility of the Jeeves programming
model. To evaluate the expressiveness of Jeeves, we have used our
Scala embedding to implement a small conference management sys-
tem and a small social network. The case studies show that Jeeves
allows the separate implementation of functionality and policies. For
example, in the conference management example the code makes
no attempt to differentiate between users, or even the general public,
yet the policies ensure that the system displays the right level of
information to each user through every phase of the review process.

In summary, we make the following contributions in this paper:

• We present a programming model and language, Jeeves, that
allows programmers to separate privacy concerns from core
program functionality.
• We formalize the dynamic and static semantics of Jeeves in terms

of a λJ, a new constraint functional language. We prove that
Jeeves executions satisfy a non-interference property between
low and high components of sensitive values.
• We describe the implementation of Jeeves as an embedded

domain-specific language in Scala using the Z3 SMT solver.
• We describe small case studies that show that Jeeves supports

the desired policies and allows the programmer to separately
develop core functionality and policies.

2. Delegating Privacy to Jeeves
Jeeves allows the programmer to specify policies explicitly and upon
data creation rather than implicitly across the code base. The Jeeves
system trusts the programmer to correctly specify policies describing
high- and low-confidentiality views of sensitive values and to
correctly provide context values characterizing output channels. The
runtime system is responsible for producing outputs consistent with
the policies given the contexts. Jeeves guarantees that the system
will not leak information about a high-confidentiality value unless
the policies allow this value to be shown.

In this section, we introduce a simple conference management
example to explain the main ideas in Jeeves: introducing sensitive
values, writing policies, providing contexts, and implementing the
core program logic. Conference management systems have simple
information flow policies that are difficult to implement given the
interaction of features. Being able to separately specify the policies
allows the core functionality to be quite concise. In fact, we can
write a single program that allows all viewers to access the list of
papers directly for searching and viewing. The program relies on
the Jeeves runtime system to display the appropriately anonymized
information for reviewers vs. the general public.

For the sake of brevity, we present Jeeves using an ML-like
concrete syntax, shown in Figure 1.

2.1 Introduction to Jeeves
We first describe how to introduce sensitive values, use them to
compute result values, and display the results in different output
contexts. Suppose we have the policy that a sensitive value name
should be seen as "Alice" by users with a high confidentiality level
and as "Anonymous" by anybody else. A Jeeves program can use
the name value as follows:

let msg = "Author is " + name
print { alice } msg (∗ Output: "Author is Alice" ∗)
print { bob } msg (∗ Output: "Author is Anonymous" ∗)

To achieve the different outputs for alice and bob, we associate a
policy with name by declaring it through the following Jeeves code:

let name =
level a in
policy a: ! (context = alice) then ⊥ in
<"Anonymous" | "Alice">(a)

This code introduces a level variable a and associates with it
a policy that if the context value is not alice , then the value
is ⊥. The context value represents a viewer in the output chan-
nel. The code then attaches this policy to the sensitive value
<"Anonymous" | "Alice">(a), which defines the low-confidentiality
view as the string "Anonymous" and the high-confidentiality view
as "Alice". When this code is executed, the Jeeves runtime ensures
that only the user alice can see her name appearing as the author in
the string msg. User bob sees the string "Author is Anonymous".

Each sensitive value defines a low-confidentiality and high-
confidentiality view for a value. The Jeeves programmer defines
sensitive values by introducing a tuple 〈v⊥|v>〉` where v⊥ is the low-
confidentiality value, v> is the high confidentiality value, and ` is a
level variable associated with a set of policies determining which
of the two values to show. An expression containing n sensitive
values can evaluate to one of 2n possible views. Level variables
provide the means of abstraction to specify policies incrementally
and independently of the sensitive value declaration. Level variables
can be constrained directly (by explicitly passing around a level
variable) or indirectly (by constraining another level variable when
there is a dependency). It is possible to encode more than two privacy
levels, but for the sake of simplicity the paper assumes only two.

Policies, introduced through policy expressions, provide declar-
ative rules describing when to set a level variable to > or ⊥. Notice
that the policy above forces a to be ⊥ when the user is not alice ;
other policies could further restrict the level variable to be ⊥ even
for alice , but no amount of policy interactions can allow a different
user to see the v> value in contradiction with the policy. Policies
may mention variables in scope and also the context variable, which
corresponds to an implicit parameter characterizing the output chan-
nel.

The context construct relieves the programmer of the burden
of structuring code to propagate values from the output context to
the policies. Statements such as print that release information to
the viewer require a context parameter. The Jeeves runtime system
propagates policies associated with sensitive values so that when a
value is about to be displayed though an output channel, the right
context can be inserted into the policy and the appropriate result
can be produced. In addition to print shown above, other output
channels include sending e-mail and writing to file.

2.2 Declarative and Decentralized Policies
We now describe how to write policies in Jeeves using fragments of
our conference management example. The paper record is defined
below; it assumes single author papers to simplify the presentation.

type paper { title : string
; author: user
; reviews : review list
; accepted: bool option }

The idiomatic way of attaching policies to values is to create
sensitive values for each field and then attach policies:

let mkPaper
(title : string) (author: string)
(reviews : review list) (accepted: bool option): paper =
level tp, authp, rp, accp in
let p = { title = < "" | title >(tp)

; author = < "Anonymized" | author>(authp)
; reviews = < [] | reviews>(rp)
; accepted = < none | some accepted >(accp) } in

addTitlePolicy p tp; addAuthorPolicy p authp;
addReviewsPolicy p rp; addAcceptedPolicy p accp;
p

This function introduces level variables for each of the fields, creates
sensitive values for each of the fields, attaches policies to the level
variables, and returns the resulting paper record.

The Jeeves programmer associates policies with sensitive values
by introducing level variables, attaching policies to them, and using
them to create sensitive values. Consider the policy that the title of a
paper should be visible to the authors of the paper, reviewers, and
PC members and only visible to the general public after it is public
that the paper has been accepted. We can define addTitlePolicy as
follows:

let addTitlePolicy (p: paper) (a: level): unit =
policy a: ! (context.viewer = p.author
|| context.viewer . role = Reviewer
|| context.viewer . role = PC
|| (context.stage = Public && isAccepted p)) then ⊥

This function attaches to level variable a a policy that sets the level
to ⊥ unless the viewer has a right to see the paper title.

Policies may refer to values corresponding to the output channel
through the context variable. The condition for the policy in
function addTitlePolicy uses the viewer and stage fields of the
context variable, which have types confView and confStage types,
respectively:

type confView { viewer : user ; stage : confStage }
type confStage = Submission | Review | Decision | Public

A context value of type confView must be produced in order for
an output channel to access a sensitive value produced by the
addTitlePolicy function. With type inference, it is not necessary
for the programmer to provide the context type annotation. In the
Scala implementation, the programmer does not need to provide
context annotations.

2.2.1 Policy Interactions
The Jeeves model helps prevent the programmer from inadvertently
leaking information about one value through the enforcement of
a policy for another value. We show how Jeeves can prevent the
programmer from writing code where the policy for paper titles
leaks information about a paper record’s accepted field.

Consider the following situation in which the policy for one sen-
sitive field (paper titles) depends on another sensitive field (whether
the paper has been accepted). In the addTitlePolicy function, the
predicate isAccepted p depends on the accepted field of the paper
p, which is some accepted if a decision has been made (and the
decision is known) or none otherwise. The accepted field needs
its own policy to prevent its status from being leaked early. The
following function adds the appropriate policy:

let addAcceptedPolicy (p: paper) (a: level): unit =

policy a: ! (context.viewer . role = Reviewer
|| context.viewer . role = PC
|| context.stage = Public) then ⊥

This policy allows reviewers and program committee members to
always see whether a paper has been accepted and for others to see
this field only if the stage is Public. With this policy in place, the
title field cannot leak information about the accepted tag. Even if

the policy for paper titles were to drop the context.stage = Public
requirement, the policy for accepted would prevent the titles of
accepted papers from being leaked before the Public stage.

