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Abstract

Spam, also known as Unsolicited Commercial Email (UCE) is becoming a nightmare
for Internet users and providers. Machine learning techniques such as the Support Vector
Machines (SVM) have achieved a high accuracy filtering the spam messages. However,
a certain amount of legitimate emails are often classified as spam (false positive errors)
although this kind of errors are prohibitively expensive.

In this paper we address the problem of reducing particularly the false positive errors in
anti-spam email filters based on the SVM. To this aim, an ensemble of SVMs that combines
multiple dissimilarities is proposed. The experimental results suggest that the new method
outperforms classifiers based solely on a single dissimilarity and a widely used combination
strategy such as bagging.

1 Introduction

Unsolicited commercial email also known as spam is becoming a serious problem for Internet
users and providers [9]. Several researchers have applied machine learning techniques in order
to improve the detection of spam messages. Naive Bayes models are the most popular [2] but
other authors have applied Support Vector Machines (SVM) [8], boosting and decision trees [5]
with remarkable results. SVM has revealed particularly attractive in this application because
it is robust against noise and is able to handle a large number of features [21].

Errors in anti-spam email filtering are strongly asymmetric. Thus, false positive errors or
valid messages that are blocked, are prohibitively expensive. Several authors have proposed
new versions of the original SVM algorithm that help to reduce the false positive errors [20, 14].
In particular, it has been suggested that combining non-optimal classifiers can help to reduce
particularly the variance of the predictor [20, 4, 3] and consequently the misclassification error.
In order to achieve this goal, different versions of the classifier are usually built by sampling
the patterns or the features [4]. However, in our application it is expected that the aggregation
of strong classifiers will help to reduce more the false positive errors [18, 11, 7].
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In this paper we address the problem of reducing the false positive errors by combining
classifiers based on multiple dissimilarities. To this aim, a diversity of classifiers is built con-
sidering dissimilarities that reflect different features of the data. The dissimilarities are first
embedded into an Euclidean space where a SVM is adjusted for each measure. Next, the
classifiers are aggregated using a voting strategy [13]. The method proposed has been applied
to the Spam UCI machine learning database [19] with remarkable results.

This paper is organized as follows. Section 2 introduces the dissimilarities considered
by the ensemble of classifiers. Section 3 presents our method to combine classifiers based
on dissimilarities. Section 4 illustrates the performance of the algorithm in the challenging
problem spam filtering. Finally, section 5 gets conclusions and outlines future research trends.

2 The problem of distances revisited

An important step in the design of a classifier is the choice of the proper dissimilarity that
reflects the proximities among the objects. However, the choice of a good dissimilarity for the
problem at hand is not an easy task. Each measure reflects different features of the dataset and
no dissimilarity outperforms the others in a wide range of problems. In this section, we com-
ment shortly the main differences among several dissimilarities that can be applied to model
the proximities among emails.

Let x, y be the vectorial representation of two emails. The Euclidean distance is defined
as:

deuclid(~x, ~y) =

√√√√ d∑
i=1

(xi − yi)2 , (1)

where d is the dimensionality of of the vectorial representation and xi is the value of feature i
in the email x. The Euclidean distance evaluates if the features considered differ significantly
in both messages. This measure is sensible to the size of the body email.
The cosine dissimilarity reflects the angle between the emails x and y and is defined as:

dcosine(~x, ~y) = 1− ~xT ~y

‖~x‖‖~y‖
, (2)

The value is independent of the message length. It differs significantly from the Euclidean
distance when the data is not normalized.
The correlation measure checks if the features that codify the spam change in the same way
in both emails and it is defined as:



dcor.(~x, ~y) = 1−

d∑
i=1

(xi − x̄)(yi − ȳ)√√√√ d∑
i=1

(xi − x̄)2

√√√√ d∑
j=1

(yj − ȳ)2

, (3)

Correlation based measures tend to group together samples whose features are linearly related.
The correlation differs significantly from the cosine if the mean of the vectors that represents
the emails are not zero.
The correlation measure introduced earlier is distorted by outliers. The Spearman rank coef-
ficient avoids this problem by computing a correlation between the ranks of the features. It is
defined as:

dspearm.(~x′, ~y′) = 1−

d∑
i=1

(x′i − x̄′)(y′i − ȳ′)√√√√ d∑
i=1

(x′i − x̄′)2

√√√√ d∑
j=1

(y′j − ȳ′)2

, (4)

where where ~x′i = rank(~xi) and ~y′j = rank(~yj). Notice that this measure doesn’t take into
account the information about the quantitative values of the features.
Another kind of correlation measure that helps to overcome the problem of outliers is the
kendall-τ index which is related to the Mutual Information probabilistic measure. It is defined
as:

dkend-tau(~x, ~y) = 1−

d∑
i=1

d∑
j=1

Cxij − Cyij

d(d− 1)
, (5)

where Cxij = sign(xi − xj) and Cyij = sign(yi − yj).

