
Reducing spam to 20% of its original value with a SMTP tar pit simulator

Keywords: Spam, SMTP, tar pit, simulation, bridge

Tobias Eggendorfer
ITIS e. V. Institut für Technik Intelligenter Systeme
An-Insitut der Universität der Bundeswehr Neubiberg
(University of Federal Armed Forces Neubiberg)
Werner-Heisenberg-Weg 39
85579 Neubiberg, Germany
Phone: +49 89 6004 2280
tobias.eggendorfer@unibw.de

1. Abstract:
Unsolicited commercial email (UCE, spam), scam and phishing emails make up for more than 90% of
all emails sent world-wide. Most antispam methods known rely on filtering emails. Meanwhile,
browsers also check URLs against blacklists to avoid fraud. However, all those methods are reactive,
ergo they are only able to deal with known attack patterns. Some methods are computing intensive,
thus require very powerful CPUs and lots of memory. They also require regular updates and lots of
maintenance. An ideal solution would neither consume computing power nor require maintenance.

My proposal for a new solution is to take advantage of spammers' bulk mailers' terse time outs to
avoid being trapped by a SMTP tar pit. This is done by implementing a SMTP proxy on a bridge
simulating a tar pit for a configurable time only. To simplify the installation procedure and to have a
transparent solution, the SMTP proxy has been implemented on a network bridge. This paper presents
the concepts of the tar pit simulator and reports on its effectiveness.

2. Introduction
By now, the vast majority of all emails are spam. It is just a matter of the definition of spam and the
time of measurement, whether it is 82% [1] for 2004, 93% [2] in January 2005 or, as the German
provider T-Online states, even 97% – in early 2006 [3]. Although T-Online is likely to use a quite
general definition of spam that also includes viruses, worms and Trojans, there is no doubt left that
spam is a serious thread to email communication. Therefore, using email without filtering unsolicited
commercial email is not feasible any more.

But looking at spam filters, most approaches try to deal with spam like with viruses by trying to
identify some kind of signatures. To detect viruses, using signatures and heuristics is probably the
only promising solution, because of Rice's theorem [4], saying that there is no program that could
predict what another program does. To resolve the spam problem, there are different solutions –
reaching from filtering via greylisting to tar pitting. Those existing solutions are discussed in Section
3.

Section 4 describes how SMTP tar pits work in general and discuss their advantages and
disadvantages. Section 5 proposes the new approach, a SMTP tar pit simulator, as a method to reduce
spam on a mail server. Section 6 goes into more detail on the requirements of a tar pit simulator. In
section 7, I describe how the SMTP tar pit simulator should be implemented. Section 8 describes my
test setup and explains the very promising test results. The last section 9 concludes and gives an
outlook on ongoing and future research.

3. Previous and related work

3.1. Spam filters
Spam filters work by detecting certain patterns typical for spam within a mail's header and / or body.
The first ever used filters were based on blacklisting bad sender's “from”-addresses. An obvious
evasion is a forged “from”-address. Therefore, blacklisting was soon extended to list IP addresses
from where spam is sent to disallow those machines to connect to a mail server.

mailto:tobias.eggendorfer@unibw.de

When invented back in the late 1990s, this helped both filtering spam and supported the demand to
switch off so called open relays. By now, this solution has revealed it has heavy side-effects: Almost
all big email providers have already been blacklisted on at least some of the widely available
blacklists [5][6]. By now, the increasing usage of zombie PCs, i.e. Windows computers infected by
some worms, to send spam turned those black lists more and more useless: They either have to block
entire subnets known to be used by dial-in providers to block potential abuse and thereby block
thousands of legitimate mail users that run their mail transfer agents (MTA) on Unix machines at
home, or their filtering becomes more and more ineffective, as spam is not relayed anymore through
open relays. That is one of the reasons why the team behind the Open Relay Database (ORDB) has
stopped their service [7].