2.2.2 Circular Dependencies and Defaults
The Jeeves system can also enforce policies when there are circular
dependencies between sensitive values, as could happen when a
context value depends on a sensitive value. Consider the following
function that associates a policy with the authors of a paper:

let addAuthorPolicy (p: paper)(n: level) : unit =
policy n:
!(isAuthor p context.user ||
(context.stage = Public && isAccepted p)) then ⊥

This policy says that to see the author of a paper, the user must be an
author or the paper must be a publicly accepted paper. Now consider
functionality that sends messages to authors of papers:

let sendMsg (author: user) =
let msg = "Dear " + author.name + ... in
sendmail { user = author; stage = Review } msg

The policy for level variable n depends on context.user. Here,
context.user is a sensitive value, as the value of the author variable
depends on the viewer.

This leads to a circular dependency that makes the solution
underconstrained: the value of the message recipient on the context
value, which contains the message recipient. Either sending mail
to the empty user or sending mail to the author is correct under
the policy. The latter behavior is preferred, as it ensures that user a
can communicate with user b without knowing private information
about user b. The Jeeves runtime ensures this maximally functional
behavior by setting level variables to > by default: if the policies
allow a level variable to be > or ⊥, the value will be >.

3. The λJ Language and Semantics
To more formally describe the guarantees, we define the semantics
of Jeeves in two steps; first, we introduce λJ, a simple constraint
functional language based on the λ-calculus, and then we show how
to translate Jeeves to λJ. λJ differs from existing constraint func-
tional languages [9, 10, 15, 25] in two key ways: 1) λJ restricts its
constraint language to quantifier-free constraints involving boolean
and arithmetic expressions over primitive values and records and 2)
λJ supports default values for logic variables to facilitate reasoning
about nondeterminism. λJ’s restrictions on the constraint language
allow execution to rely on an off-the-shelf SMT solver.

In this section, we introduce the λJ language, the dynamic
semantics, the static semantics, and the translation from Jeeves.
The λJ language extends the λ-calculus with defer and assert for
introducing and constraining logic variables, as well as a concretize
construct to produce concrete values from them. The dynamic
semantics describe the lazy evaluation of expressions with logic
variables and the interaction with the constraint environment. The
static semantics describe how the system guarantees evaluation
progress and enforces restrictions on symbolic values and recursion.
The translation from Jeeves to λJ illustrates how Jeeves uses λJ’s
lazy evaluation and constraint propagation, combined with Jeeves
restrictions on how logic variables are used, to provide privacy
guarantees.

c ::= n | b | λx : τ.e | record ~x : υ

| error | () concrete primitives
σ ::= x | context τ symbolic values

| c1 (op) σ2 | σ1 (op) c2
| σ1 (op) σ2
| if σ then υt else υ f

υ ::= c | σ values
e ::= υ | e1 (op) e2 expressions

| if e1 then et else e f | e1 e2
| let x : τ = e1 in e2
| let rec f : τ = e1 in e2
| defer x : τ {e} default υd
| assert e
| concretize e with υc

Figure 2: The λJ abstract syntax.

3.1 The λJ Language
λJ is the λ-calculus extended with logic variables. Figure 2 shows
the abstract syntax of λJ. Expressions (e) include the standard
λ expressions extended with the defer construct for introducing
logic variables, the assert construct for introducing constraints, and
the concretize construct for producing concrete values consistent
with the constraints. λJ evaluation produces irreducible values (υ),
which are either concrete (c) or symbolic (σ). Concrete values are
what one would expect from λ-calculus, while symbolic values are
values that cannot be reduced further due to the presence of logic
variables. Symbolic values also include the context construct which
allows constraints to refer to a value supplied at concretization time.
The context variable is an implicit parameter [14] provided in the
concretize expression. In the semantics we model the behavior
of the context variable as a symbolic value that is constrained
during evaluation of concretize. λJ contains a let rec construct
that handles recursive functions in the standard way using fix .

A novel feature of λJ is that logic variables are also associated
with a default value that serves as a default assumption: this is the
assigned value for the logic variable unless it is inconsistent with
the constraints. The purpose of default values is to provide some
determinism when logic variables are underconstrained.

3.2 Dynamic Semantics
The λJ evaluation rules extend λ-calculus evaluation with constraint
propagation and symbolic evaluation of logic variables. Evaluation
involves keeping track of constraints which are required to be true
(hard constraints) and the set of constraints we use for guidance
if consistent with our hard constraints (default assumptions). To
correctly evaluate conditionals with symbolic conditions, we also
need to keep track of the (possibly symbolic) path condition. Evalu-
ation happens in the context of a path condition G , an environment
Σ = /0 | {σ} | Σ∪Σ′ storing the current set of constraints, and an
environment ∆ = /0 | {σ} | ∆∪∆′ storing the set of constraints on
default values for logic variables. Evaluation rules take the form

G ` 〈Σ,∆,e〉 → 〈Σ′,∆′,e′〉.

Evaluation produces a tuple 〈Σ′,∆′,e′〉 of a resulting expression e′
along with modified constraint and default environments. In Figure
3 we show the small-step dynamic λJ semantics.

3.2.1 Evaluation with Logic Variables
λJ has the expected semantics for function application and arithmetic
and boolean operations. The E-APP1, E-APP2, and E-APPLAMBDA
rules describe a call-by-value semantics. The E-OP1 and E-OP2
rules for operations show that the arguments are evaluated to irre-
ducible expressions and then, if both arguments become concrete,
the E-OP rule can be applied to produce a concrete result.

Conditionals whose conditions evaluate to concrete values eval-
uate according to the E-CONDTRUE, and E-CONDFALSE rules as
one would expect. When the condition evaluates to a symbolic value,
the whole conditional evaluates to a symbolic if -then-else value by
evaluating both branches as described by the E-CONDSYMT and
E-CONDSYMF rules. Note that λJ expressions are pure (effects are
only in Jeeves statements) so side effects cannot occur in conditional
branches.

Evaluating under symbolic conditions is potentially dangerous
because evaluation of such conditionals with a recursive function
application in a branch could lead to infinite recursion when the
condition is symbolic. Our system prevents this anomalous behavior
by using the type system to enforce that recursive calls are not made
under symbolic conditions (Section 3.3).

3.2.2 Introduction and Elimination of Logic Variables
In λJ , logic variables are introduced through the defer keyword. To
illustrate the semantics of defer consider the example below.

let x: int = defer x ’: int { x’ > 0 } default 42

As we show in the E-DEFER evaluation rule, the right-hand side
of the assignment evaluates to an α-renamed version of the logic
variable x’ . Evaluation adds the constraint G ⇒ x’ > 0 to the
constraint environment and the constraint G ⇒ x’ = 42 to the
default constraint environment. The constraint G ⇒ x’ > 0 is a
hard constraint that must hold for all derived outputs, while G ⇒
x’ = 42 is a constraint that is only used if it is consistent with the
resulting logical environment. Hard constraints are introduced within
the braces ({}) of defer expressions and through assert expressions;
soft constraints are introduced through the default clause of defer
expressions.

In addition to the constraints in defer, the program can intro-
duce constraints on logic variables through assert expressions. The
E-ASSERT rule describes how the constraint is added to the con-
straint environment, taking into account the path condition G . For
instance, consider the following code:

if (x > 0) then assert (x = 42) else assert (x = −42).

Evaluation adds to the constraint environment the constraints
x > 0⇒ x = 42 and ¬(x > 0)⇒ x = −42.

Symbolic expressions can be made concrete through the
concretize construct. Evaluation of concretize expressions either
produces a concrete value or an error. A concretize expression
includes the expression to concretize and a context:

let result : int = concretize x with 42.

As we describe in the E-CONCRETIZESAT rule, concretization
adds the constraint context = 42 to the constraint environment and
finds an assignment to x consistent with the constraint and default
environments. An important observation is that the context itself
may be symbolic, in which case the system will also be finding a
concrete context consistent with the hard constraints. The MODEL
function takes the constraint and default environments, computes a
satisfying assignment to free variables, and produces a substitution
M : υ→ c that is used to produce a concrete value, as shown in the
E-CONCRETIZESAT rule.

