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Creating Financial Friction for Spammers 

Why do spammers send billions of email messages advertising ridiculous products that 
most of us would never in our lives consider buying? How can someone possibly make 
money from spam when the vast majority of it either gets filtered out or at the very best 
read and discarded by a disgruntled end user? 
 
What makes spamming profitable is huge volume. Spamming is profitable when a bait 
message, be it a commercial spam or a phishing email, reaches a substantial number 
(usually millions) of recipients. According to the New York Times, people click on and buy 
products advertised in pharmaceutical spam emails. Other articles suggest that it costs 
about $300 to send 1 million emails, but it's possibly much cheaper to use a DIY botnet. 
Assuming that a spammer makes just $25 from each sale (and it can be much more than 
that), it's easy to see that it takes only slightly more than 2 million emails to make an 
immediate $10K profit. The Times article suggests that pr0n spam gets a 5.6% click rate, 
though the profits per click are much lower there. The spam problem gets bigger by the 
day because it takes just a few hundred dollars to send a very large amount of email and 
the payoffs are huge. 
 
Ken Simpson and Will Whittaker, formerly developers at ActiveState, founded 
MailChannels to solve the spam problem. Rather than trying to invent yet another 
blacklist or a content filter, they came up with a revolutionary idea. The idea was very 
simple: rather than trying to fight spammers by detecting spam messages and discarding 
them, Ken and Will decided to discourage spammers by attacking their economic raison 
d'etre. 
 
By observing spammer behavior, the MailChannels team realized that spammers are 
impatient. If they can't deliver a message within several seconds, they tend to abort the 
connection and move on to spam other servers. After all, spamming is only profitable if 
spammers can push a lot of email across the wire. The solution used by Traffic Control 
product that financial friction. 
 
The majority of spam is sent from botnets--vast, distributed networks of compromised 
Windows PCs. Spammers usually rent botnets by the hour from "bot herders" (usually 
just a bored kid living in his parent's basement). Bot herders even make the spamming 
software available as a part of the botnet rental package, which makes it easy for the 
spammer to get to work mailing out to a large list of prospective buyers. 
 
While botnets are vast in size and availability, the number of machines and the sending 
capacity of any particular botnet is limited. Furthermore, the viability of a particular bot 
decays over time, as receivers such as Hotmail and Yahoo! identify members of the 
botnet and black-list them. For these reasons, it is critical for a spammer renting a botnet 
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to get the spam out as quickly as possible to as many recipients as possible--before the 
bot he rented becomes blacklisted. By slowing down email from suspicious sources 
(often botnets), the MailChannels team figured they could probably make the spammers 
give up and move on. That's exactly what happened. 
 
Notice that I'm not talking about the commonly discussed "grey listing" technique when I 
use the term "slow down". Traffic Control slows down certain SMTP connections to a 
trickle (perhaps 5 bytes per second for both upstream and downstream). When slowed 
down, most spammers voluntarily abort their connection within the first 30 seconds. 
Legitimate emails experience accidental slowing but are unaffected, because their 
legitimate mail servers don't mind waiting a few minutes to ensure an email message gets 
delivered. 
 
While the idea is simple, the implementation is far from it. Slowed connections tend to 
pile up like so many cars in a traffic jam. From a traditional recipient mail server’s 
perspective, these connections are a huge burden on memory and process resources. Add 
this to already CPU intensive spam content filtering, email archiving, regulatory 
compliance monitoring, and automated message handling, and the burden of each 
connection increases even further. In a traditional email environment, slowing down 
connections is a ridiculous proposition that requires enormous server resources. 
 
In fact, we observed that you don't even need to slow down traffic intentionally to cause 
loading issues. Many sites these days are barraged with torrents of spam from huge 
botnets, causing lengthy service outages. The high concurrency causes the damage, rather 
than a high throughput of messages. 
 
Our challenge was to implement a transparent SMTP proxy what users can install in front 
of any existing email infrastructure to slow certain connections to a trickle, which is also 
incredibly scalable with respect to connection concurrency. 
 
T 
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First Generation Throttle Fails to Scale 

We implemented the first generation of Traffic Control using Apache and mod_perl 2 
protocol handlers. We have implemented the SMTP protocol (RFC-2821) using the solid 
infrastructure provided by mod_perl 2. Similar to HTTP, Apache spawns a new server 
every time a new SMTP connection comes in (unlike HTTP, SMTP is an interactive 
protocol) and a custom mod_perl SMTP protocol handler takes over and communicates 
with the client and proxies the connection back to the MTA server (see Figure 1). 

 
Figure 1. The first generation of Traffic Control. 