The above discussion suggests that the normalization of the data should be avoided because
this preprocessing may partially destroy the disparity among the dissimilarities. Besides when
the emails are codified in high dimensional and noisy spaces, the dissimilarities mentioned
above are affected by the ‘curse of dimensionality’ [1, 15]. Hence, most of the dissimilarities
become almost constant and the differences among dissimilarities are lost [12, 16]. This problem
can be avoided selecting a small number of features before the dissimilarities are computed.

3 Combining classifiers based on dissimilarities

The SVM is a powerful machine learning technique that is able to work with high dimensional
and noisy data [21]. However, the original SVM algorithm is not able to work directly from
a dissimilarity matrix. To overcome this problem, we follow the approach of [17]. First, each



dissimilarity is embedded into an Euclidean space such that the inter-pattern distances reflect
approximately the original dissimilarities. Next, the test points are embedded via a linear
algebra operation and finally the SVM is adjusted and evaluated.

Let D ∈ Rn×n be a dissimilarity matrix made up of the object proximities. A configuration
in a low dimensional Euclidean space can be found via a metric multidimensional scaling
algorithm (MDS) [6] such that the original dissimilarities are approximately preserved. Let
X = [~x1, . . . , ~xn]T be the matrix of the object coordinates for the training patterns. Define
B = XXT as the matrix of inner products which is related to the dissimilarity matrix via the
following equation:

B = −1
2
JD2J , (6)

where J = I − 1
n11T ∈ Rn×n is the centering matrix and I is the identity matrix. If B is

positive definite, the object coordinates in the low dimensional space Rk can be found through
a singular value decomposition [6, 10]:

Xk = VkΛ
1/2
k , (7)

where Vk ∈ Rn×k is an orthogonal matrix with columns the first eigen-vectors of XXT and
Λk ∈ Rk×k is a diagonal matrix with the corresponding eigenvalues. Several dissimilarities
introduced in section 2 generate inner product matrices B non-definite positive. To avoid this
problem, we have added a non-zero constant to non-diagonal elements of the dissimilarity ma-
trix [17].

Once the training patterns have been embedded into a low dimensional space, the test
pattern can be added to this space via a linear projection [17]. Next we detail briefly the
process.

Let X ∈ Rn×k be the object configuration for the training patterns in Rk and Xn =
[~x1, . . . , ~xs]T ∈ Rs×k the matrix of the object coordinates sought for the test patterns. Let
D2

n ∈ Rs×n be the matrix of dissimilarities between the s test patterns and the n training
patterns that have been already projected. The matrix Bn ∈ Rs×n of inner products among
the test and training patterns can be found as:

Bn = −1
2
(D2

nJ − UD2J) , (8)

where J ∈ Rn×n is the centering matrix and U = 1
n1T1 ∈ Rs×n. Since the matrix of inner

products verifies

Bn = XnXT (9)

then, Xn can be found as the least mean-square error solution to (9), that is:

Xn = BnX(XT X)−1 , (10)



Given that XT X = Λ and considering that X = VkΛ
1/2
k the coordinates for the test points can

be obtained as:

Xn = BnVkΛ
−1/2
k , (11)

which can be easily evaluated through simple linear algebraic operations.

Next we introduce the method proposed to combine classifiers based on different dissimi-
larities.
Our method is based on the evidence that different dissimilarities reflect different features of
the dataset (see section 2). Therefore, classifiers based on different measures will missclassify
a different set of patterns. Figure 1 shows for instance that bold patterns are assigned to the
wrong class by only one classifier but using a voting strategy the patterns will be assigned to
the right class.

Figure 1: Aggregation of classifiers using a voting strategy. Bold patterns are missclassified by
a single hyperplane but not by the combination.

Hence, our combination algorithm proceeds as follows: First, the dissimilarities introduced
in section 2 are computed. Each dissimilarity is embedded into an Euclidean space, training and
test pattern coordinates are obtained using equations (7) and (11) respectively. To increase
the diversity of classifiers, once the dissimilarities are embedded a bootstrap sample of the
patterns is drawn. Next, we train a SVM for each dissimilarity and bootstrap sample. Thus,
it is expected that misclassification errors will change from one classifier to another. So the
combination of classifiers by a voting strategy will help to reduce the misclassification errors.

A related technique to combine classifiers is the Bagging [4, 3]. This method generates a
diversity of classifiers that are trained using several bootstrap samples. Next, the classifiers are
aggregated using a voting strategy. Nevertheless there are three important differences between
bagging and the method proposed in this section.
First, our method generates the diversity of classifiers by considering different dissimilarities
and thus will induce a stronger diversity among classifiers. A second advantage of our method
is that it is able to work directly with a dissimilarity matrix. Finally, the combination of several
dissimilarities avoids the problem of choosing a particular dissimilarity for the application we
are dealing with. This is a difficult and time consuming task.



Notice that the algorithm proposed earlier can be easily applied to other classifiers such as
the k-nearest neighbor algorithm that are based on distances.

4 Experimental results

In this section, the ensemble of classifiers proposed is applied to the identification of spam
messages.