The CONCRETIZE-UNSAT rule describes what happens if there
is no satisfiable expression consistent with the constraint environ-
ment. In this case, evaluation of the concretize expression produces
the error value.

3.2.3 Interaction with the Constraint Environment
Valid constraint expressions consist of λJ expressions that do not
contain λ-expressions. This constraint language corresponds to
constraints that can be solved by off-the-shelf SMT solvers. The

G ` 〈Σ,∆,e〉 → 〈Σ′,∆′,e′〉

G ` 〈Σ,∆,e1〉 → 〈Σ′,∆′,e′1〉
G ` 〈Σ,∆,e1 e2〉 → 〈Σ′,∆′,e′1 e2〉

E-APP1
G ` 〈Σ,∆,e2〉 → 〈Σ′,∆′,e′2〉

G ` 〈Σ,∆,υ e2〉 → 〈Σ′,∆′,υ e′2〉
E-APP2

G ` 〈Σ,∆,λx.e υ〉 → 〈Σ,∆,e[x 7→ υ]〉 E-APPLAMBDA
c′ = c1 (op) c2

G ` 〈Σ,∆,c1 (op) c2〉 → 〈Σ,∆,c′〉
E-OP

G ` 〈Σ,∆,e1〉 → 〈Σ′,∆′,e′1〉
G ` 〈Σ,∆,e1 (op) e2〉 → 〈Σ′,∆′,e′1 (op) e2〉

E-OP1
G ` 〈Σ,∆,e2〉 → 〈Σ′,∆′,e′2〉

G ` 〈Σ,∆,υ (op) e2〉 → 〈Σ′,∆′,υ (op) e′2〉
E-OP2

G ` 〈Σ,∆,ec〉 → 〈Σ′,∆′,e′c〉
G ` 〈Σ,∆, if ec then et else e f 〉 → 〈Σ′,∆′, if e′c then et else e f 〉

E-COND

G ` 〈Σ,∆,et〉 → 〈Σ′,∆′,e′t〉
G ` 〈Σ,∆, if true then et else e f 〉 → 〈Σ′,∆′,e′t〉

E-CONDTRUE
G ` 〈Σ,∆,e f 〉 → 〈Σ′,∆′,e′f 〉

G ` 〈Σ,∆, if false then et else e f 〉 → 〈Σ′,∆′,e′f 〉
E-CONDFALSE

σ∧G ` 〈Σ,∆,et〉 → 〈Σ′,∆′,e′t〉
G ` 〈Σ,∆, if σ then et else e f 〉 → 〈Σ′,∆′, if σ then e′t else e f 〉

E-CONDSYMT

¬σ∧G ` 〈Σ,∆,e f 〉 → 〈Σ′,∆′,e′f 〉

G ` 〈Σ,∆, if σ then υt else e f 〉 → 〈Σ′,∆′, if σ then υt else e′f 〉
E-CONDSYMF

G ` 〈Σ,∆,e〉 → 〈Σ′,∆′,e′〉
G ` 〈Σ,∆,defer x : τ {e} default υd〉 → 〈Σ′,∆′,defer x : τ {e′} default υd〉

E-DEFERCONSTRAINT

fresh x′

G ` 〈Σ,∆,defer x : τ {υc} default υd〉 → 〈Σ∪{G ⇒ υc[x 7→ x′]},∆∪{G ⇒ x′ = υd},x′〉
E-DEFER

G ` 〈Σ,∆,e〉 → 〈Σ′,∆′,e′〉
G ` 〈Σ,∆, assert e〉 → 〈Σ′,∆′, assert e′〉

E-ASSERTCONSTRAINT
G ` 〈Σ,∆, assert υ〉 → 〈Σ∪{G ⇒ υ},∆, ()〉 E-ASSERT

G ` 〈Σ,∆,e〉 → 〈Σ′,∆′,e′〉
G ` 〈Σ,∆,concretize e with υc〉 → 〈Σ′,∆′,concretize e′ with υc〉

E-CONCRETIZEEXP

MODEL(∆,Σ∪{G ∧context= υc}) = M c = M [[υv]]

G ` 〈Σ,∆,concretize υv with υc〉 → 〈Σ,∆,c〉
E-CONCRETIZESAT

MODEL(∆,Σ∪{G ∧context= υc}) = UNSAT

G ` 〈Σ,∆,concretize υv with υc〉 → 〈Σ,∆, error〉
E-CONCRETIZEUNSAT

Figure 3: Dynamic semantics for λJ.

MODEL procedure in the E-CONCRETIZE rule is the model finding
procedure for default logic [1]. The default environment ∆ and
constraint environment Σ specify a supernormal default theory (∆,Σ)
where each default judgement σ ∈ ∆ has the form

true : σ

σ .

The MODEL procedure produces either a model M for the theory
if it is consistent, or UNSAT. We use a fixed-point algorithm for
MODEL that uses classical SMT model-generating decision pro-
cedures and iteratively saturates the logical context with default
judgements in a non-deterministic order.

3.3 λJ Static Semantics
The λJ static semantics ensures that evaluation produces either a
concrete expression or a well-formed symbolic expression. Recall
that symbolic expressions must be valid constraints, which include
arithmetic, boolean, and conditional expressions but not functions.
(In the λJ semantics we do not explicitly address data structures
such as lists. Data structures are also required to be concrete but may
have symbolic elements.) Thus the static semantics guarantee that
1) concrete values are supplied when concrete values are expected,
2) symbolic values are well-formed, 3) evaluation under symbolic
conditions does not cause unexpected infinite recursion, and 4)

δ ::= concrete | sym determinism tag
β ::= intc | boolc | unit base type

| int | bool
τ ::= β | τ1

nr→ τ2 | τ1→ τ2 type

Figure 4: λJ types.

context values have the appropriate types. The type system therefore
ensures that the logical state will always be well formed, although it
cannot guarantee that it will be logically consistent.

To guarantee properties 1-3, the λJ type system tracks the flow
of symbolic values, ruling out symbolic functions and reentrant
applications under symbolic conditions. Reentrant applications are
function applications that may recursively call the current function;
we prevent such applications under symbolic conditions to prevent
non-termination that may arise from evaluating both sides of a
conditional branch with a symbolic condition. Property 4, on the
other hand, is enforced by ensuring that the type of the context used
at concretization is an upper bound for the types of contexts required
by all the relevant policies.

We show the λJ types in Figure 4 and the subtyping, type
well-formedness, and typing rules in Figure 5. Base types β are
the standard λ-calculus types extended with the intc and boolc
types to indicate values that are necessarily concrete. (Expressions

of function type are not permitted to be symbolic.) There are
two function types: nr→ for functions whose application cannot be
reentrant and→ for functions whose application can be reentrant.
We will use the term reentrant function to refer to a function whose
application can be reentrant.

Typing judgments have the form Γ;γ` e : τ. A judgment says that
in the type environment Γ under a path of type γ (sym or concrete),
the expression e has type τ. Γ is defined Γ ::= · | x : τ | Γ,Γ′.
The typing rules keep track of whether a value may be symbolic
(int or bool type) or must be concrete (intc, boolc, and functions).
This information is used to determine the value of the γ tag in the
T-CONDC and T-CONDSYM rules. Information about whether the
condition is symbolic is used in 1) ruling out symbolic functions
and 2) ruling out self-calls under symbolic branches.

Symbolic functions are prevented by the T-DEFER and T-CONDSYM
rules, which restrict the production of symbolic functions. The
T-DEFER rule restricts the explicit introduction of symbolic val-
ues to have base type β, while the T-CONDSYM rule restricts the
implicit introduction of symbolic values to base type β.