This approach worked really well with a low-traffic volume. But as soon as we put it on a 
production server that normally received hundreds of concurrent connections, our 
application couldn't deal with the load. There were two major problems. Because we held 
certain SMTP connections open for several minutes due to throttling, hundreds of 
concurrent connections turned into thousands and the machine wasn't capable of running 
thousands of Apache instances. The other problem was the MTA itself, as we also needed 
to run thousands of MTA instances each tied to a client via a transparent proxy. 
This is a good example of how not to design things. If a certain technology scales well in 
one domain, it doesn't automatically mean that it will scale as well everywhere else. 

Second Generation Throttle with SMTP Multiplexing Scales 

We went back to the drawing board and tried to come up with a solution that would scale 
well under heavy SMTP traffic. We considered the light-weight front-end, heavy-weight 
back-end solution familiar to mod_perl users, but it didn't work for us, because we 
wanted to be able to have Perl in the front end and not waste a lot of time implementing 
things in C. Besides, it didn't solve the second problem of having MTAs busy, which 
stayed idle and consumed memory most of the time. 
 
After several brainstorming sessions, we realized that we could solve the problem by 
having a very light front-end process that could talk SMTP and maintain thousands of 
throttled and normal SMTP connections. We also realized that we need to implement 
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SMTP multiplexing between the transparent proxy and the MTA, thus allowing a handful 
of MTAs handle thousands of concurrent SMTP connections, each lasting several 
minutes. The secret of multiplexing came much later, but first we needed to tackle the 
light-weight front-end problem. 
 
Luckily, I've had a lot of (bad) experience with Perl threads, so we quickly decided 
against even attempting to prototype a quick solution. We then hit CPAN in search of 
good concurrent solutions. I've had a quick fling with coroutines Perl modules (the 
Coro:: namespace), but not having any previous experience with those, and not being 
able to find someone who did, removed that option as well. That left event-based 
asynchronous solutions. 
 
There were several implementations of event-loop based libraries available on CPAN, 
and after reviewing our options we decided to use Event::Lib, which provided Perl 
bindings around libevent. We made that choice because we needed a highly portable 
solution. Not only does libevent run on multiple platforms, it also supports multiple 
OS-level implementations on each platform (such as select(), poll(), epoll(), and 
kqueue). 

The Event::Lib itself was well documented and had very good test coverage. Most 
importantly, Tassilo von Parseval, the author of the module, was extremely helpful and 
prompt at fixing bugs. When we started there were quite a few bugs, but Tassilo has 
quickly resolved most of them. 

To jump forward, the second generation of Traffic Control was a major success and 
provides an amazing scalability thanks to Event::Lib and the multiplexing approach. 
The rest of this article discusses the methodology of writing applications using 
Event::Lib. 

One Can't Afford to Block in a Single Threaded Event-based Application 

Chances are that you are already familiar with interactive GUI applications, which are 
event-driven. Event-driven network service applications are quite different beasts. The 
main difference is that when a user interacts with a GUI application, she creates very few 
events in a short period of time (for example, clicking on a button), whereas network 
services normally generate hundreds of events per second (that is, handling HTTP or 
SMTP traffic on a busy server). 
 
Any blocking operation in network service operation will cause a quick accumulation of 
pending events, causing an application slowdown and eventual non-responsiveness. 
To avoid this situation, you can replace any blocking operations with their non-blocking 
equivalents (usually asynchronous) where possible. For example, disk and network IO 
operation can be made non-blocking with operating system support. Any remaining 
blocking or just slow operations need to be delegated elsewhere. For example, iterating 
over a long list of objects could significantly slow the whole application down. 
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If scalable threads support is available, all blocking and slow operations can run in 
separate threads. Unfortunately, as of this writing, Perl 5's thread support is non-scalable 
(and often not even usable). Therefore, we looked for an alternative. We chose to stick 
with mod_perl 2 for that purpose, by writing a very simple protocol that delegated 
blocking and slow operations to the pool of back-end processes. 

 
Figure 2. The second generation of Traffic Control. 

We ended up with the architecture shown in Figure 2, where there is a single threaded 
front-end process which performs lots of non-blocking operations (mainly network IO), 
and the back-end Apache/mod_perl 2 processes which deal with the slow and blocking 
operations. The front-end communicates with the back-end processes using a simple 
protocol. 
 
The front end performs multiplexing and connection pooling to optimize the usage of the 
back-end and MTA resources. Connection pooling saves the overhead of pre-opening 
connections. Multiplexing allows multiple client connections to use a few back-end and 
MTA connections. 