Other solutions are content-filters applied to the header and / or the body of a mail message. They use
some kind of a “bad-word-list”. Individual fine tuning is required as of-the-shelf products are often to
imprecise, e.g. a bank clerk cannot filter on “mortgage”.

To improve filtering, scoring-mechanisms to weight words and other signs that a message might be
spam were implemented. Again, lots of fine-tuning and maintenance are required: Spammers are
reported to register mail accounts with online services known to have spamfiltering and to first test
their spam against those filters. Some bulkmail programmes used by spammers already include a
standard SpamAssassin to test the spam against prior to sending it out. This leads to a permanent
“one-step-behind”-situation for filters, no matter how advanced content-filtering becomes [8].

Collaborative filtering is yet another approach to identify spam: To do so, large mail providers
analyse mails their customers get and compare them to both mails to other customers and mails
received on special honeypot addresses. In [9] some interesting statistics on this kind of filtering have
been published: A spammer might wait between delivering two spam messages to different accounts
at the same provider for some time. In only 92% of the cases, the two messages were received within
15 minutes of each other. This approach would require to store and delay each incoming message for
at least 15 minutes to identify it with 92% probability as a part of a spam run. Although most real
world systems use by order of magnitudes more mails than [9] did, it is necessary to delay messages
for a few minutes on a server before forwarding them to the recipient, to use collaborative filtering.
Storing messages on a MTA and comparing them requires huge amounts of both disk space and
computing power. As spammers try to individualise each message with some extra content, checksum
algorithms need to be aware of this. This increases the risk of false positives, i.e. non-spam messages
that accidentally have the same checksum as a spam message.

3.2. Greylisting
Another still reactive way to reduce spam is greylisting, i. e. forcing the sending MTA of a message
to resend it after a short time. As of now, this solution is quite potent, as most spam is sent through
zombies. Those worms contain their own SMTP engine, which is usually quite simple and only
implements a subset of SMTP. Most of them are still unable to handle the temporary unavailable
condition used in greylisting and therefore consider this condition as a fatal error and stop delivery.
Greylisting has two major disadvantages: It slows email communication down and it is likely to be
useless when those worms will implement better SMTP-engines, which is to be expected soon. As of
beginning June 2006, there are already anecdotal reports on bots being capable of dealing with
greylisting [10]. In late 2006, the greylisting.org web page even stated, that although greylisting is
becoming less and less capable in reducing spam, it is still useful as a delay for other filters that need
to be updated because of new spamming techniques.

3.3. Adding Authentication to SMTP
Another common suggestion is to fix SMTP's lack of authentication, which most people believe to be
the one and only reason for spam. The reality proves this assumption to be wrong: Spammers are
among the first to implement and use authenticated SMTP and technologies like “Sender Permitted
From” (SPF) or “Domain Keys” [11][12][13]. Besides being ineffective, this approach suffers from
other disadvantages too: It disables useful SMTP features like forwarding, a feature SMTP
authentication advocates claim to be of no use, but that is – like call forwarding in phone networks – a
must have and used by many people both in phone networks and with email. A Google Mail
representative said in [14], that quite a lot of their customers would have their mails forwarded to
Google Mail.

Furthermore, all those authenticated SMTP systems rely on proprietary, sometimes even patented

technologies, endangering people adopting those technologies to become dependent on their
providers. At this point, the real cause for development seems not to be the battle against spam, but a
matter of power and money.

Last but not least, all those changes to SMTP require a broad installed base of mail servers supporting
them. Besides being hampered by competing standards, those changes to SMTP need to be deployed
world wide. Compared to the simpler task of just configuring a MTA to not be an open relay,
installing those authentication enhancements to the protocol is rather difficult.

Although since a few years most MTAs are non open relays by default configuration, i. e. out of the
box, still 1% of all MTAs are open relays [15]. Considering that open relays are blacklisted and
banned since at least ten years, world wide adoption of any SMTP authentication scheme would
require at least ten years from when a suitable authentication standard emerged.