The T-LETREC rule shows that recursive functions must be
considered reentrant (have → type) within their own definitions,
since applying the function will cause a recursive call to the current
function. Outside their declaration, on the other hand, they can have
nr→ type. A second restriction on reentrant functions is imposed
by the type well-formedness predicate rep, which requires that
functions taking arguments that may be reentrant (→) be themselves
labeled as reentrant. This prevents high-order functions from being
used to circumvent the restrictions on reentrant calls.

According to the rules, a reentrant call cannot occur under a
symbolic condition. The T-CONDSYM rule sets γ = sym when the
condition is symbolic. The T-APPCURREC rule allows applications
of recursive functions only under concrete paths. This implies that
canonical recursive functions such as factorial can only type-check
if they require a concrete argument. This restriction does not pre-
vent recursive sort or other recursive structure-traversing functions
because data structures are necessarily concrete, so conditions in-
volving their structure are also concrete.

The subtyping relationship <: allows values that are necessarily
concrete to be used as potentially symbolic values. This way,
functions that require concrete values can only be applied when
concrete arguments are supplied, but a concrete value can be used
as a symbolic value (for instance, intc as int). The subtyping rules
allow non-reentrant functions (nr→) to be used as reentrant functions
(→).

3.3.1 Contexts
We also have typing rules (not shown in Figure 5) ensuring that
contexts of the appropriate type are provided in concretize expres-
sions. In the T-CONCRETIZE rule, the context typing judgment `c

enforces that the context type supplied is the context type expected.
The context typing judgement is Γ `c x : τc, where τc is the context
type of an expression. The rules propagate the context type, enforce
that matching contexts are provided for sub-expressions, and enforce
that the correct context type is supplied at concretization.

We define a lattice describing when different context types may
be combined. The bottom of the lattice is ⊥ and for all types τ, we
have the relationship ⊥<:c τ. Contexts support width subtyping on
record types:

record ~m <:c record ~n,∀ni.(∃mi|mi = ni).

A record with fields ~m can be used as a context whenever a record
with fields ~n expected as long as the labelled fields of mi are a
superset of the labelled fields of~n.

3.4 Translation from Jeeves
There is a straightforward translation from Jeeves to λJ. Sensitive
values and level variables in Jeeves correspond to λJ logic variables,
level policies correspond to λJ assertions, and contextual enforce-
ment corresponds to producing concrete values consistent with the
logical environment. Default values provide determinism in handling
policy dependencies.

We show the translation of levels and sensitive values from
Jeeves to λJ in Figure 6. We have the Exp ↪→ e rule to describe how
a Jeeves expression translates to a λJ expression e. The translation
has the following properties: 1) level variables are the only logic
variables, 2) expressions containing sensitive values yield symbolic
results, 3) only Jeeves policies introduce assertions, and 4) the
concretize construct can only appear at the outermost level and
is associated with an effectful computation.

3.4.1 Sensitive Values
A Jeeves sensitive value <v1 | v2>(a) is translated to a symbolic
value equal to either v1 or v2 depending on the value of level variable
a. Because sensitive values are symbolic, all expressions computed
from this sensitive value are subject to policies depending on the
value of level variable a.

3.4.2 Level Variables
Jeeves level variables are translated to λJ expressions binding a new
logic variable of level type equal to either⊥ or>. The default value
of level variables is >: the constraint solving oracle first resolves
the constraint environment with the assumption that each level is
> and only adjusts this belief if the variable must be equal to ⊥.
This provides the programmer with some guarantees about program
behavior when level variables are underconstrained. Underconstraint
can arise, for instance, if values in the context depend on sensitive
values.

Besides being useful in handling circular dependencies, having
the default value of level variables as > prevents the programmer
from leaking a value as a result of an underspecified value. If a level
variable is underconstrained, policies on a subsequent variable can
affect the value it can take:

1 let x = level a in <0 | 1>(a)
2 let y = level b in
3 policy b: true then > in
4 policy b: x = 1 then ⊥ in
5 <0 | 1>(b)

If the value of x were fixed, this would yield a contradiction, but
instead these policies indirectly fix the value of x and a:

true
∴ (1) b=> (line 3) ∴ (2) x 6= 1 (line 4)

∴ (3) x = 0 (line 1) ∴ (4) a=⊥ (line 1)

Making underconstrained level variables > by default forces pro-
grammers to explicitly introduce policies setting level variables to
⊥. For this reason, underspecification will only cause level variables
to be set to ⊥ instead of >.

3.4.3 Declarative Constraint Policies
As we show in Table 6, level policies are translated to λJ assert
expressions. Level policies can be introduced on any logic variables
in scope and are added to the environment based on possible
path assumptions made up to that point. The policy that a Jeeves
expression (Exp) enforces consists of the constraint environment
produced when evaluating Exp as a λJ expression. More specifically,
we are talking about Σ′,∆′ where Exp ↪→ e and ` 〈 /0, /0,e〉 →∗
〈Σ′,∆′,υ〉. This policy contains constraints determining whether
level variables can be ⊥ or >.

τ1 <: τ2

τ <: τ
S-REFLEXIVE intc <: int S-INT boolc <: bool S-BOOL

τ1
nr→ τ2 <: τ1→ τ2

S-RECFUN
τ′1 <: τ1 τ2 <: τ′2

τ1→ τ2 <: τ′1→ τ′2
S-FUN

rep τ

rep τ′ τ′ <: τ

rep τ
OK-SUBTYPE rep β

OK-BASETYPE
rep τ2

rep β1→ τ2
OK-BASEFUNCTION

rep (τ1
nr→ τ′) rep τ2

rep (τ1
nr→ τ′)

nr→ τ2
OK-HOFUNCTION

rep τ1→ τ2

rep (τ1→ τ2)→ β
OK-RECFUNCTIONBASE

rep τ1→ τ2 rep τ′1→ τ′2

rep (τ1→ τ2)→ (τ′1→ τ′2)
OK-RECFUNCTION

Γ;γ ` e : 〈τ,δ〉

x ∈ Γ

Γ;γ ` x : Γ(x)
T-VAR

Γ;γ ` n : intc
T-INT

Γ;γ ` b : boolc
T-BOOL

Γ;γ ` () : unit T-UNIT
rep τ

Γ;γ ` context τ : τ
T-CONTEXT

Γ;γ ` e1 : τ1 Γ;γ ` e2 : τ2 τ1,τ2 <: τ rep τ

Γ;γ ` e1 (op) e2 : τ
T-OP

Γ;γ ` e : boolc Γ;γ ` et : τ1 Γ;γ ` e f : τ2 τ1,τ2 <: τ rep τ

Γ;γ ` if e then et else e f : τ
T-CONDC

Γ;γ ` e : bool Γ;sym ` et : β1 Γ;sym ` e f : β2 β1,β2 <: βc rep βc

Γ;γ ` if e then et else e f : βc
T-CONDSYM

Γ,x : τd ;γ ` e : τ′ rep τ rep τ′

Γ;γ ` (λx : τd .e) : τd → τ′
T-LAMBDA

Γ;γ ` e1 : τ1
nr→ τ2 Γ;γ ` e2 : τ′1 τ′1 <: τ1 rep τ1 rep τ2

Γ;γ ` (e1 e2) : τ2
T-APP

Γ, f : τ1→ τ2;γ ` e1 : τ1→ τ2 Γ, f : τ1
nr→ τ2;γ ` e2 : τ2 rep τ rep τ2

Γ;γ ` let rec f : τ1
nr→ τ2 = e1 in e2 : τ2

T-LETREC

γ = concrete Γ;γ ` e1 : τ1→ τ2 Γ;γ ` e2 : τ′1 τ′1 <: τ1 rep τ1 rep τ2

Γ;γ ` (e1 e2) : τ2
T-APPCURREC

Γ,x : β;γ ` ec : bool Γ;γ ` υ : β

Γ;γ ` (defer x : β{ ec} default υ) : β
T-DEFER

Γ;γ ` ec : bool
Γ;γ ` (assert ec) : unit T-ASSERT

Γ;γ ` e1 : β Γ;γ `c e1 : β′ Γ;γ ` υ : β′

Γ;γ ` (concretize e1 with υ) : βc
T-CONCRETIZE

Figure 5: Static semantics for λJ describing simple type-checking and enforcing restrictions on scope of nondeterminism and recursion. Recall
that β refers to base (non-function) types.