Implementing Flow Control with Event Loops 

While we had experience with GUI event-based applications, that background wasn't 
very useful when it came to implementing flow control in our application. This is because 
in a typical GUI application, a user generated event (a mouse click, for example) usually 
either calls a blocking callback (during which the user loses the control over the 
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application) or gets handled asynchronously (with user regaining the control 
immediately). Whereas in the asynchronous IO networking application, blocking is not 
acceptable and asynchronous operations may trigger more asynchronous operations, so 
implementing flow control is quite tricky. Consider a simple task: read from a file handle 
and check whether a certain pattern matched the read data. 
 
In the blocking IO synchronous flow this is easy: 
 
  my $read = sysread $rfh, my $data, 16; 
  die "failed to read: $!" unless defined $read; 
  warn "got OK\n" if $read && $data =~ /OK/; 
 
It's easy to see the sequence of operations here. 
 
This sequence doesn't work in the async IO world, as it can't do anything that relies on 
the read data immediately after calling the async read operation, because asynchronous 
operations return before they even start. An asynchronous version of this code might be: 
 
  my $ctx = {  
      data   => "", 
      len    => 16, 
      offset =>  0, 
  }; # context 
  read_then_run($rfh, \&check_OK, $ctx); 
  sub check_OK {  
      my ($ctx) = shift; 
      warn "got OK\n" if $ctx->{data} && $ctx->{data} =~ /OK/; 
  } 

This code encapsulates the data into a context to pass around the callbacks. The 

check_OK() function will executed when reading completes. Here's the read_then_run 

function: 

  sub read_then_run { 
      my ($rfh, $cb, $ctx) = @_; 
   
      my $read = sysread $rfh, $ctx->{data}, $ctx->{len}, $ctx-
>{offset}; 
      die "failed to read: $!" unless defined $read; 
   
      $cb->($ctx);       
  } 
 
This is still a blocking synchronous operation. 
 
Now assume that the $rfh file handle is non-blocking. Here's an async IO read equivalent: 
 
  sub read_then_run { 
      my ($rfh, $cb, $ctx) = @_; 
   
      $ctx->{cb} = $cb; 
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      my $e = event_new($rfh, EV_READ, \&_handle_read_event, $ctx); 
      $e->add($timeout); 
  } 
First, this creates a read event, passing it the callback to call when the read event is 
triggered in the context data. Then, the code adds it to the event loop using a predefined 
$timeout value. The code also needs to remember what callback to call when the read 
operation completes, so it stashes the check_OK() function reference into the context 
object. 
 
Now when someone writes to the $rfh file handle and data is available for reading, the 
event loop will call the _handle_read_event callback: 
 
  sub _handle_read_event { 
      my ($e, $e_type, $ctx) = @_; 
   
      die "timeout?" if $e_type == EV_TIMEOUT; 
   
      my $read = sysread $e->fh, $ctx->{data}, $ctx->{len}, $ctx-
>{offset}; 
   
      # Error occurred or eof 
      unless ($read) { 
          if ($!{EAGAIN}) { 
              $e->add($timeout); 
              return; 
          } 
          else { 
              die "failed to read: $!"; 
          } 
      } 
   
      if ($read < $ctx->{len}) { # under-read 
          $ctx->{len} = $ctx->{len} - $read; 
          $ctx->{offset} = $ctx->{offset} + $read; 
          $e->add($timeout); 
      } 
      elsif ($read == $ctx->{len}) { 
          $ctx->{cb}->($ctx); 
      } 
      else { 
          die "huh?"; 
      } 
  } 
When the _handle_read_event callback is called, it first checks whether there was a 
timeout. The registered event handler gets triggered when there was data available to read 
or a timeout occurred. 
 
If it wasn't a timeout, that means that there is data to read, so the handler attempts to read 
the data. 

If sysread() returned undef, it indicates an error. If the system has requested a retry 
(with EAGAIN error), the function adds the same event to the event loop and returns. If 
some other error occurred, it dies. 
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If the read was fully successful, the very first check_OK() callback gets called, and the 
task is complete. If it has not read all of the requested data, the code re-adds the same 
event again and will continue until it has read all the data or either an error or an EOF 
occurs. 

Similar tasks may include a readline and write operations, where the logic is pretty 
similar. There will be a similar async IO readline_then_run() and write_then_run() 

functions, which will internally handle read and write events and call the callback to run 
at the end of it. 
 
When there is a callback that executes an async IO code internally, it usually returns 
immediately and the caller normally doesn't do anything after that, because the control 
must pass to that async IO handler. 
 