3.4. Other approaches
All in all, filtering spam seems to come to a dead end and new solutions are urgently needed. A
promising approach is to prevent spammers from collecting email addresses, because spammers
currently only use two relevant ways to collect addresses: One is by installing worms and trojans on
computers and have them read local address books, emails or even all files, collect email addresses
found there and spam to them. There is an obvious solution to this: Have users install decent and safe
operating systems, virus scanners and personal firewalls and protect their PCs with external firewalls
and application level malware filters.

The other source of email addresses for spammers is the internet, most notably the www and the
usenet. There, they collect email addresses using spidering technology known from search engines.
The programmes doing this job are called “harvesters”. Again there are some ways how to handle
them: One is to obfuscate email addresses, so they would not be recognised by harvesters. In [16] the
author suggested several solutions, that are both compatible to any installed browser and barrier free,
and proved their effectiveness in a still ongoing real world experiment [17]. Later, in [18], the author
proposed an automated solution to dynamically obfuscate email addresses published on the web,
thereby solving the problem to modify or redo existing web pages.

The other approach is to use HTTP tar pits, i.e. specially crafted multihomed web pages linking back
to themselves and thereby trapping spammers' harvesters [19][20]. [21] describes a enhanced version
that combines a SMTP and HTTP tar pit, increasing the HTTP tar pit's efficiency by order of
magnitudes.

4. SMTP tar pit
SMTP tar pits are mainly installed to catch bulkmailers while sending out spam runs [22]. Their
working principle is to slow down network connections by introducing delays on the network layer or
on the application layer.

4.1. Network slowdown
Slowing down on the network level means de-optimizing IP and TCP. Typical methods are reducing
the frame size to a bare minimum, reducing the window size and simulating loss of packets [23]. This
certainly results in a reduction of transmission speed, but has by design the disadvantage of increasing
network traffic through the protocol overhead. This might be a consideration for the operator of the
tar pit, but is certainly intended behaviour towards the bulkmailer.

Some implementations even only accept the first part of the TCP three way handshake, the SYN and
SYN+ACK packets but would ignore the next ACK packet1. To the client, the network connection to
the server looks congested, until the client finally stops trying to connect because of network failure.

This however is not best practice to catch bulkmailers and have them stay as long as possible in a tar
pit, because after some failed connections each decent TCP network stack would stop trying to
connect.

Application level slowdown

The alternative is to slow down the connection on the application level. The easiest – and commonly

1 The first version of LaBrea tar pit worked this way. See http://labrea.sourceforge.net/labrea-info.html

used – implementation is to deliver content character by character or line by line sleeping for a few
microseconds between each line. This gives the impression of a very slow server, but if done
carefully, gives no hint on the existence of a tar pit.

Timing is crucial to this kind of slowdown: Most bulkmailers implement very short default timeouts
to avoid being caught in a tar pit like this.

In SMTP exists another way to create an application level delay by inserting so called continuation
lines. Continuation lines are intended to give further details on the status returned [24]. By sending
continuation lines very slowly, the reply is delayed. Continuation lines are identified with a dash after
the status code (See Fig. 1, lines 3 – 8).

4.2. Types of SMTP tar pits
SMTP tar pits are available in two kinds: One is used to trap harvesters. It is set up in DNS as primary
mail exchange (MX) for a domain dedicated to the tar pit. This kind has no real users attached to it,
most of those systems do not store mails they receive, but would delete them immediately, because all
mails received by this MTA are considered to be spam. If not deleted, messages are kept as evidence
for spamming activity and / or to use them to train self learning spam filters.

However, the main reason for installing this kind of tar pit is to try to catch bulkmailers in the act of
sending spam. The promoters of this kind of tar pit claim [25] it would close up TCP ports on the
bulkmailers side, because each connection to a server requires a distinct so called unprivileged TCP
port on the client's side. From a highly theoretic point of view, this is correct, but in real world, a
SMTP server accepts more than one mail per connection, as SMTP is a connection oriented protocol.
And the same message might be sent to multiple recipients during one transaction.