⊥ ↪→ false > ↪→ true
Expl ↪→ el Exph ↪→ eh

〈Expl | Exph〉(`) ↪→ if ` then eh else el
TR-SVALUE

Exp ↪→ e

level ` in Exp ↪→ let `= defer `′ : bool default true in e
TR-LEVEL

Expp ↪→ ep Exp ↪→ e Lvl ↪→ b

policy ` : Expp then Lvl in Exp ↪→ assert (ep⇒ (`= b)) in e
TR-POLICY

Expc ↪→ ec Exp ↪→ e

print {Expc} Exp ↪→ print (concretize e with ec)
TR-PRINT

.

Figure 6: Translation from Jeeves to λJ

3.4.4 Contextual Enforcement at Output Channels
Effectful computations such as print in Jeeves require contexts
corresponding to the viewer to whom the result is displayed. As we
show by the TR-PRINT rule, concretize is inserted in the translation.
Because sensitive values can only produce concrete values consistent
with the policies, this ensures enforcement of policies at output
channels.

4. Properties
We describe more formally the guarantees that Jeeves provides. We
prove progress and preservation properties for λJ . We show that the
only way the value for the high component of a sensitive value to
affect the output of the computation is if the policies permit it.

4.1 Progress and Preservation
We first show the correctness of evaluation. We can prove progress
and preservation properties for λJ: evaluation of an expression e
always results in a value υ and preserves the type of e, including the
internal nondeterminism tag δ.

There are two interesting parts to the proof: showing that all
function applications can be reduced and showing that all defer
and assert expressions can be evaluated to produce appropriate
constraint expressions. We can first show that the λJ type system
guarantees that all functions are concrete.

Lemma 1 (Concrete Functions). If υ is a value of type τ1 → τ2,
then υ = λx : τ1.e, where e has type τ2.

Theorem 4.1 (Progress). Suppose e is a closed, well-typed ex-
pression. Then e is either a value υ or there is some e′ such that
` 〈 /0, /0,e〉 → 〈Σ′,∆′,e′〉.

Proof. The proof mostly involves induction on the typing deriva-
tions. One interesting case is ensuring that MODEL will either re-
turn a valid model M or UNSAT for the E-CONCRETIZESAT and
E-CONCRETIZEUNSAT rules. Since the λJ type system rules out
symbolic functions, only well-formed constraints can be added. The
other interesting case is function applications e = e1 e2, where e1
and e2 are well-typed with types τ1→ τ2 and τ1. We can rule out
the cases when e1 and e2 are not values by applying the induction
hypothesis. For the case when e1 and e2 are both values, we can
apply the Concrete Functions Lemma to deduce that e1 must have
the form λx : τ1 : e, where e : τ1. In this case, we can apply the
E-APPABS rule.

We can also prove a preservation theorem that evaluation does
not change the type of a λJ expression.

Theorem 4.2 (Preservation). If Γ` e : τδ and e→ e′, then Γ` e′ : τδ.

Proof. We can show the preservation of both τ and δ by induction
on the typing derivation. The δ value for all evaluation rules except
for the E-CONCRETIZE rules is the same for both sides.

4.2 Confidentiality Theorem
We show that level variables enforce the confidentiality of values:
once the policy sets a level variable ` = ⊥, where we have some
〈Expl |Exph〉`, the output will be derived as if Exph was not involved
in evaluation at all. Because we have `= ⊥ if and only if we have
policies that require `=⊥, Jeeves programmers can rely on policies
to enforce confidentiality.

We first prove that the high-confidentiality views of the sensitive
values are protected by level variables. We can show that for a
sensitive value v = 〈Expl |Exph〉`, the only way the value for the
high component Exph may affect the output of the computation
is when ` = > is consistent with the policies. It is impossible

for an observer to distinguish between v = 〈Expl |Exph〉 and v′ =
〈Expl |Exp′h〉 if the policy requires `= ⊥.

Theorem 4.3 (View Non-Interference). Consider a sensitive value
V = 〈El |H〉` in a Jeeves expression E. Assume:

E[H 7→ Eh] ↪→ e ` 〈 /0, /0,e〉 →∗ 〈Σ,∆,σ〉
E[H 7→ E ′h] ↪→ e′ ` 〈 /0, /0,e′〉 →∗ 〈Σ′,∆′,σ′〉

For any context value v, if

Σ∪{context = v} ` `= ⊥
Σ
′∪{context = v} ` `= ⊥

then

{c | ` 〈Σ,∆,concretize σ with v〉 → 〈Σ0,∆0,c〉}=
{c′ | ` 〈Σ′,∆′,concretize σ

′ with v〉 → 〈Σ′0,∆′0,c′〉}

Proof. From the rules of Jeeves translation, V maps to an irreducible
symbolic expression if ` then ehelse el in e where El ↪→ el and
Eh ↪→ eh. Thus, we can say that e′ is e with the expression eh
replaced by e′h where E ′h ↪→ e′h. In addition, we also know that both
e and e′ are λJ expressions with no concretize sub-expressions.
This makes evaluation of e and e′ deterministic and allows us
to put their derivation trees in correspondence. There are two
places where evaluation differs: (1) reduction of eh and e′h (rule
E-CONDSYMT) and (2) substitution of the reduced sensitive value
(rule E-APPLAMBDA.) Let us understand how they affect the logical
environment and the resulting symbolic value.

The values σ and σ′ may differ only in the subexpressions eh and
e′h reduce to. These subexpressions are guarded by the level variable
`. Since the logical environments entail that ` = ⊥ under context
v, any model chosen at concretization sets ` to ⊥. Therefore, under
such models σ and σ′ evaluate to the same value. Then to show that
the set of concrete values is the same, it suffices to show the models
of (∆,Σ) are models of (∆′,Σ′) and vice versa.

The dynamic semantics populates Σ and Σ′ with the same con-
straints (modulo substitution of the sensitive variable) except during
reduction of eh and e′h. The constraints added at rule E-CONDSYMT
are all guarded by the level variable `. Since Σ and Σ′ both entail
¬`, and these guarded constraints are implied by ¬`, we can safely
eliminate them from both Σ and Σ′. That leaves us with the same set
of hard constraints introduced through defer and assert expressions.

The default judgements in Jeeves all have the form `0 = true.
Therefore, for the shared level variables ∆ and ∆′ use the same
default value true. The remaining level variables do not affect
evaluation of σ and σ′.

Our non-interference theorem allows programmers rely on poli-
cies to enforce confidentiality. In Jeeves, policies have the form
φ⇒ (`= >) or φ⇒ (`= ⊥). By the theorem, once the policy set-
ting ` to ⊥ is guaranteed to be added to the constraint environment,
the output is going to be the same as if the high view component of
the sensitive value was not involved in evaluation at all. If policies
permit both ⊥ and > levels, then the default logic model finder will
guide evaluation to a model maximizing levels set to >.

Note that if policies are contradictory and the set of constraints
is unsatisfiable, the evaluation halts with an error and no value is
exposed. The theorem still holds and this behavior is safe.

5. Scala Embedding
We have implemented Jeeves as an embedded domain-specific
language in Scala programming language [20]. Scala’s overloading
capabilities offer us the necessary flexibility in designing a domain
specific language for λJ with the benefit of interoperability with
existing Java technology.

