Precise, Dynamic
Information Flow
for Database -

Backed
Applications

Jean Yang, Travis Hance, Thomas H. Austin, Armando
Solar-Lezama, Cormac Flanagan, and Stephen Chong

PLDI 2016

PTG £ 5 4 O

©
—
o
N
@)
|
o
~
(=]
=
@©
>
=
@
[<3]
=

http://www.huffingtonpost.com/2014/03/24/exxon-valdez-oil-spill-photos_n_5020845.html

!
.

l,:-«(; :

L‘:
S

7

. |

¥,

»

2. !
, Y

.

“

Oil -covered otter. (Photofr’om the. Human Impact Project Do

Jean Yang / PLDI 2016

https://www.youtube.com/watch?v=6NQGZWZEaEM

The Relationship Between
Design and Accidents

Single hull Double hull

Crude ol Crude ol

Required by the QOil
Pollution Act of 1990.

©
—
o
N
(@)
T
o
~
o
=
©
>
=
@©
(4,
=

But what about
Information
leaks?

©
—
o
N
@)
|
o
~
(=]
=
@©
>
=
@
[<3]
=

Wanted: Double Hull for
Information Security

Single hull Double hull

Research in language -based security looks at designs
for double hulls [Sabelfeld and Myers, JISAC 2003].

Our goal: make double hulls that are
as easy to construct as possible!

©
—
o
N
(@)
T
o
~
o
=
©
>
=
@©
(4,
=

This Talk: Making It Easler to
Secure Web Programs

. Why 1 t0s hard to
Information leaks.

2. A programming model that
makes writing secure web
programs easier.

3. How we support that
programming model In
database-backed applications.

©
—
o
N
(@)
T
o
~
o
=
©
>
=
@©
(4,
=

Tue 6/14 Wed 615 Thu 6/16 Fri g7

ilton R
N

Social Calendar Example

Let 0s say Arjun and | wa
surprise paper discussion party for Emery.

Event

Surprise paper discussion party|

Wed, June 15, 2pm - 3pm

(7]
]
>
(D)
]
-
~
(@)
=
@©
>
(=
@
]
-

Challenge: Different Viewers
Should See Different Events

Surprise
/_ discussion for /_
4 Emery at
& Chuck E. K
é =

Cheese.
Guests Lo

Pizza with

Arjun/Jean.

Cheese.

/_ Private event

©
—
o
N
(@)
T
o
~
o
=
©
>
=
©
)
=

Policies May Depend on
Sensitive Values

Tue 6/14) Must be on;guest |IS’[Fri 6/17 Sat 6/18

ﬂ n et
BS Issidh‘party X
Leaky enforcement: Policy for event
when the programmer depends on policy
neglects dependencies for guest list!
of policies on sensitive . :
values. e H Guest List

Must be member of list and the
list must be finalized.

party . . .
Chuck E. Finalized list

©
—
o
N
(@)
T
o
~
o
=
©
>
=
©
)
=

A Story of Leaky Enforcement

@ We add Armando to
non-final guest list.

Guest List

S ¥

O Finalized list

Armando sees the

event on his calendar.

@ Armando figures out
he was uninvited.

e,

4)
i*"/:‘\\»\L?'ﬁﬁ \
@ We run out of space

and remove Armando.

There was a
party on my
cal end

Guest List

R

B/Finalized list

©
—
o
N
(@)
T
o
~
o
=
©
>
=
©
)
=

A Story of Leaky Enforcement

Problem: implementation for event
policy neglected to take into account
guest list policy.

This arises whenever we
trust programmers to get
policy checks right!

©
—
o
N
(@)
T
o
~
o
=
©
>
=
©
)
=

Need to Track Policies and
Viewers Across the Code

o0 Wh a't | s t he

most popular Q Upd;tltle to
location among
calendar

friends 7pm
Tuesday?o

5

-

_

Need to track how information flows
through derived values and where
derived values flow!

USEIS

©
—
o
N
(@)
T
o
~
o
=
©
>
=
©
)
=

limitName =

llmltName ="

limitName = "

limitName =

contactId ";

contactId
LimitName = S _AUTHOR . B
— qa(5a);
1imitName = L $ = edb_row($

limitName = S

limitName = " "

limitName = " if (S is empty
return
imitName =

limitName = "
S PaperSearch(5
allowAuthor = H defval(s ", H
5 paperList

session_list_object

©
—
o
N
(@)
T
o
~
()]
=
©
>
=
@©
(4,
=

Conditional permissions
checks everywhere!

Jacqueline Web Framework to
the Rescue!

1) Programmer specifies 3 ') Enhanced runtime
information flow policies encompasses applications
separately from other and databases, preventing
functionality. leaks between the two.

Policy annotations

2) Runtime prevents information
leaks according to policy
annotations.

©
—
o
N
(@)
T
o
~
o
=
©
>
=
©
)
=

Contributions

APolicy-agnostic programming
model for database -backed web
applications.

ASemantics and proofs for policy -
agnostic programming that
encompasses SQL databases.

ADemonstration of practical
feasibility with Python
implementation and application
case studies.

©
—
o
N
(@)
T
o
~
o
=
©
>
=
@©
(4,
=

Jacqgueline Web Framework

- Obiject -relational
mapping propagates

policies and sensitive

policies based on
USER annotations.

MODEL
Framework values through
shows computations.
appropriate UPDATES MANIPULATES
values based l Enhanced rhntlme
on viewer and VIEW CONTROLLER
policies. .
\\S‘ / g
) & 3
& o =
\ > Framework attaches =
g

Coding Iin Jacqueline

class Event (JacquelineModel): Base schema
name = CharField (max_length =256)
location = CharField ('max_length =512)
time = DateTimeField ()
description = CharField (max_length)=1024)
@acqueline Policy helper
def has host (self, host): :
return EventHost.objects.get (functions
event=self, host=host) != None
@acqueline
def has guest (self, guest):
return EventGuest.objects.get (
event=self, host=host) != None ©
©
AN
@taticmethod Information flow policy for location field =
@abel for (61 ocat) ono >
def restrict_event (event, ctxt): ;%
return event.has_host (ctxt) or eventhas guest (ctxt) =
(5]

Public value for location field
def (event):

return AUndi scl osed | ocationo

Centralized Policies In
Jacqueline

class Event(Model):
VISIBILITY = (('E', 'Everyone'}, ('G', 'Guests'))

name = CharField(max_length=256)

location = Charfield(max_length=512)

time = DateTimeField()

description = CharField(max_length=1824)

visibility = Charfield(max_length=1, choices=VISIBILITY, default='E')

@jeeves
def has_host(self, host):
return EventHost.objects.get(event=self, host=host) != Hone

@jeeves
def has_guest(self, guest):
return EventGuest.objects.get(event=self, guest=guest) != None

©
—
o
N
(@)
T
o
~
o
=
©
>
=
©
)
=

Centralized policies! No checks or
declassifications needed anywhere else!