Therefore a connection to the tar pit only closes one high port on the client's side out of 64.000
available ports. If one port has been closed, only this connection is slowed down. All other ports are
still available – if the spammer would notice a performance decrease, it would be in the region of
1/64.000, which is probably less than normal throughput tolerance as network connections seldom
offer constant performance. Furthermore spammers increasingly make use of so called bot nets,
zombie PCs infected with worms and Trojans that offer back doors for sending spam. If, through the
bot net, the spammer uses multiple machines to spam from, this insignificant performance decrease
would become even more marginal.

Because the supposed installed base of SMTP tar pits is small compared to the estimated amount of
22.5 million mail servers, the intended effect of this kind of tar pit is not achieved. To have some
impact on spammers, at least 25% of all installed mailservers should be tar pits. This would require to
install 7.5 million SMTP tar pits – which is not realistic by sheer enormity.

Even if this amount of fake mail servers implementing a SMTP tar pit would be reached, the
installation would soon be rendered ineffective, as spammers' bulkmailers implement very terse
timeouts to avoid being trapped in a SMTP tar pit. Therefore a connection to the tar pit would be
interrupted after the first few seconds [26][22].

This makes this kind of SMTP tar pits ineffective in fighting spam [22].

Some other solutions, like OpenBSDs spamd [26] or Donnerhacke's tarpit wrapper [27], do almost the
same for existing mail servers: If a senders message is considered to be spam, this sender will then be
tar pitted. Those solutions are nice to protect one's mail server and might lead to spammers black

1: 220 mail.example.com ESMTP Postfix
2: EHLO
3: 250-mail.example.com
4: 250-PIPELINING
5: 250-SIZE 10240000
6: 250-VRFY
7: 250-ETRN
8: 250 8BITMIME
9: MAIL FROM:<user@example.org>
10: 250 Ok
11: RCPT TO:<someone@example.com>
12: 250 Ok
13: DATA
14: 354 End data with <CR><LF>.<CR><LF>

 ... Data section goes here ...
15: 250 Ok: queued as DD71B1051A3

Fig. 1: An example SMTP-dialog, (client input in italics)

listing this specific machine, but they are neither giving spammers a really hard time.

5. SMTP tar pit simulator
David Purdue first mentioned that he realized on his OpenBSD's spamd installation, that spammers'
bulk mailers use terse time outs to avoid being trapped in a tar pit [26]. This finally lead to the present
paper's idea to create a tar pit simulator, that behaves for the first few seconds of a connection like a
tar pit and would then change back to full connection speed: If bulk mailers use terse time outs, they
would disconnect during the first few seconds of the connection and then leave the machine alone.
Regular senders instead have longer timeouts and would suppose a slow network connection, but not
stop delivering mails. Using a SMTP tar pit simulator, spam mails would just not be delivered to the
machine, because bulkmailers would stop before they send out their spam.

6. Requirements
The proposed SMTP tar pit simulator should remain compatible to already installed spam filtering
mechanisms, it should not break existing SMTP functionality and be as standard conform as possible.

From a network point of view, the SMTP tar pit simulator should be located in between the remote
client and the local MTA. This is a classic position for an application layer proxy. However, an
application layer proxy would send a request from his own IP address to the server, thereby
masquerading the real sender's IP address. This is not desirable, as some mail servers try to verify the
unchanged remote machine's EHLO-string against the reverse DNS address associated to the remote
machine's IP address and as some spam filtering technologies, like blacklisting, rely on the remote IP
address being correct. To stay compatible to existing technology, was the first requirement.

Therefore, the proxy needs to be transparent to higher network levels, to avoid changes to sender's IP
address. A device operating on this layer only is a network bridge.

A network bridge would also be the best solution for the next requirement: Easy installation, ideally
without the need to change existing network and server configuration. This requirement again is
easily fulfilled by a bridge.