In this section we discuss our Scala embedding of λJ and our
implementation of the Jeeves library on top of that. We describe
how we used features of Scala to implement λJ’s lazy evaluation
of symbolic expressions, how we collect constraints, and how we
interact with the Z3 SMT solver. On top of the functional model we
have presented, we also handle objects and mutation.1

5.1 ScalaSMT: Scala Embedding of λJ

Every kind of symbolic expression in λJ has a corresponding
Scala case class, for instance IntExpr corresponding to symbolic
integer expressions. Arithmetic and boolean operators are defined
as methods constructing new expressions. We use implicit type
conversions to lift concrete Scala values to symbolic constants.
Scala’s type inference resolves x+1 to x.+(Constant(1)) which
in turn evaluates to Plus(x, Constant(1)), where x is a symbolic
integer variable. Implicit type conversion allows us to use concrete
expressions in place of symbolic ones but requires type annotations
where a symbolic expression is expected to be used.

The three core language extensions defer, assert, and concretize
are implemented as library calls. We implement the library as a Scala
trait that maintains the logical and default constraint environments
as lists of symbolic boolean expressions. Calls to concretize invoke
an off-the-shelf SMT solver [17] for the satisfiability query MODEL.
We translate λJ constraints to the QF_LIA logic of SMT-LIB2 [2]
and use incremental scripting to implement the default logic decision
procedure. Concretization in ScalaSMT differs from λJ in two ways.
First, concretize accepts an arbitrary boolean expression rather than
a context equality predicate. Second, concretize is not allowed to
be a part of a symbolic expression in ScalaSMT. Since concretiza-
tion generally happens as part of print routine, this restriction does
not affect our case studies.

In addition to boolean and linear integer constraints, the Scala
embedding supports symbolic expressions for objects corresponding
to λJ records with equality theory. Objects are modeled as a finite
algebraic data type in Z3 [17]. The set of available objects is
maintained by ScalaSMT using registration of instances of a special
trait Atom. Object fields are modeled as total functions interpreted
at the time of concretization. Fields are (sort-)typed with values that
are arbitrary ScalaSMT expressions and constants. ScalaSMT does
not check types of symbolic object expressions: we rely on Scala’s
support for dynamic invocaton to resolve field dereferences. We use
special zero values (null , 0, or false) to represent undefined fields
in SMT.

ScalaSMT does not support symbolic collections. Instead, we
use implicit type conversions to extend the standard Scala collection
library with filter and has methods that take symbolic arguments.
The argument to filter is a function f from an element to a
symbolic boolean. It maps every element o to conditional expression
IF (f(o)) o ELSE NULL. Method has takes a symbolic object o
and produces a disjunction of equalities between elements of the
collection and o.

5.2 Jeeves as a Library in Scala
We have implemented Jeeves as a library on top of ScalaSMT. Our
library has function calls corresponding to Jeeves’s sensitive values,
level construct, policy construct, and contextual output functions
(see Figure 7.)

Levels are introduced using mkLevel method that returns a
logical level variable which can be either > or ⊥. Sensitive values
are created with mkSensitive methods that take a level variable
together with high and low values. Context is a logical object
variable CONTEXT. To introduce a level policy, the programmer

1 The code is publicly available at
http://code.google.com/p/scalasmt/.

trait JeevesLib extends ScalaSMT {
trait JeevesRecord extends Atom {register(this)}
val CONTEXT: Symbolic // Context variable.

def mkLevel(): LevelVar
def policy (lvar : LevelVar, f : ⇒ Formula, l: Level)

def mkSensitiveInt (lvar : LevelVar,
high: IntExpr , low: IntExpr) : IntExpr

def mkSensitive(lvar : LevelVar,
high: Symbolic, low: Symbolic): Symbolic

def concretize [T](ctx : Symbolic, e: Expr[T]): T
}

Figure 7: Jeeves library in Scala

calls policy method and supplies a level variable, the desired level,
and a boolean condition. The boolean condition is passed by name
to delay its evaluation until concretization. This way policies that
refer to mutable parts of the heap will produce correct constraints
for the snapshot of the system at concretization.

The Jeeves library supports mutation in variables and ob-
ject fields by treating the mutable state as part of the context in
concretize call to ScalaSMT. Mutable fields are interpreted at
the time of concretize. Policies that depend on mutable state are
evaluated to boolean conditions during concretization. The set of
allocated JeevesRecords is supplied at concretization. These con-
ditions together with the equality predicate CONTEXT = ctx are
used to concretize expressions in ScalaSMT.

6. Experience
We have implemented a conference management system and a social
network. Our experience suggests that Jeeves allows the programmer
to separate the “core,” non-privacy-related functionality from the
privacy policies, allowing the programmer to separately test policies
and functionality.

6.1 Conference Management System
We have implemented a simple conference management system
backend, JConf, to demonstrate how a well-known system with
privacy concerns looks in Jeeves. This system is similar to the ex-
ample we described in Section 2. Our implementation demonstrates
that Jeeves allows us to implement all JConf functionality, including
search and display over final paper versions, with a core functionality
that is separate from the policies.

JConf supports the following subset of the functionality men-
tioned on the website for the HotCRP conference management sys-
tem [12]: smart paper search (by ID, by reviewer, etc.), paper tagging
(for instance, “Accepted” and “Reviewed by: . . . ”) and search by
tags, managing reviews (assigning, collecting responses, and display-
ing), and managing final paper versions. JConf does not implement
functionality for which confidentiality is less key: for instance, the
process of bidding for papers.

All JConf core functionality adheres to the privacy policies.
JConf implements the following information flow policies:

• Paper titles are visible to the authors of the paper, reviewers,
and PC members during all stages. Paper titles are visible to
everyone during the public stage.
• Author names are visible to the authors on the paper during

all stages, to reviewers and PC members during and after the
rebuttal stage, and to everyone during the public stage if the
paper has been accepted.

File Total LOC Policy LOC
ConfUser.scala 11 0
PaperRecord.scala 103 37
PaperReview.scala 21 6
ConfContext.scala 6 0
JConfBackend.scala 56 0
Total 195 42

Table 1. Breakdown of lines of code across the JConf source.

class PaperReview(id: Int , reviewerV: ConfUser, var body:
String , var score : Int) extends JeevesRecord {

val reviewer = {
val level = mkLevel();
val vrole = CONTEXT.viewer.role;
val isInternal = (vrole == ReviewerStatus) ||
(vrole == PCStatus)

policy (level , isInternal , >);
policy (level , ! isInternal , ⊥);
mkSensitive[ConfUser](level , reviewerV, NULL)

}
}

Figure 8:

• Reviewer identities are revealed only to PC members.
• Reviews and scores are revealed to authors of the paper, review-

ers, and PC members after the review phase. During the review
phase, reviewers must have submitted a review for a paper p
before they can see p’s reviews.

Our JConf implementation allows us to separate the declara-
tion of policies and code: we show the breakdown of code and
policies in Table 1. The policies are concentrated in the data
classes PaperRecord.scala and PaperReview.scala, which describe
the attributes and policies associated with maintaining data asso-
ciate with papers and paper reviews. The other files, including
JConfBackend.scala, do not contain policies. This allows the core
functionality to be concise: the implementation of our back-end
functionality as specified is only 56 lines.

The implementation of the core functionality of JConf is agnostic
to the policies. The JConf back end stores a list of PaperRecord
objects and supports adding papers, updating components of papers,
and searching over papers by ID, name, and tags. We show the
function to search papers by tag below:

def searchByTag(tag: PaperTag) =
papers. filter (_.getTags().has(tag))

This function produces a list of symbolic PaperRecord objects which
are equal to objects containing paper data if the paper tag tag
is present and null otherwise. The core program can be concise
because it does not have to be concerned with policies.

We implement policies specified in terms of program variables
such as a paper’s list of tags and values from the output context.
To provide an example of a data class definition, we show the
definition of the PaperReview class in Figure 8. A PaperReview
object has the fields reviewer , body, and score . The PaperReview
class defines a policy that the identity of the reviewer as stored
in the reviewer field is visible only to other reviewers and PC
members. The code introduces a new level variable level , adds
a policy that the context viewer must be a reviewer or PC member
to see the object. The policies on allowed contexts for seeing the
entire PaperReview object are defined in the PaperRecord class
representing data associated with papers.