The spam collection considered is available from the UCI Machine learning database [19].
The corpus is made up of 4601 emails from which 39.4% are spam and 60.6% legitimate
messages. The number of features considered to codify the emails are 57 and they are described
in [19].

The dissimilarities have been computed without normalizing the variables because this
preprocessing may increase the correlation among them. As we have mentioned in section 3,
the disparity among the dissimilarities will help to improve the performance of the ensemble of
classifiers. Once the dissimilarities have been embedded in a Euclidean space, the variables are
normalized to unit variance and zero mean. This preprocessing improves the SVM accuracy
and the speed of convergence.

Regarding the ensemble of classifiers, an important issue is the dimensionality in which the
dissimilarity matrix is embedded. To this aim, a metric Multidimensional Scaling Algorithm
is first run. The number of eigenvectors considered is determined by the curve induced by
the eigenvalues. For the dataset considered, figure 2 shows that the first twenty eigenvalues
preserve the main structure of the dataset. Anyway, the sensibility to this parameter is not high
provided that the number of eigenvalues chosen is large enough. For the dataset considered
values larger than twenty give good experimental results.
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Figure 2: Eigenvalues for the Multidimensional Scaling Algorithm with the cosine dissimilarity.

The combination strategy proposed in this paper has been also applied to the k-nearest neigh-
bor classifier. An important parameter in this algorithm is the number of neighbors which has
been estimated using 20% of the patterns as a validation set.



The classifiers have been evaluated from two different points of view: on the one hand we
have computed the misclassification errors. But in our application, false positives errors are
very expensive and should be avoided. Therefore false positive errors are a good index of the
algorithm performance and are also provided.
Finally the errors have been evaluated considering a subset of 20% of the patterns drawn ran-
domly without replacement from the original dataset.

Linear kernel Polynomial kernel
Method Error False positive Error False positive

Euclidean 8.1% 4.0% 15% 11%
Cosine 19.1% 15.3% 30.4% 8%

Correlation 18.7% 9.8% 31% 7.8%
Manhattan 12.6% 6.3% 19.2% 7.1%
Kendall-τ 6.5% 3.1% 11.1% 5.4%
Spearman 6.6% 3.1% 11.1% 5.4%

Bagging Euclidean 7.3% 3.0% 14.3% 4%
Combination 6.1% 3% 11.1% 1.8%

Parameters: Linear kernel: C=0.1, m=20; Polynomial kernel: Degree=2, C=5, m=20

Table 1: Experimental results for the ensemble of SVM classifiers. Classifiers based solely on
a single dissimilarity and Bagging have been taken as reference.

Table 1 shows the experimental results for the ensemble of classifiers using the SVM. The
method proposed has been compared with bagging introduced in section 3 and with classifiers
based on a single dissimilarity. The m parameter determines the number of bootstrap samples
considered for the combination strategies. C is the standard regulation parameter in the
C-SVM [21].

From the analysis of table 1, the following conclusions can be drawn:

• The combination strategy improves significantly the the Euclidean distance which is
usually considered by most SVM algorithms.

• The combination strategy with polynomial kernel reduces significantly the false positive
errors of the best single classifier. The improvement is smaller for the linear kernel. This
can be explained because the non-linear kernel allow us to build classifiers with larger
variance and therefore the combination strategy can achieve a larger improvement of the
false positive errors.

• The combination strategy proposed outperforms a widely used aggregation method such
as Bagging. The improvement is particularly important for the polynomial kernel.

Table 2 shows the experimental results for the ensemble of k-NNs classifiers. k denotes the
number of nearest neighbors considered. As in the previous case, the combination strategy
proposed improves particularly the false positive errors of classifiers based on a single distance.



Method Error False positive
Euclidean 22.5% 9.3%

Cosine 23.3% 14.0%
Correlation 23.2% 14.0%
Manhattan 23.2% 12.2%
Kendall-τ 21.7% 6%
Spearman 11.2% 6.5%
Bagging 19.1% 11.6%

Combination 11.5% 5.5%

Parameters: k = 2

Table 2: Experimental results for the ensemble of k-NN classifiers. Classifiers based solely on
a single dissimilarity and Bagging have been taken as reference

We also report that Bagging is not able to reduce the false positive errors of the Euclidean
distance. Besides, our combination strategy improves significantly the Bagging algorithm.
Finally, we observe that the misclassification errors are larger for k-NN than for the SVM.
This can be explained because the SVM has a higher generalization ability when the number
of features is large.

5 Conclusions and future research trends

In this paper, we have proposed an ensemble of classifiers based on a diversity of dissimilarities.
Our approach aims to reduce particularly the false positive errors of classifiers based solely on
a single distance. Besides, the algorithm is able to work directly from a dissimilarity matrix.
The algorithm has been applied to the identification of spam messages.

The experimental results suggest that the method proposed help to improve both, mis-
classification errors and false positive errors. We also report that our algorithm outperforms
classifiers based on a single dissimilarity and other combination strategies such as bagging.

As future research trends, we will try to apply other combination strategies that assign
different weight to each classifier.
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