7. Realisation
Taking all those requirements into account, the idea was born to install the transparent proxy on a
bridge. But a bridge is a level two device in ISO/OSI network stack and a proxy is on the application
level.

On the other hand, Linux since Kernel 2.4 and the different BSD flavours offer the possibility to run a
TCP level firewall on a bridge, generating a totally transparent stateful firewall virtually invulnerable
from higher network levels. Together with some previous research in this area, like implementing an
HTTP proxy with content-filtering capabilities on bridge [28][29][30], the idea to run a proxy on a
bridge did not seem so impossible any more.

7.1. Tar pit simulator
As a first setup however, a proxy simulating a tar pit has been implemented. It listens on a TCP
socket and forks a child process as soon as a new connection to it is established, as every proxy does.
The child process in turn opens a connection to the SMTP server, again through a socket, and
forwards data received from the client's socket to the server and vice-versa.

To simulate a basic SMTP tar pit, a configurable amount of data sent from the server to the client will
be delayed and “stuttered” byte by byte, sleeping for a configurable time between each byte sent.
After this period, data is forwarded as fast as possible between client and server.

After a first test setup in Perl [31], the tar pit simulator has been implemented in C. This was
necessary to allow the bridge setup to work, because the bridge setup required a patched Linux kernel
and some special connection information, which were impossible to be made from a Perl script.

If the proxy was not run on a bridge, it would listen on TCP port 25 and wait for incoming
connections. As soon as it received a connection, the proxy would then create a new connection via
its internal interface to the local SMTP server. This connection would be made using the IP address
assigned to the internal interface. But this again would require a reconfiguration of the internal MTA

to avoid it being abused as an open relay, because if the MTA relays for the internal IP of the proxy,
it would relay for any incoming connection. To allow outgoing mail to be relayed, outgoing
connections would need to bypass the proxy, a problem that might be solved with multiple network
interfaces in the MTA or by adding firewall redirection rules to the system the proxy runs at.

7.2. Bridge setup
Those restrictions are only acceptable for a test bed, but they are not for a real world system. That is
why the proxy needs to run on a bridge. However, to establish a TCP connection to the server, Linux
requires the bridge to have an IP address. If the system has no IP, it is impossible to open a TCP
socket. To work around this problem, the TPROXY patch available at
http://www.balabit.com/products/oss/tproxy/ is used.

This patch modifies Linux' netfilter and Linux' kernel. In the kernel, a new table is added saving the
originating IP besides some TCP information for each connection handled by modified netfilter.
When creating an outgoing connection, the socket is first initialized using a locally assigned IP, but
then changed with new commands introduced by the patch to use the original incoming IP. The patch
also manages to identify the server's responses and direct them to the appropriate local process that
initiated the connection.

After patching the kernel, netfilter and modifying the proxy to use TPROXY-connect when opening a
socket, a new iptables rule needs to be added. With all this configuration done, the proxy is able to
run on a bridge.

Although one of the network interfaces has an IP address assigned, which might be used to remote
access the bridge for maintenance, from a network point of view this system behaves like a bridge. It
intercepts all packets passing through it and does not change their sender IP.

Using this technique, it is possible to install the tar pit simulating proxy without any need to modify a
local network setup. As it is run on a bridge, it is compatible to any mail server, independently of the
software used as MTA.

8. Test setup
The test bridge was installed to reduce the spam load on a mail server that handles approximately
25.000 spam mails per day. The test system has some hundreds of virtual user accounts on two
domains. Both domains are mainly used for spam testing purposes, almost all mails received on any
account on those machines are spam.

Before installing the bridge, an average of 24387 spam mails a day was received. The average has
been computed over one month. After this month, the bridge was installed in the network. It was first
configured to delay the first 150 bytes of the server's response by 0.5 seconds each. Doing so, the
daily spam average dropped to 11130 spam mails.