Localizing the policies with respect to data facilitates policy
updates. To change at what stage of the conference when reviewers
are allowed to see names of authors, we can simply change the few
lines of code corresponding to the author list policy. The programmer
does not have to make coordinated changes across the code base to
update policies.

6.2 Social Network
For social networks it is important to rapidly develop code that
implements information flow policies. Privacy issues have put the
social network website Facebook under the scrutiny of the American
Federal Trade Commission [26], making it crucial that they do not
leak sensitive data. On the other side, one of Facebook’s key values is
to “move fast:” rapidly develop innovative features [28]. Separation
of policies and core program functionality can help developers
rapidly develop privacy-aware features.

To investigate this hypothesis, we have implemented Jeeves So-
cial Net, a toy social network that uses Jeeves policies to control
confidentiality of user-shared data. Jeeves Social Net core function-
ality involves storing and allowing queries over user attributes such
as names, e-mails, and networks, a friendship relation between users,
and dynamically changing properties such as user location. Jeeves
Social Net allows a user u to define policies about who can see which
versions of these attributes based on the relationship of the viewer to
the u. The system allows the user to define different versions of their
information to be shown to viewers given which level they satisfy.
These policies are stateful: for instance, a policy on the visibility of
user u’s location refers to the location of u and the location of output
viewer v.

Jeeves allows the programmer to develop policies and core func-
tionality separately. In our source, all policies reside in UserRecord
class representing a user, while the query code in SocialNetBackend
is left intact. The programmer can extend the SocialNetBackend
arbitrarily and rely on the Jeeves system to enforce information poli-
cies. The programmer can also easily change the policies enforced
across the program by changing the policy code in UserRecord.

In the rest of this section, we walk through how we implement
interesting policies in Jeeves Social Net: support for user-defined
policies that may depend on the friendship relation, stateful location-
data policies, and policies that have mutual dependencies as a result
of a symbolic context.

Defining Viewer Levels. Each sensitive field in a UserRecord
object is defined in terms of the level of the output viewer. We
use Jeeves level variables to define three levels: Anyone is most
permissive and allows public access, Friends allows access only to
friends, and Self is most restrictive and disallows access to everyone
except the user herself. The following function creates level variables
associated with user-defined viewer levels:

def level (ul : UserLevel) = {
val a = mkLevel();
val me = CONTEXT == this;
ul match {
case Anyone ⇒
case Self ⇒ policy(l , ! me, ⊥)
case Friends ⇒

policy (l , ! (me || friends .has(CONTEXT)), ⊥);
};
a

}

The CONTEXT variable refers to the user at the other end of the
output channel. The mutable set of friends is encapsulated in a
private field friends of UserRecord.

We use this function to create sensitive values for user fields
based on user-specified viewer levels. The constructor for the

UserRecord class takes parameters nameL: UserLevel and friendL :
UserLevel to specify who can see the name and friends fields. To
create a sensitive property for the name of a user, passed to the
constructor as nameV: string, we declare an observer field:

val name = mkSensitive(level(nameL), nameV, NULL)

We can create a friends list that is visible based on the friends level
friendsL as follows:

def getFriends () = {
val l = level (friendsL) ;
friends .map(mkSensitive(l, _))

}

When these fields are accessed, the results will only be displayed to
viewers who have an appropriate level of access.

Policies become implicitly combined when different sensitive
values interact. To get names of friends of a user, we simply call:

user . getFriends () .map(_.name)

Although the code looks the same as if without Jeeves, the context
user here must simultaneously be able to access the list of friends
and the name property to see the name of a friend.

Location Policy. The location mash-up website PleaseRobMe [3]
demonstrates that if disclosure of geographic location information
is not carefully managed, people can easily use this information for
harm, for instance in determining candidates for apartment robberies.
Jeeves allows programmers to easily express policies protecting
location data based on not just “friend” relationships, but also on
policies involving dynamically-changing user locations.

A user may choose to share her location with friends, with users
nearby, or only to friends who are nearby. To write the policy that
only a nearby user can see the location, we create sensitive values
for coordinates in the setter method guarded by DISTANCE policy:

1 var X: IntExpr = 1000
2 var Y: IntExpr = 1000
3

4 def setLocation(x: BigInt , y: BigInt) {
5 val l = mkLevel();
6 policy (l , DISTANCE(CONTEXT, this) ≥ 10, ⊥);
7 this .X = mkSensitiveInt(l , x, 1000);
8 this .Y = mkSensitiveInt(l , y, 1000);
9 }

10

11 def DISTANCE(a: Symbolic, b: Symbolic) =
12 ABS(a.X − b.X) + ABS(a.Y − b.Y)

The policy uses sensitive values for X and Y to guard the values
themselves. We can do this because whenever there are such circular
dependencies, the Jeeves runtime will choose a safe but locally-
maximal assignment to levels. For example, if all users in the net-
work are nearby, it is safe to return low values for everyone. How-
ever, Jeeves would output the actual values, since that maximizes
the number of > levels without sacrificing safety.

Since policies and query code are separated, to change the
location policy, we only need to modify the setter. A stronger policy
that permits only friends nearby to see the location requires one
change to line 5 to replace mkLevel() with level (Friends).

Symbolic Context. Jeeves also allows the context to contain
sensitive values. As an example, consider the following function,
which sends a user’s name to her friends:

def announceName(u: UserRecord) =
for (f ← u.getFriends())
yield email(f , u.name)

The email function sends to f a concretizated version of u.name with
CONTEXT = f. Since the friends list is symbolic, f is symbolic as

well. This means that f will take high value only if the corresponding
friend of u is allowed to see the list of friends of u. The name of
u is revealed only if its policies permit f to see. Because Jeeves
handles circular dependencies by finding a safe but locally-maximal
assignment, the Jeeves runtime system will send the name to each
friend if the friend is permitted to see the name. Such reasoning
about symbolic contexts is hard to simulate in runtime systems such
as Resin [27] that do not use symbolic constraints.

6.3 Jeeves Limitations
Jeeves currently provides only a limited amount of static checking.
The implementation of Jeeves as a domain-specific embedded library
in Scala relies on Scala type-checking to enforce static properties.
At present, Jeeves does not provide static feedback about more
complex program properties. For instance, neither the Jeeves design
nor the implementation provide support for statically determining
whether policies are consistent or total. We anticipate being able to
detect properties such as underspecification and inconsistency using
enhanced static analysis that we can implement as a Scala compiler
extension.

There are many open questions regarding the usability of Jeeves.
Symbolic evaluation and SMT are technologies that have been im-
proving in performance, but it is not clear they can handle the de-
mands of real-world applications. One direction for future explo-
ration includes scalability of Jeeves programs, how to efficiently
handle data persistence, and development of lighter-weight execu-
tion models. Another direction for exploration involves the ease of
programming and testability of Jeeves programs.

7. Related Work
Jeeves privacy policies yield comparable expressiveness to state-
of-the-art languages for verifying system security such as Jif [19],
Fine [4], and Ur/Web [5]. These are static approaches that have
no dynamic overhead. Rather than providing support for verifying
properties, the Jeeves execution model handles policy enforcement,
guaranteeing that programs adhere to the desired properties by
construction, but with dynamic overhead.

The Jeeves runtime is similar to the system-level data flow
framework Resin [27], which allows the programmer to insert
checking code to be executed at output channels. Jeeves’s declarative
policies allow the programmer to specify policies at a higher level
and allow automatic handling of dependencies between policies.

There are also parallels with dynamic approaches to security.
Devriese and Piessens’s secure multi-execution approach executes
multiple copies of the program, providing defaults to copies that
should not get access to secret inputs [7]. Jeeves’s symbolic eval-
uation obviates the need to execute multiple program copies and
Jeeves allows more complex policies, for instance ones that may
depend on sensitive values. In this space is also Kashyap et al.’s
scheduling-based dynamic approach, which partitions a program
into sub-programs for each security level for ensuring timing and
termination non-interference. The focus of this is different from our
work, which does not address timing or termination.

