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In this paper, we are interested in peer-to-peer
network applications involving the search, identi-
fication, and location of targets across a search
area that is often vast and possibly dangerous
to navigate. Mobile robots and/or sensors em-
ployed for such applications provide promise to
more rapidly and safely locate targets in differ-
ent military, homeland security and/or disaster
recovery scenarios. Advantages of these type of
applications include reduced risk for human search
and/or rescue teams and significantly enhanced
search capabilities.

Specifically, we propose a novel scheme for dis-
tributed search in mobile sensors networks that is
inspired by collective forms of intelligence present
in many biological systems typically referred to
as “swarm intelligence”. Unlike the established
paradigms of swarm intelligence, we posit a form
of individual rationality governing each agent’s
decision. Hence the term “rational” swarm. Un-
der the proposed scheme a network of N mobile
sensors is tasked to find N targets. The sensing
technology is imperfect so there are non-negligible
probabilities for false positives and false negatives.
Mobile sensors leave two ‘trails’ across potential
target locations that have been explored. One trail
is associated with the frequency with which a
given location x (in a grid X) has been probed,

say λt(x), while the other relates to the Bayes up-
dated likelihood that a target is present, say µt(x).
These trails are reminiscent of the pheromone trail
used by ant colonies to find the shortest path be-
tween their nest and a food source. Unlike the es-
tablished paradigms of swarm intelligence, agents
process the implicit information encapsulated in
the two trails and choose a decision that is aimed
at maximizing the chance of detecting a target
without unnecessary duplication in probing, i.e. if
sti is agent i’s current location, the next location
st+1i is defined as follows

st+1i ∈ arg max
x∈N(st

i
)
[µt(x)(λti(x)− λt−i(x))]

where N(sti) ⊂ X is the set of reachable locations
from sti in one time period and λti(x) and λt−i(x)
are measures of probing frequency in location x
by agent i and agents other than i, respectively.
The distributed feedback loop is illustrated in
Figure 1. By endowing mobile sensors with this
simple optimization rule, we show that a form of
‘rational swarm’ intelligence emerges as sensors
successfully coordinate indirectly (i.e. they locate
all targets) through active manipulation of the
trails. Specifically, we show that for every x ∈ X∗

(where X∗ is the set of target locations), there
exists an agent i ∈ {1, 2, ..., N} such that

lim
t→∞

[µt(x)(λti(x)− λt−i(x))] = 1 w.p. 1
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Fig. 1. Schematic for Distributed Search

This feature guarantees the proposed scheme is
both reconfigurable and scalable. Reconfigurabil-
ity follows from the fact that agents only need
to know how often a given location has been
probed in the past (regardless of the identity of
the sensor(s) that executed the probes) and the
updated Bayesian probabilities. Thus, sensors do
not need to know the makeup of the group so
new sensors can enter the network and others can
exit. Scalability follows from the fact that bilateral
communication amongst sensors is not required.
Instead, agents must be able to access the values
of the two trails. This can be achieved by having
a geographically distributed array of stationary
motes in charge of keeping track of λt(x) and
µt(x), for locations x ∈ X.

In a simulation testbed, we compare the perfor-
mance of our distributed search algorithm with
a centralized search scheme, where for each it-
eration t, there is a “virtual” base station that
instructs each agent on the best next location
to probe. Note that such in such a centralized
scheme, unnecessary duplication in search efforts
is avoided. We tested the two algorithms with a
total of 5, 10, 20 targets, 6, 12, 24 mobile agents,
and area size 52, 102, 202 respectively. For each
scenario, we repeated the experiment 200 times
with randomized targets locations each time. The
results are shown in Table 1.

Mean (Std Dev) # Iterations to Full Detection
# Targets Distributed Centralized

5 19.33 (8.87) 12.95 (6.61)
10 48.71 (22.60) 45.56 (18.82)
20 138.20 (47.59) 132.15 (49.13)

Table 1: Comparison

This evidence suggests the performance of our
distributed search scheme is very close to the
centralized scheme and it improves when the scale
is up.

Finally, we developed a simple physical testbed
consisting of four agents, and four targets distrib-
uted in an 8 by 10 feet square searching field. A
virtual grid was generated to divide the field into
1 foot square cells, where the individual sensing
took place. The testbed can be described as the
integration of the following main components:

Agents A set of four Lego Mindstorm NXT
robots using a three-wheel configuration were
used as mobile platforms.

Positioning System An elevated webcam to-
gether with onboard LED’s were used to deter-
mine agent positions and facing direction within
the searching field.

Target Detection A light sensor pointing down-
wards was placed in each agent to detect darker
sectors (targets) that contrasted with the white
field.

Measurement Error False positive and false
negative outputs were introduced within each
agent posterior target sensing.

Data Handling Bluetooth links were established
between a data repository (Laptop) and each
agent independently to share the desired infor-
mation.

Restricted Movement Agents are only allow
to move to non-diagonal adjacent cells.

A movie describing a sample path with this phys-
ical testbed can be downloaded at

people.virginia.edu/~ag7s/papers/Lego_video.avi