By increasing the delay to one second per byte and stuttering the first 120 bytes, only 5931 spam
messages have been accepted by the mail server. By simply adding the bridge, the server's spam load
was reduced to 24,3% of the original load. This is the amount of spam a server had to handle in 2002
[32]. Increasing the amount of bytes stuttered did not have any measurable effects.

This tar pit simulator reduced the amount of spam to be handled by the mail server significantly. The
test also helped understanding how bulkmailers behave: Some totally ignored the responses the server
sent. They kept on pushing data in the hope of a TCP buffer on the server being big enough to store
the entire mail and then disconnected. Besides terse time outs this is another method to avoid being
trapped in a tar pit, although this behaviour is not conform to the SMTP standard.

As far as I observed, it seems like bulkmailers pushing data without waiting for the server's response
seem to diminish, probably because more and more bulkmailers become aware of greylisting, where
they are forced to wait for an answer.

I also tested the tar pit simulator against several mail servers and web mail providers, from where I
sent “ham” mails. All those messages I sent passed through the tar pit simulator and were not
blocked.

9. Conclusion and further research
The test shows that by using a tar pit simulator, the amount of spam a mail server has to handle, might
be significantly reduced. In our tests, we quartered the amount. The advantage of this method
compared to classic spam filtering is that it does neither consume large amounts of processing power,
because it only forwards TCP connections, nor analyse mail contents. It relies entirely on typical
behaviour of bulkmailers.

Although it does not reduce spam to none, it reduces the workload on spam filters to the level of
2002. Therefore, the bridge allows to reduce expenses on spam filtering systems and CPU power of
the mail server.

This solution is also maintenance free. Due to the suggested installation of the tar pit simulator on a
bridge, the installation process is eased, because the bridge only needs to be plugged in the network
cable leading to the mail server.

Current research is into timing of the tar pit to see how many bytes are the minimum to stutter to have
to 80% spam decrease. It is planned to include this solution into a major overview on anti spam
solutions that is going to start in a few weeks at our institute to see how it compares to other anti spam
solutions. We also intend to research how changing the TCP receive buffer will reduce performance
of legitimate mail and if it would increase our new approach's efficiency by forcing bulk mailers that
push their messages into the receive buffer without waiting for the server's response to wait.

References
[1] Gaudin, Sharon, Record Broken: 82% of U.S. Email is Spam,

http://itmanagement.earthweb.com/secu/article.php/3349921, 2004

[2] McGann, Rob, The Deadly Duo: Spam and Viruses, January 2005,
http://www.clickz.com/stats/sectors/email/article.php/3483541, 2005

[3] Kuri, Jürgen, T-Onine verzeichnet eine Milliarde Spam-Mails pro Tag,
http://www.heise.de/security/news/meldung/72324.html, 2006

[4] Asteroth, Alexander; Baier, Christel, Theoretische Informatik, Pearson Studium,
München, 2002

[5] McWilliams, Brian, SpamCop blocking some Gmail servers,
http://spamkings.oreilly.com/archives/2006/01/, 2006

[6] Bleich, Holger, GMX landet auf Open-Relay-Blacklist,
http://www.heise.de/newsticker/data/hob-27.05.03-000/, 2003

[7] Ungerer, Bert, Anti-Spam-Datenbank ORDB streicht die Segel,
http://www.heise.de/newsticker/meldung/82734, 2006

[8] Gansterer, Wilfried et. al., Anti-spam methods - state of the art in: , Institute of
Distributed and Multimedia Systems, University of Vienna, 2005

[9] Donelli, Giovanni, Email Interferometry , Proceedings of Spam Conference 2006,
Cambridge, MA, 2006

[10] Kühnast, Charly, Auftragskiller. Spam-Botnetz überfällt Charly in: Linux Magazin 07/06,
Linux New Media, München, 2006

[11] Sreekumaran, Jonathan, Those spammers are at it again!,
http://www.techtree.com/techtree/jsp/article.jsp?article_id=53789, 2004

[12] Varghese, Sam, Spammers ahead of the pack again,
http://www.smh.com.au/articles/2004/09/09/1094530732236.html, 2004