Jeeves can also be compared to aspect-oriented programming
(AOP) [11]. Existing frameworks for AOP provide hooks for explicit
annotations at join points. Jeeves differs from AOP because Jeeves’s
constraint-based execution model supports more a more powerful
interaction with the core program. The most similar work in AOP
is Smith’s logical invariants [24] and method for generating aspect
code for behavior such as error logging automatically [23]. Smith’s
method is static and involves reconstructing values such as the
runtime call stack in order to insert the correct code at fixed control
flow points. Jeeves allows policies to affect control flow decisions.

The way Jeeves handles privacy is inspired by angelic nondeter-
minism [8]. Jeeves most directly borrows from CFLP-L, a constraint

functional programming calculus presented by Mück et al. [18];
similar functional logic models have also been implemented in lan-
guages such as Mercury [25], Escher [15], and Curry [9, 10]. Our
system differs in the restrictions we place on nondeterminism and
the execution model. λJ leaves functions and the theory of lists out
of the logical model. λJ execution also supports default logic [1] to
facilitate reasoning when programming with constraints.

Our work is also related to work in executing specifications and
dynamic synthesis. Jeeves differs from existing work in executing
specifications [16, 21] in our goal of propagating nondeterminism
alongside the core program rather than executing isolated nondeter-
ministic sub-procedures. Program repair approaches such as Dem-
sky’s data structure repair [6], the Plan B [22] system for dynamic
contract checking, and Kuncak et al.’s synthesis approach [13] also
target local program expressions.

8. Conclusions
Our main contribution is a programming model that allows program-
mers to separate privacy concerns from core program functionality.
We present the Jeeves programming language, formally define the
underlying constraint functional language λJ , and prove that Jeeves
executions satisfy a non-interference property between low and high
components of sensitive values. We describe our implementation as
an embedded domain-specific language in Scala. We also describe
our case studies, which illustrate how the programmer can separately
develop core functionality and privacy policies while relying on the
system to produce outputs consistent with the policies.

Acknowledgments
We would like to thank Saman Amarasinghe, Arvind, Michael
Carbin, Gregory Malecha, Sasa Misailovic, Andrew Myers, Joseph
Near, Martin Rinard, and Joe Zimmerman for their input and feed-
back.

References
[1] G. Antoniou. A tutorial on default logics. ACM Computing Surveys

(CSUR), 31(4):337–359, 1999.
[2] C. Barrett, A. Stump, and C. Tinelli. The smt-lib standard: Version 2.0.

In SMT Workshop, 2010.
[3] B. Borsboom, B. v. Amstel, and F. Groeneveld. PleaseRobMe. http:

//pleaserobme.com, July 2011.
[4] J. Chen, R. Chugh, and N. Swamy. Type-preserving compilation of

end-to-end verification of security enforcement. SIGPLAN Not., 45
(6):412–423, 2010. ISSN 0362-1340. doi: http://doi.acm.org/10.1145/
1809028.1806643.

[5] A. Chlipala. Static checking of dynamically-varying security policies
in database-backed applications. In Proceedings of the 9th USENIX
conference on Operating systems design and implementation, OSDI’10,
pages 1–, Berkeley, CA, USA, 2010. USENIX Association. URL
http://portal.acm.org/citation.cfm?id=1924943.1924951.

[6] B. Demsky and M. Rinard. Data structure repair using goal-directed
reasoning. In ICSE ’05: Proceedings of the 27th international confer-
ence on Software engineering, pages 176–185, New York, NY, USA,
2005. ACM. ISBN 1-59593-963-2. doi: http://doi.acm.org/10.1145/
1062455.1062499.

[7] D. Devriese and F. Piessens. Noninterference through secure multi-
execution. Security and Privacy, IEEE Symposium on, 0:109–124, 2010.
ISSN 1081-6011. doi: http://doi.ieeecomputersociety.org/10.1109/SP.
2010.15.

[8] R. W. Floyd. Nondeterministic algorithms. J. ACM, 14:636–644, Octo-
ber 1967. ISSN 0004-5411. doi: http://doi.acm.org/10.1145/321420.
321422. URL http://doi.acm.org/10.1145/321420.321422.

[9] M. Hanus. Improving control of logic programs by using functional
logic languages. In Proc. of the 4th International Symposium on

Programming Language Implementation and Logic Programming,
pages 1–23. Springer LNCS 631, 1992.

[10] M. Hanus, H. Kuchen, J. J. Moreno-Navarro, R. Aachen, and I. Ii. Curry:
A truly functional logic language, 1995.

[11] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M.
Loingtier, and J. Irwin. Aspect-Oriented Programming. In ECOOP,
pages 220–242, 1997.

[12] E. Kohler. HotCRP. http://www.cs.ucla.edu/~kohler/hotcrp/.
[13] V. Kuncak, M. Mayer, R. Piskac, and P. Suter. Complete functional

synthesis. In PLDI, pages 316–329, 2010.
[14] J. R. Lewis, J. Launchbury, E. Meijer, and M. B. Shields. Implicit pa-

rameters: dynamic scoping with static types. In Proceedings of the 27th
ACM SIGPLAN-SIGACT symposium on Principles of programming lan-
guages, POPL ’00, pages 108–118, New York, NY, USA, 2000. ACM.
ISBN 1-58113-125-9. doi: http://doi.acm.org/10.1145/325694.325708.
URL http://doi.acm.org/10.1145/325694.325708.

[15] J. W. Lloyd. Programming in an integrated functional and logic
language. Journal of Functional and Logic Programming, 3, 1999.

[16] C. Morgan. The specification statement. ACM Trans. Program.
Lang. Syst., 10(3):403–419, 1988. ISSN 0164-0925. doi: http:
//doi.acm.org/10.1145/44501.44503.

[17] L. D. Moura and N. Björner. Z3: An efficient SMT solver. In In
Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS), 2008.

[18] A. Mück and T. Streicher. A tiny constraint functional logic language
and its continuation semantics. In ESOP ’94: Proceedings of the 5th
European Symposium on Programming, pages 439–453, London, UK,
1994. Springer-Verlag. ISBN 3-540-57880-3.

[19] A. C. Myers. JFlow: Practical mostly-static information flow control.
In In Proc. 26th ACM Symp. on Principles of Programming Languages
(POPL), pages 228–241, 1999.

[20] M. Odersky, P. Altherr, V. Cremet, B. Emir, S. Maneth, S. Micheloud,
N. Mihaylov, M. Schinz, E. Stenman, and M. Zenger. An overview of
the scala programming language. Technical report, Citeseer, 2004.

[21] D. Rayside, A. Milicevic, K. Yessenov, G. Dennis, and D. Jackson.
Agile specifications. In OOPSLA Companion, pages 999–1006, 2009.

[22] H. Samimi, E. D. Aung, and T. D. Millstein. Falling back on executable
specifications. In ECOOP, pages 552–576, 2010.

[23] D. R. Smith. A generative approach to aspect-oriented programming.
In G. Karsai and E. Visser, editors, GPCE, volume 3286 of Lecture
Notes in Computer Science, pages 39–54. Springer, 2004. ISBN 3-540-
23580-9.

[24] D. R. Smith. Aspects as invariants. In O. Danvy, H. Mairson, F. Hen-
glein, and A. Pettorossi, editors, Automatic Program Development: A
Tribute to Robert Paige, pages 270–286, 2008.

[25] Z. Somogyi, F. J. Henderson, and T. C. Conway. Mercury, an efficient
purely declarative logic programming language. In In Proceedings of
the Australian Computer Science Conference, pages 499–512, 1995.

[26] J. E. Vascellaro. Facebook grapples with privacy issues. In The Wall
Street Journal. May 19 2010.

[27] A. Yip, X. Wang, N. Zeldovich, and M. F. Kaashoek. Improving
application security with data flow assertions. In Proceedings of the
22th ACM Symposium on Operating Systems Principles (SOSP ’09),
Big Sky, Montana, October 2009.

[28] H. Zhao. Hiphop for PHP: Move fast. http://developers.
facebook.com/blog/post/358/, February 2010.