Suppose you have a logical sequence of writing to a the file handle, then reading from the 
file handle and doing something on read completion: 
 
  write($fh, ...); 
  read_then_run( $fh, \&run_on_read_completed, ...); 
 
These two functions can't appear one after each in the code. Instead there should be some 
notion of a callback stack, where code can push items to execute and pop them off when 
it's time to run them. To make the previous example work you must first create a stack: 
 
  push run_on_read_completed (last to run) 
  push run_read 
  run run_write 
 
When the sequence runs, it's clear that the last thing to run should be the 
run_on_read_completed() callback, and before it the read event should be created. 
Earlier the run_on_write_completed() should execute, and the very first task is to 
create the write event (or write directly). As each of the phases completes, the engine 
pops the next step from the stack and executes it, until the stack becomes empty. 
 
The code may look like: 
 
  write_then_read($ctx, \&run_on_read_completed, ...); 
   
  sub write_then_read { 
      my ($ctx, $cb, ...); 
   
      push @{ $ctx->{cb} }, $cb; # pushes run_on_read_completed 
   
      run_write($ctx, \&_then_read, ...); 
  } 
   
  sub run_write { 
      my ($ctx, $cb, ...); 
   
      push @{ $ctx->{cb} }, $cb; # pushes _then_read 
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      # create write event 
      my $e = event_new($ctx->{fh}, EV_WRITE, \&_handle_write_event, 
$ctx); 
      $e->add($timeout); 
  } 
   
  sub _handle_write_event { 
      my ($e, $e_type, $ctx) = @_; 
   
      # do all the async IO write logic,  
      # which may take more than one event 
      
      if ($writing_completed) { 
          my $cb = pop @{ $ctx->{cb} }; 
          $cb->($ctx); # calls _then_read 
      } 
  } 
   
  sub _then_read { 
      my ($ctx); 
   
      my $e = event_new($rfh, EV_READ, \&_handle_read_event, $ctx); 
      $e->add($timeout); 
  } 
   
  sub _handle_read_event { 
      my ($e, $e_type, $ctx) = @_; 
   
      # do all the async IO read logic,  
      # which may take more than one event 
      
      if ($reading_completed) { 
          my $cb = pop @{ $ctx->{cb} }; 
          $cb->($ctx); # calls run_on_read_completed 
      } 
  } 
 
This example doesn't show any read/write operations, but marks those to make it easier to 
see how the callbacks get passed around. Read this code in the top-down fashion because 
that's how it executes. 
 
As you can see, async IO flow requires writing lots of small functions that all call each 
other as callbacks. Pass a context object around to maintain state. There could be many 
other similar sequences that you can abstract into wrappers. With help of those wrappers, 
implementing more complicated logic becomes much easier. 

Dying Is Not an Option 

When writing async IO networking applications, you can't afford to let them die. When 
dying, the event loop will end and the application will quit. Instead, trap all exceptions 
and handle them gracefully without quitting the event loop. Do this by calling 
event_register_except_handler() before starting the event loop: 
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  event_register_except_handler(\&event_exception_handler); 
  event_new(...)->add; # add the initial event(s) 
  event_mainloop(); # start the event loop 
   
  sub event_exception_handler { 
      my ($e, $exception, $e_type, @args) = @_; 
      # handle the exception 
  } 

$e is the event object passed to the event handler when the exception was triggered. 
$exception is the exception variable, either a string generated from die() or an 
exception object. $e_type is the type of the event (EV_READ, EV_WRITE, etc.). @args will 
contain the arguments passed to event_new() following the callback. If something called 
event_new() with: 

event_new($rfh, EV_READ, \&_handle_read_event, $ctx); 

@args will contain the $ctx object. 

In our application, an exception usually closes the file handle. We also use our own 
exception objects module, because we have found that all the existing exception handling 
systems available from CPAN, were too heavy.. We found that throwing an exception 
object, rather than dying with a string was far more practical and also much faster, 
because in the exception handler we perform a numerical comparison, rather than 
matching strings.  

Conclusion 

Developing networking applications using event loops can be quite tricky at the 
beginning and requires a lot of well designed abstraction, to keep the code manageable. 
The MailChannels::AsyncConnection module that contains the abstraction went 
through many revisions. We hope to make it more generic and release it on CPAN when 
we have time. 
 
We are extremely happy with the final product, however, because it is amazingly scalable 
and can handle thousands of concurrent, long running connections. One of our customers 
recently underwent a heavy DoS attack on its mail servers, receiving thousands of 
requests from various botnets. The single process non-threaded async IO SMTP 
Multiplexing in Traffic Control protected their email servers from crashing during the 
attack.  