[13] Claburn, Thomas, Spammers Hijack Sender ID,
http://www.informationweek.com/story/showArticle.jhtml?articleID=47102042, 2004

[14] Taylor, Bradley, Sender Reputation in a Large Webmail Service , Proceedings of CEAS
2005, Moutain View, CA, 2005

[15] Hoffman, Paul, Allowing Relaying in SMTP: A Series of Surveys,

http://www.imc.org/ube-relay.html, 2002

[16] Eggendorfer, Tobias, Methoden der präventiven Spambekämpfung im Internet,
Masterthesis at Fernuniversität in Hagen, München, Hagen, 2005

[17] Eggendorfer, Tobias, Spam proof homepage design. Methods and results of an ongoing
study , Proceedings of , Stuttgart, 2005

[18] Eggendorfer, Tobias; Keller, Jörg, Preventing Spam by Dynamically Obfuscating Email-
Addresses , Proceedings of CNIS 2005, Phoenix, 2005

[19] Eggendorfer, Tobias, Ernte - nein danke. E-Mail-Adressenjägern auf Webseiten eine
Falle stellen in: Linux Magazin, Linux New Media, München, 2004

[20] Eggendorfer, Tobias, Stopping Spammers' Harvesters using a HTTP tar pit , Proceedings
of AUUG 2005, Sydney, 2005

[21] Eggendorfer, Tobias; Keller, Jörg, Combining SMTP and HTTP tar pits to proactively
reduce spam , Proceedings of SAM 2006, Las Vegas, Nevada, 2006

[22] Eggendorfer, Tobias, Comparing SMTP and HTTP tar pits in their efficiency as an anti-
spam-measure , Proceedings of M.I.T. Spam Conference 2006, Cambridge, MA, 2006

[23] Li, Kang et al., Resisting Spam Delivery by TCP Damping in: , University of Georgia,
Athens, GA, o. A.

[24] Postel, Jonathan B., Simple Mail Transfer Protocol, http://www.ietf.org/rfc/rfc0821.txt
(u.a.), 1982

[25] Donnerhacke, Lutz, Teergruben FAQ, http://www.iks-
jena.de/mitarb/lutz/usenet/teergrube.html, 2004

[26] Purdue, David, Adventures in the tar pit. Implementing OpenBSD's spamd , Proceedings
of AUUG 2005, Sydney, 2005

[27] Donnerhacke, Lutz, Teergrubing Wrapper, http://www.iks-
jena.de/mitarb/lutz/usenet/antispam.html, 2004

[28] Eggendorfer, Tobias, Bridge Filter. HTTP proxy with caching and content filtering on a
bridge in: Linux Magazine International Edition 11/2006, Linux New Media, München,
2006

[29] Eggendorfer, Tobias, Caching HTTP Proxy mit Anti-Virus Content-Filter auf einer
Bridge , Proceedings of Linux World Expo, Köln, 2006

[30] Weigt, Carsten, Implementation eines transparenten HTTP-Proxy mit Content-Filter auf
einer Bridge, Masterthesis at Universität der Bundeswehr München, Neubiberg, 2006

[31] Eggendorfer, Tobias, Reducing spam by using a proxy simulating a SMTP tarpit on a
bridge , Proceedings of CIIT 2006, St. Thomas, 2006

[32] spam-o-meter, spam-o-meter statistics by percentage, http://www.spam-o-
meter.com/stats/index.php, 2007

	1. Abstract:
	2. Introduction
	3. Previous and related work
	3.1. Spam filters
	3.2. Greylisting
	3.3. Adding Authentication to SMTP
	3.4. Other approaches

	4. SMTP tar pit
	4.1. Network slowdown
	4.2. Types of SMTP tar pits

	5. SMTP tar pit simulator
	6. Requirements
	7. Realisation
	7.1. Tar pit simulator
	7.2. Bridge setup

	8. Test setup
	9. Conclusion and further research

